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Abstract: A new model (called multi-component blurring or MCB) to account for image 
blurring effects due to depth discontinuities is presented. We show that blurring processes operating in 
the vicinity of large depth discontinuities can give rise to emergent image details, quite distinguishable 
but nevertheless un-explained by previously available blurring models. In other words, the maximum 
principle for scale space [Per90] does not hold. It is argued that blurring in high-relief 3-D scenes 
should be more accurately modeled as a multi-component process. We present results form extensive 
and carefully designed experiments, with many images of real scenes taken by a CCD camera with 
typical parameters. These results have consistently support our new blurring model. Due care was 
taken to ensure that the image phenomena observed are mainly due to de-focussing and not due to 
mutual illuminations [For89], specularity [Hea87], objects' "finer" structures, coherent diffTaction, or 
incidental image noises. [Gla88] We also hypothesize on the role of blurring on human depth-from- 
blur perception, based on correlation with recent results from human blur perception. [Hes89] 
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i I n t r o d u c t i o n  

The objectives of this paper are: to present a simplified image blurring model tha t  
is sufficiently general to account for blurring effects due to depth discontinuities, and 
to explore some implications on depth-from-blur techniques. See [Ens91], [Gar87], 
[Gro87], [Pen8?&89], [Sub88a], and many others. Previously none of those known 
depth-from-blur formulations discussed such important  cases. We realized that  an 
accurate model must be composite (i.e. consisting of a possibly unknown number of 
sub-processes.) The composite nature of blurring due to depth-discontinuities give 
rise to the net blurring effects, with new local extrema generated, very much in 
discord with commonly employed blurring models. 

The organization of this paper is as follows: 

Section 2 discusses the radiometry of image formation in the presence of 
sharp discontinuities. Only incoherent (or very weakly coherent), polychromatic 
lighting was assumed to be present (this was enforced in the experiments), as 
is often true in normal, everyday lighting, thus radiometric models approximate 
the imaging process adequately. These simple radiometric considerations are then 
seen to be capable of predicting blurring instances in which interesting resultant 
image structures (emergent details like peaks and valleys) are created. The object- 
and-camera configuration used in this analysis is also adapted to the real-scene 
experiments presented in section 3. 

Section 3 presents the results from extensive experiments with images of  realistic 
scenes taken with a C0hu-4815 CCD camera with 8-bi t  accuracy. Temporal averaging 
over twenty frames each image was employed to subdue various image noises to 
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about one gray level in variance. Various settings of camera parameters (focal length 
f, aperture D and back-focal distance v) are employed to test the blurring model. 
Also, controlled experiments for checking ground truth were performed to ensure 
valid interpretation. 

In section 4 we illustrate the implications for depth-from-blur, an active 
vision algorithm suitable for close range. We simulated Pentland's "localized 
power estimation" algorithm [Pen89] to estimate the blur widths for simple 
(single-component) blurring profiles as well as multi-component blurring (MCB) 
cases. Finally we discuss implications to the modeling of human monocular depth 
perception. This last discussion could suggest further psychophysical investigation. 

2 M o d e l i n g  o f  S i n g l e - c o m p o n e n t  a n d  M u l t i - c o m p o n e n t  B l u r r i n g  

2 .1  I m a g e  b l u r  as  a f u n c t i o n  o f  d e p t h  

Blurring (MCB or otherwise) herein always means de-focussing instead of 
diffraction blurring (which does not contribute significantly in our problems.) With 
a simple blend between geometrical and radiometric optics, the width wi of a 
normalized, positive blurring kernel can be defined as: (similar to [Sub88b]) 

}} }} < w? > -~ ( x -  x-)"g~(x)dx; -Z = XK~(X)dX 

- -co  --r  --oo ~ o o  

(1) 

and this width is linearly related to the the blur circle diameter, Dlvi-v01/v0, and 
inversely to the depth (distance) u F 

wi -- nD Ivl - vol ~. f lul  - uol 1 1 + 1 
vo = g U u o ( u  i _ f) ; from the lens equation : f -- u-i~ vl (2) 

where t~ is a small constant, f is focal length, u i is distance from the point Pi to first 
principal plane of the lens system, and v i is that distance from the second principal 
plane to the plane of best focus for Pi, image of point Pi. If u0 is set at infinity 
(farther objects in better focus), then the relation above is simp|ified to: 

w i -  ~ D u i - ~ ;  when  u0 --* oo (.~) 

giving only one solution. So, focusing camera at infinity is desirable to prevent 
ambiguities in depth-from-blur. We will assume such a setting henceforth. 

2 .2  I m a g e  f o r m a t i o n  a c r o s s  d e p t h  d i s c o n t i n u i t i e s  

Figure 1 represents a simplified model of a camera imaging a sharp edge that 
"just cut" onto the optical axis and standing in front of a uniform background. The 
Lambertian assumption, though convenient, is not required, only that no specular 
reflection, no significant mutual illumination effects (interreflections) are present 
in the scene, and neligible image noise. Care must be exercised to prevent the 
aforementioned effects since they sometimes create spurious image features that 
can be confused with multi-component blurring effects. [For89], [Hea87] Note that 
a knife-sharp edge is not  necessary here (as would be required in monochromatic 
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coherent diffraction experiments) and the real "edge" used was just a carefully hand- 
cut edge (by a sharp blade) out of a high-quality foam-filled cardboard. In fact, 
it is our objective to show that MCB effects are detectable in scenes containing 
realistic objects. 

This is perhaps the most important point of this paper: image blurring near 
a depth discontinuity can be best analyzed separately for each surface patch at 
different depth. We will concentrate on the cases where one of the blurring process is 
dominant (i.e. having a much larger spread than others) in the image neighborhood. 
(For example, in figure 1 the blurring due to E, the edge, is dominant.) 

Toward modeling the imaging process of a 3-D scene, [Fri67] found that the 
transfer function for a 3-D object cannot be cascaded. For example, in the case of a 
3-D object imaged by a cascade of two lens systems. The tranfer function of such a 
cascade is not the same as the product of each system's transfer. This is due to the 
general 3-D nature of the resulting image (a 3-D object has its image also a 3-D 
distribution of intensity.) Blurring on the image plane is then the result of projecting 
the (3-D) image distribution onto the image plane. However, we have chosen to 
model the blurring two-stage process as is fairly conventional: 

a. Ideal image registration (geometric and radiometric) giving I0(x),'the idealized 
unblurred image. 

b. Blurring with blur width depending on u(x) ,  or the depth value of the point P 
= (X, Y, u (x) )  that has its image at x. 

For the one-dimensional model in figure 1, we can see that, at each image 
coordinate value xv, the resulting intensity also contains the sum of all blurring 
(or diffusion) contribution from neighboring image regions (ie. pixels, etc.), each of 
which may have a different blurring kernel. Concisely, then: 

I ( ~ )  = ~-~ Ij(~); (4) 
jEJ 

where j indexes the different image components near Xv. 
For our 1-dimensional, 2-component case, in particular, let Xv = 0, and let the 

ideal image intensity levels from the edge and the background to be respectively Ie0, 
Ib0. The blurred components are Ie(x), Ib(x) such that: 

I(x) = k(x) +l~(x) : 2 components 

? '/ 
-oo -oo (,51 

o O  OO 

I,(x)--- / Kb(z, x'lIb0Tb(z'ldx'a ~ /K~,(z, x')It~,dz' 
. , 

- - o o  - - ~  

where Tb(x), describing the lens occlusion effect due to the edge, is similar to a 
smeared step function. Typically, the occlusion effects is small, and an ideal step 
function :(x)  can be used for Tb(X). Or, the backround blurring kernel K*b(X, x') is 
distorted from a simple Kb(x, x'). We will not go into details of the lens occlusion 
effect, which is secondary. See figures 1 and 10. 

With the analogy between Gaussian blurring and heat diffusion [Hum85], 
[Per90], multi-component Gaussian blurring is analogous to multi-component particle 
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diffusion, whereas each type of particle has a different diffusion constant, and none 
of them react chemically with each other. Note that analogy with heat diffusion 
cannot be easily made, since temperature is a single entity, unless we distinguish 
between different types of heat (due to different causes, and propagate at different 
rates, for example.) 

2.3 Emergence  of  image  details  by m u l t i - c o m p o n e n t  b lurr ing  effects 

Continued form above, we now show that multi-component blurring can give 
rise to new image features (or details), as opposed to the consistent suppression 
of details by single-component blurring models. By new image details, we mean 
specifically new local extrema, ie. local peaks and valleys. Just for ease of blurring 
width estimation/verification later, we assume here that every component kernel is 
some shift-invariant Gaussian, but other unimodal kernels can be used. 

The 1-dimensional unblurred image is again taken to be approximately two 
disjoint step functions with heights Ie0, Ib0. The blurred components are Ie(x), Ib(x) 
respectively. 

I(x) = I.(z) + Ib(x); I..,bl,..~(z) = I.,,~(--x) + Iu,~(x); 

I,(z) = G,(z) �9 I~,f(-x); Ib(x) = Gb(x) �9 Iu,~(z) { 1;,,>__o } (~) 
~(u) = O; u < 0 unit step function 

Where * denotes convolution. Figures 2(a), 2(b) show the two components, and 
figure 2(c) and 2(d) show a resulting MCB profile with emergent extrema. Note 
that with ideal step functions as shown, a continuous, uni-modal single blurring 
kernel will not introduce new local extrema. (This is the maximum principle, a main 
assumption in the Gaussian scale-space concept [Per90], however, MCB does not 
obey such restrictions.) At the emergent extrema location Xz, the gradient vanishes: 

O ( G r  * Lof(-z) + Gb(z) * Iu,f(-x)) = -L,~G~(z) + Iu,Gb(x) = 0; 
_x 2 

1 ( l U )  (--x:~ |" e x p ( ~ _ ~  =0; giving - ~ x  \"~b ezP~,-~'ab2,/ - a--'~ k. 2a~ ] ] 

2 or I~la-----b - -  " 

(7) 

The resulting conditions and solution for zz, are: 

i f  (ae > ab) and (a~lbo < abLo); or (ae < ab) and (a,:Ib,} > abl,~j) 

then X'2z = (tre+ab)(ae--trb) k,I~lab] 
(s) 

Note that the MCB gradient profiles can be quite different from those of SCB 
(single-component blurring). See also figures 3(ha), 3(bb) 3(cc) and 3(dd). For some 
range of Ie0, Ib0, the MCB gradient actually is a weighted difference-of-gaussian, an 
interesting fact. 

Examples: Figure 3 shows a comparison of multi-component Gaussian blurring 
effects (3(a), 3(b), 3(c), 3(d)) to the effects of comparable-width single-component 
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Gaussian blurring. Only Ib0 is varied, with Ie0 = 190, ere=5, erb=3. Values for 
Ib0 are 210, 190, 150 and 105 respectively. The same set of Ie0, ere, and Ib0 was 
used for single-kernel blurring (which has ere = erb = 5). It is quite evident that 
multi-component blurring is capable of creating new interesting extrema. Note also 
that, even though case 3(a) looks like Mach-band effect due to human retino-optic 
ganglion cells [Lev85] (or, in image processing, edge-enhancement schemes using 
filters similar to Laplacian-of-Gaussian kernels), MCB effects are not results of any 
purposive image processing. We are talking of images as registered onto the camera 
imaging sensor plane. 

And there could be no confusion with Mach-band or edge-enhancement 
processing in cases like figures 3(b) and 3(c), because the "peak" can occur well 
below the "brighter" level (into the "darker" side, as long as the "dark" side is not 
too dark.) Specifically, with given image parameters, for new extrema to be created, 
Ib0 must satisfy: 

I~ > a--~bL, = 114 (9) 
O'e 

which is larger than 105 (value of Ib0, the right image component in figure 3(d).) 
Hence in figure 3(d), no extrema emerged. 

Physical limitations such as blooming and smear of the imaging sensor elements 
(pixels) [TI86] by the mechanism of charge spilling between adjacent pixels, also help 
to blur the intensity difference between neighbor pixels, thus softening MCB features 
somewhat. The net effect is that the local extrema by MCB are most detectable for 
some range of Ie0/Ib0, with some upper limits dictated by CCD sensor characteristics, 
and lower limits at least as high as given by equation (8). This suggests that, unlike 
usual blurring effects, MCB effects are more detectable at lower local contrast, a 
rather surprising prediction that was actually observed in real images, and have 
possible implications to human perception. See figures 11, 12, 13, 14, and especially 
figure 18. 

Let us try to see what it takes for a single convolution kernel to describe well 
the blurring effects shown). Then, the resulting kernel Kcomposite(X , x') is given by: 

{ c,~(~ - ~'), ~' > 0 
Kr x') = G~(x- z'), x' < 0 (I0) 

which looks innocously simple, until we see some sample plots of it in figure 4. 
As seen, with ae=5, ab-~ 3, Kcomposite(X, x') is neither Oaussian (it's a patching 
of 2 truncated Gaussian segments), nor shift-invariant, and not even continuous at 
x'--0 (blurring interface.) These characteristics are more pronounced for larger ratios 
between the b|ur widths ~e, erb, and for smaller absolute values of xz. MCB blurring 
can be very complex to estimate, because even for the simpler case of shift-invariant 
single Gaussian blurring (directly analogous to heat diffusion) we cannot get exact 
inverse solution (ie. for deblurring or estimation of the blur width.)[Hum85] 

Note that even with anisotropic diffusion (blurring) model [Perg0], new details 
(new local extrema) cannot be created (by the maximum priniciple), only that some 
existing details can be preserved and possibly enhanced (ie. sharpened.) 

3 S t u d y  o n  R e a l  C a m e r a  I m a g e s  

From the above model for MCB, we set out to experiment with real images 
to test the hypothesis that MCB effects do exist and can be detected in images of 
realistic scenes. 
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3.1 Experimental se tup  

The set up is quite similar to the imaging model in figure 1. Distances from 
camera are: 1.33 meters to edge of board E, and 5.69 meters to the 3 card boards 
that served as background B on the wall. The three backround boards have slightly 
different reflectivities, thus enabling convenient investigation of MCB effect due local 
contrast (see figure 3 and figures 13, 14.) To make sure that other phenomena 
different than MCB blurring (de-focussing) were excluded from registering onto the 
images, we have insisted that: [Ngu90a] 

a. No specular reflections were present on or nearby the visible surfaces in the scene. 
b. No shadowing of the background patch B by the edge E. 
c. No interreflections (or mutual illuminations) between the two. Interreflections 

(mutual illuminations) between edge E and background B can give spurious 
details (local extrema) rather easy to be confused with MCB effects. See [For89]. 

d. Illuminations had low partial coherence. See [Gla88]. 
e. Image noise was reduced to about less than 1 gray level in variance, by temporal 

averaging of each image by 20 frames. This is also good for suppressing any 
noise due to the neon flicker. 

3.2 Image data 

Since a work of this nature must be extensively tested with carefully controlled 
experiments, we have performed extensive experiments (over 300 image frames taken 
for tens of scene set-ups) with consistent results. Here we included three typical sets 
of images and their video scan lines for further discussions. Note that all middle scan 
lines go through the medium-sized background card board. 

[] Set {M} (figures 5 through 8) contains M0, an image of overall scene, and M1, 
M,?, two images of the background (three patches) B (one close-up and one 
distant), and also M~, close-up image of edge E. This set serves to check for 
uniformity of B and E both separately and together. Note especially the "edge 
sharpness!' and surface smoothness of the edge E. 

[] Set {N} contains NI (figure 9), N$ (figure 10). The parameter sets for them are 
back-focal distance, aperture diameter, and focal length, respectively (v, D, f): 

�9 N1 with (v, D, f ) ,  = (6375 mf, 7420 ma, 8760 mz) or (87 mm, 4 mm, 
84 mm). 

�9 N~ taken with (v, D, f ) ,  = (6375 mf, 9450 ma, 8760 mz) or (87 mm, 6 
mm, 84 ram). 

All parameters are expressed in machine units corresponding to the zoom 
lens digital controller readout: focus (mf), aperture (ma) and zoom (mz). 
Corresponding physical values of (v, D, f) are beleived to be only accurate 
to within 5 percent, due to lack of precise radiometric calibration for aperture 
(which is a complex entity for any zoom lens.) 

[] Set {P} has Pl (figure 11) and P'2 (figure 12) showing the MCB effects when 
camera parameters are fixed but scene lighting changed non-uniformly (so that 
local contrast can be controlled.) Both were taken with (v, D, f )  = (6375 
mf, 9450 ma, 4200 mz) or (48 ram, 6 mm, 46 mm), but P$ with a reduction 
in foreground lighting (which illuminates the edge E), which did not affect 
background lighting significantly since whole room was lit with 44 neon tubes 
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and only 2 small lamps (~100 watts each) were used for independent illumination 
of E. 

To estimate independently the blurring widths of the background and the front 
edge, (so that we can compare MCB model with real image blurring effects due to 
depth discontinuity), we followed the simple method of Subbarao [Sub88b]. The blur 
widths (de, ab) estimated in (horizontal) pixels were found as follows: 

a. For N1, approximately (3.23, 2.62) 
b. For N~, approximately (3.92, 3.45* (better fit with 3.0 due to lens occlusion)) 
c. For PI, P2, approximately (2.08, 1.66) 

Accounting also for video digitizer resampling, the effective pixel size is 
approximately 16.5pm (horizontal) by 13.5pm (vertical). 

3.3 I n t e r p r e t a t i o n s  

Refer to the figures 9 through 14. All images are originally 512x512 pixels but 
only central 500x420 image portion shown, and image coordinates (x, y) denote the 
original column and row indices, left to right and top to bottom. Analyses are done 
on horizontal slices at y --- 270, called middle slices. The point x = 243 on all slices 
is at approximately "the interface" (corresponding to x=0 in figure 1) between the 
image regions of the background {x > 243} and the edge {x <=  243}. 

The middle slices for the "ground-truth" images MO, M1, M2, M3 (controlled 
set), included with the images (figures 5 to 8), show negligible MCB effects. They 
reveal nothing very interesting on the background surface, nor across the depth 
discontinuity (figures MO and M2.) Even right at the edge in image M2, one can 
only see a small dip in intensity mainly due to the remaining small roughness of the 
hand-cut (which absorbed and scatter lighting a little more.) However, the thin-lined 
curve in figure 5, which is the middle slice of image MO* (taken with same focal length 
as for MO, but with back-focus set so that edge E is blurred) demonstrates significant 
MCB blurring. However, MO it self (dark dots) shows no such interesting feature. 

Middle slices for images NI and Ne (figures 9 and 10) reveal MCB effects with 
rather broad spatial extents, again near x = 243. For this image pair NI and N2, since 
the intensity ratio Ie/Ib is approximately unity (very low local contrasts), the MCB 
effects are controlled by w b and Wc. Note also the persistence of MCB effects even 
with reduced aperture: overall intensities in NI is lower, but the "MCB details" still 
very pronounced. Compare these image slices to figures 3(a) through 3(d). Image 
N2 shows effects of aperture occlusion, that is, the best-fitting Wb, value of 3.0 (for 
background, x > 243) is significantly smaller than the unoccluded background blur 
width w b (about 3.45 pixels, see section 3.2 above) 

Middle slices of P1 and Pe (figures 11 and 12, whose close-ups are figures 13 
and 14) illustrate the detectability of MCB effects as a function of local intensity 
contrast Ie/I b. See also section 2.2 . That is, when Ie/I b is closer to unity (lower local 
contrast), MCB effects are more pronounced. This is also sugested in comparison 
of slices (y = 86) as well as (y = 270) of P1, P2: reduced Ie reveals the "MCB 
spike" unseen with brighter foreground (and hence higher local contrast)! This could 
imply that human depth-perception may be enhanced naturally by MCB effects in 
low-contrast, large depth-range scenes. Section 4.2 next discusses this point. 
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4 S o m e  I m p l i c a t i o n s  f r o m  t h e  M C B  B l u r r i n g  E f f e c t s  

We like to discuss the MCB effects on depth-from-focus, and also touch briefly on 
some recent results on human blur perception, which seems to support our speculation 
that human depth perception could be enhanced in low-contrast, large depth-variation 
settings, due to the MCB effects that can be detectable. [Hes89] [Ngug0a&b]. 

4.1 M C B  b l u r r i n g  a n d  d e p t h - f r o m - b l u r  (or  d e p t h - f r o m - f o c u s )  

Both Pentland [Pen87&89] and Subbarao [Sub88a], and others had worked on 
local blur estimation as an approach to 3-D perception, and with considerable 
sucesses, especially the real-time implementation by Pentland, which was up to a 
few hundred times as fast as correspondence-based stereo, making the approach 
rather attractive in some cases [Pen89]. We particularly pay attention to Pentland's 
simple "local power estimator" method, which is fast and reasonably accurate for 
single-component blurring cases. The more careful matrix formulation in lens91] 
improved on depth-from-blur accuracy incrementally, possibly best so far, but did 
not account for MCB, either. Also, even though depth-from-best-focus approach, 
such as Krotkov's [Kro89] and others, is different from the depth-from-blur approach, 
our following analyses have important implications to both, while we discuss only 
the later. 

We also presented here, however, two sets of MCB simulated data that does not 
follow these researchers' models of local blurring. The simulated data are in fact very 
similar to real image scan lines obtained and discussed in section 3. We show that  
Pentland's "power measure" can in fact increase with increasing blur widths in many 
cases of MCB blurring. In other words, Pentland's method (as well as other methods 
mentioned above) fails to measure MCB blur. 

In a nutshell, Pentland's approach can be summarized as: given a sharp image 
Ishar p and a blurred image Iblur (blurred by o'blur; o'blur > ~ one can take 
localized power estimates Fsl~a~(A) and Fblur(A) for two corresponding image patches. 
Then utilizing the relation: [Pen89] 

klo'~lur -~ k21n(~blur) ~- k3 "~ In(F, harp(A)) - In(fblur(A)) (11) 

one can estimate o'blur given ~ 

We take our typical scene a step edge blurred by a small Gaussian of width 
~ "- i, o'blur varying from i to 6. For clarity, only images with o'blur -- {I, 3, 6} 
are shown in figures 15(a), 16(a) and 17(a). Figure 15 illustrates the case of single- 
component blurring. The Pentland's power estimator applied to such a step edge of 
widths ablur = {1, 2, 3, 4, 5, 6} gives power estimates (figure 15(b)). Then takes the 
difference of the logarithm, or logarithm of the ratio, of the power estimates. Points 
giving power ratios smaller than 1 are discarded. For single Gaussian blurring, the 
power responses dies off monotonically with increasing blur (figure 15(b)), giving a 
monotonicaly increasing power difference (figure 15(c)). For the Pentland's estimator 
shown in figure 15(c), median fitting was used for general robustness, though more 
refined approach can be used. Only mask size of 8 is used for the Laplacian-of- 
Gaussian and the Gaussian windows here, but similar results are obtained for larger 
windows. 

Figures 16(b) and 17(b) show the results of trying to measure the "local power" 
of MCB edges, that have ~ = 1 fixed on one side (left side in figure 16 and right 
side in figure 17), and the other side blurred with o'blur = {1 ,  ...,  6} .  Note the two 
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different manifestations of MCB blurring. Power measures for image set in figure 
16 mostly increase with larger blur widths, except perhaps for a small range around 
O'blur/Crshar p < 3. Consequently, Pentland's model cannot be applied for reliable 
determination of ~blur from these "power data". 

Figures 17 gives not even a single case of valid power difference measure. This is 
because for all O'blur = {1, ..., 6}, the "image power" consistently increases with blur 
width, completely opposite to SCB case in figure 15(b). That  is, the more blurring 
occured, the higher the power measure. This last data set, as well as most of those 
from figure 16, defies any "local power estimation" approach, due to emergent high 
frequencies. We beleive a gradient-based approach to be more viable. 

4.2 M C B  b lu r r ing  effects and  h u m a n  b lu r  p e r c e p t i o n  

During the work in 1989 and published in [Ngug0b], we had speculated that 
MCB effects could play some important role in human visual perception, especially 
depth perception at low local contrast. This is a hypothesis arised naturally from 
the observations in section 3.3 on the characteristics of the MCB effects (emergent 
extrema). However, we had been unaware of any psychophysical data in favor of our 
hypothesis until recently when we found a paper by Hess [Hes89], who argued: 

a. that human blur discrimination (between blur edges slightly differing in blur 
extent) may actually rely more on low-frequency information, rather than high- 
frequency, near the vicinity of the blur edge transition. 

b. that discrimination is consistently enhanced if one of the blur edges is pre- 
processed so as to give an effect similar to MCB effects (he called phase-shifted 
processing instead), that is, very similar to figures 3(d), 13(a), and 14(a). For 
comparison, see figure 18, which contains our reproduction of his figures 10 and 
11 in [Hes89]. 

The above conclusions came from Hess's study on blur discrimination without 
any depth information. Human subjects looked at computer-generated 2-D intensity 
profiles on a screen. [Wat83] However, conclusion (b) above was very favorable in 
support of our hypothesis, which also involves depth. We strongly beleive that further 
investigation into human perception of blurring effects due to depth discontinuities 
could provide yet more clues into the working of human visual functions. 

5 D i s c u s s i o n s  a n d  C o n c l u s i o n s  

In this paper, we have analyzed mainly the forward problem of multi-component 
blurring (MCB), discussed possible implications, and suggested that a gradient-based 
approach to the inverse problem could be promising. To summarize, we have: 

O presented a simple but sumciently accurate multi-component blurring model to 
describe blurring effects due to large depth discontinuties. Our model with aperture 
occlusion (section 2.2) is more general than a computer graphics (ray-tracing) 
model by Chen [Che88]. Due to space limitation we have restricted experimental 
verification to 1-D profiles. 

[] illustrated that current depth-from-blur algorithms could fail when significant 
MCB effects are present. Effects due to MCB blurring seemed to be ignored, 
or treated mistakenly like noise, by previous depth-from-focus algorithms [Pen89, 
Sub88, Ens91], which would give inaccurate depth estimates (averaging of estimates 
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mainly serves redistribution of errors) and unknowingly discard valuable depth 
information in MCB features. 

El raised an interesting speculation that MCB effects could play an important 
role in human depth perception, especially if the scene has low texture, low local 
contrast and large depth discontinuities. While we are not aware of any depth- 
from-blur experiment with human perception, we can point out some important 
recent results in human (2-D) blur perception [Hes89] that correlates well with the 
MCB effects presented here. Finally, although MCB effects are definitely not due 
to Maeh-band illusion, the similarity between Math-band and MCB effects in some 
cases could have led people to overlook the MCB effect in real images (thinking 
Math-band effects were at work.) See [Lev85]. 
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Figure 1. Imaging a sharp discontinuity: model for experimental set-up. Camera is 
focused at infinity. The dark segments near points e, bl, b2 illustrate relative sizes 

of blurring widths. T(x) describes the lens occlusion effects (see figure 10, imge 
N2) for some backgound points like point B2. If background B is very far, T(x) 
can be replaced by a simple on-off model (hence, the simple step image profile.) 
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Figure 2. Example of a 1-D step edge with a two-component MCB. a l ~ = 5 ,  
while aright=3. The kernels are all Gauss�9 Figure 2.(d) compares the 

resultant MCB profile with a single-component Gauasian blurring with a = 5. 
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Figure 3. (a), (b), (c), (d) show Gauss�9 MCB and SCB (dashed) 
profiles in comparison. For MCB case, alert = 5, aright = 3, as in 

figure 2. Figures 3. (ha), (bb), (cc), (dd) shows the corresponding MCB 
and SCB gradient profiles in comparison. Discussion in section 2.2. 

Figure 4. Two views of the Kcomposite(X, x') composite blurring 
kernel for figures 2 and 3 above. See equation 10 in section 2.3. 
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Fig. 5 Image M0: setup (Section 3.3) 
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Fig. 7 Image M2: Close-up of the edge 
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Fig. 8 Image M3: Close-up of background 
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Fig. 11 Image P1 with row 86 and 270 Fig. 12 Image P2 with rows 86 and 270. 
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No estimator: 16(b), 17(b) 

For the MCB cases in the middle column (figure 16) Pentland's is of very limited 
use (the bottom row in middle column is the only valid "power image difference" 
between o'right = 1 and aright = 2.) For MCB cases in the last column (figure 17) 

Pentland's method is inapplicable. See section 4.1. Note different power scales. 
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difference. 
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Fig. 11. Pwchometrir functionm for bl~r discrimination between stimuli that have the same difference in their amplitude spectrum but with 
different phase spectra. Open symbols represent discriminations between the same edge stimuli discussed. Filled symbols represent 
discriminatior~ between plmse-shiRed versions of the original stimuli (see the text). Result~ are given for a rav~e of pedestal blurl and 
eccentricities. Note that the ab~i~a is a logarithmic scale, so that the factor by which discrimination is affected by this maneuver can be 
gauged. SoUdcurvesarebestfitstothedata, obtalnedbyusingprobitanalysis. Discriminstionbetweenphase-thiftedversionsoftheori~inal 
stimuli are better by a factor of 2. This argues against a frequency filter code and argu~ for a space filter cede (see the text). 

Figure 18. Our reproduction of Hess and Pointer's results on blur discrimination. 
The phase-shifted processing, second row of his figure 10, consistently enhanced 

human blur discrimination. Compare his figure 10 with our figures 3(d), 13(a), 14(a). 


