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Abstract 

IIindley/Milner-stylc polymorphism is a simple, natural, and flexible type dis- 
cipline for functional languages, but incorporating imperative extensions is diffi- 
cult. We present a new tcchnique for typing references in the presence of polymor- 
phism by inferring a concise summary of each expression's allocation behavlor--a 
type effect. A simple tcchniquc for proving soundness with respect to a reduction 
semantics demonstrates that the type system prevents type errors. By establishing 
that the system corresponds to an alternate system better suited to implemcnta,- 
tion, we obtain an algorithm to perform type and effect inference. 

1 P o l y m o r p h i s m  and References  

Hindley/Milner-style polymorphism [8, 12] is a simple, natural, and flexible type dis- 
cipline for functional languages, but incorporating imperative extensions is difficult. 
While a number of systems for typing reference cells exist [3, 10, 16, 17, 18], we have 
devised a more direct approach based on inferring a concise surmnary of each expres- 
sion's allocation behavior. Our system has several desirable characteristics: the curried 
version of a function may be used wherever the uncurried version applies; all expressions 
typable in the functional sublanguage are typable; the system has a direct inference rule 
formulation; and it can be implemented efficiently. In this paper, we discuss the typing 
of STANDARD ML's reference cells by our method, give a formal description of a type 
system for references, and show how it may be implemented. We begin with an illus- 
tration of the difficulties involved in typing references in the presence of polymorphism, 
and outline our solution. 

*This rcscm'ch was supported in part by the United States Depaa'tment of Defelme under a National 
Defense Scicnce and Engineering Graduate Fellowsldp, and by NSF grant CCl:t 89-17022. 
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1 . 1  H i n d l e y / M i l n e r  P o l y m o r p h i s m  

Hindley/Milner-style type systems express polymorphism with let-expressions. In func- 
tionM languages, understanding such expressions as abbreviations offers a simple ex- 
planation of polymorphism. SemanticMly, the expression: 

let x = e l  in  e2 

has the same meaning as e2[z/ex], the capture-avoiding subst i tut ion of el for free x in 
e2 (assuming tha t  el does not  diverge). However, in typing the substi tuted expression 
e2[x/el] ,  each occurrence of the bound expression el may have a different type. For 
example, if ex is )~z.z, one occurrence could be assigned int ---* int, while another  
occurrence is assigned bool ~ bool. Hence to type a let-expression we associate with x 
the set of types of el .  Each occurrence of x in the body eg. may have any type in this 
set. In the expression: 

let id = Az.z 
inid 1; id t rue  

id is associated with the infinite set of types {r  --* r [ r E Type}. 
Type schemes represent the sets of types that  are associated with identifiers bound 

by let-expressions. A type scheme Val . . .  an.  r consists of a body (r) ,  which is a type 
tha t  may contain type variables (al), and a set of bound variables ( a l . . . a n ) .  The  set 
of types described by a type scheme consists of those types that  may be obtained by 
substi tut ing types for the bound variables in the body of the type scheme. The  type 
scheme Va. a --* a describes the set of all function types whose input and output  types 
are the same, i.e., { r  --+ r [ r E Type}. 

To determine the type scheme for z in the expression let z = el in e2, we first find 
a most  general type for el by using type variables wherever possible. For example,  a 
most general type for compose = M.;~g.~z.f (g z) is: 

3") ( a  a - -  3'. 

The  type scheme for z is obtained by binding or generalizing type variables in the 
type of el ( that  are not used in typing expressions outside the let-expression in ques- 
t ion [13: p. 40]). In the expression: 

let compose = M.;~g.~z.f (g z) in . . .  

a ,  fl, and 3' are generalized to yield type scheme Va~3'. (/~ --* 3') "-* (a  --* ~) --* a --* 7 
for compose. 

1 . 2  R e f e r e n c e s  

The  operators ref, !, and := provide reference cells as first-class values. When applied 
to a value, the ref operator  creates a reference cell containing that  value; applying ! to 
a reference cell extracts the contents of the cell; and := changes the contents of a cell. 

To type reference ceils, we introduce the type r ref for reference ceils containing 
values of type r .  Since the ref operator  takes a value of any type and returns a cell 
containing tha t  value, one might naively expect ref to have type scheme Va. a --* a ref, 
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! to have type scheme Vc~. c~ ref --* c~, and := to have type scheme Vc~. a ref ---* c~ ---, 
( := returns the value assigned). However, this ngive typing for references is unsound, 
as the following expression illustrates: 

l e t x =  ref(Az.z) in x := (An. n + 1); (! x) true 

The  most  general type for ref (Az.z) is (a  ~ a)  ref, and generalizing a yields type 
scheme Va. ((ct ---. a )  ref) for x. This type scheme can be instant iated to (int ---* {at) ref 
to type the assignment, and to (bool ~ bool) ref to type the dereference, but  when 
evaluated, this expression causes a type error by a t tempt ing  to add 1 to true. 

Reference cells invalidate the explanation of let-expressions as abbreviations,  due 
to the sharing implied by references: the expression let x = el in e2 no longer has the 
same meaning as e2[z/el]. Just  as references change the semantics of let-expressions, 
they also necessitate a change in how let-expressions are typed. 

1 . 3  T h e  P r o b l e m  is  G e n e r a l i z a t i o n  

The  solution our system and all existing systems use is to require tha t  reference cells 
have only one type. This is achieved by restricting generalization at  let-expressions. In 
the previous example, if c~ is not generMized, then it is free in the resulting type scheme 
V. ((~ -~ ~) ref). A free type variable may later be replaced with a specific type; in the 
above example, typing the assignment replaces c~ with int. The subsequent dereference 
can no longer be typed, as x now has type scheme V. ((int ---* int) ref). 

The  type variables tha t  must not be generalized are those tha t  appear  in the types 
of reference cells allocated by the bound expression [18]. However, this set cannot  be 
precisely determined, since the set of cells allocated by an expression cannot  be statically 
determined. Hence any static type system that  a t tempts  to integrate reference cells 
in this way must use a conservative approximation.  Our system uses a more direct 
method  than existing systems to approximate the set of type variables tha t  appear  in 
the types of allocated reference cells. 

1 . 4  C o n t r o l l i n g  G e n e r a l i z a t i o n  w i t h  E f f e c t s  

The  essential idea behind our system is to associate with every expression a conservative 
approximation to the set of reference cells tha t  the expression allocates, the expression's 
allocation effect. 1 Since our type system needs only the type variables in the types of 
these reference cells, we infer for each expression a type effect--the set of type variables 
tha t  appear  in the expression's allocation effect. In typing a let-expression, the type 
effect of the bound expression provides the information we need to determine which 
type variables must not be generalized. 

The  type effect of an application (el e~) is a combination of the effects of evaluat- 
ing the function and argument subexpressions el and e2, and of the effect caused by 
applying the function to which el evaluates. Hence, we record the type effect tha t  the 
function causes when applied above the arrow in the type of a function. For example,  
the function: 

)~x. (ref 1; ref true; ref x; false) 

1We borrow the term e.~ect from FX [11]. Jouvelot and Gifford [9] describe a system that infers 
types and effects for expressions. While this system records effect information with function types in 
a manner similar to ours, the information is not used to control generalization of let-expressions. 
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Allocates cells of type int, bool, and a when applied (where x has type c~). The type 
.~ffect of the set {Jut, bool, c~} is c~, since c~ is the only type variable in the set, hence 
;he type of the above function is c~ ~ bool. The A-expression itself has the empty type 
~ffect, written 0, because its evaluation to a closure allocates no cells. 

To handle higher-order functions, we introduce effect variables, denoted r Effect 
variables are analogous to type variables; for example, the function: 

apply = Af.Ax.f x 

has type (~ r fl) ~-~ a r fl for any types a and/3 and type effect r Application of 
apply to a single argument yields a result of type a ~ / 3 ,  causing no effect. The type 
effect ~ occurs only when apply is given a second argument, as indicated by the empty 
type effect on its outermost function constructor. As another example, the function: 

compose = Af.Ag.Ax. f (g x) 

has type (a ~ / 3 )  ~-+ (3' ~ c~) ~ 7 r162 When applied to three arguments, it causes 
the combined effects of both f and g. 

As in the functional case, the type scheme for x in the expression let x = el in e= is 
determined by generalizing variables in the type of the bound expression el. To prevent 
generalizing variables that appear in the types of cells allocated by el, we simply restrict 
generalization to those variables not in the effect of el. For example, in the expression: 

l e t x - -  ref (Ay.y)  in x : - -  (An. n + 1); (! x) true 

the bound expression ref (Ay.y) has type (a ~-~ c~) ref and effect (~}. Since a appears 
in the effect, it cannot be generalized, and the expression is not typable. 

As a further example, consider the following imperative version of map [10]: 

le t imap = Af.Ax. let a - -  re f x  and b = refnil  
in while not (null !a) do 

b : -  ( f  (hd !a)) :: !b; 
a :=  tl !a 

reverse !b 
i n . . .  

If f has type a r and x has type a list (T list is the type of lists containing elements 
of type r),  then the body of the function allocates reference cells of type c~ list ref 
and /3 list ref. While c~ and/3 must not be generalized by the inner let in the type 
schemes for a and b, they can be generalized by the outer let in the type scheme for 

imap: Vc~/3vtr (c~ ~ / 3 )  ~ a list r162 [3 list. 

1 .5  O u t l i n e  

In the next section, we present the syntax and semantics of a simple language with 
references. Section 3 defines our type system for this language in detail, and sketches 
a proof of soundness. In Section 4 we obtain a corresponding type inference algo- 
rithm by reformulating the system in a manner better suited to implementation. We 
conclude with a comparison to other systems for typing references in the presence of 
polymorphism. 
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2 A P o l y m o r p h i c  L a n g u a g e  w i t h  R e f e r e n c e s  

We study our type system in the context of a simple language with references. It is easy 
to extend this language and its type system to a realistic language including pat tern 
matching, exceptions, and modules, such as STANDARD ML [13, 14]. 

2 . 1  A b s t r a c t  S y n t a x  

Our language has expressions, Ezp, and values, Val, of the'form: 

( Exp ) 
(Vat) 

e : : =  v l ex e= I l e t  x = el in e 2  

v ::= x I c I Sx.e I setref v 

x E / d  c, ref, !, setref E Const 

The set Id is a countably infinite set of identifiers (whenever we refer to variables, we 
mean entities of the type system, not identifiers). The set of constants, Const, consists 
of data, of primitive operations, and of the distinguished constants ref, !, and setter. 

Juxtaposit ion denotes application and is left associative; ~ constructs call-by-value 
procedural abstractions. Semantically a let-expression behaves like (()ix.e2) el); how- 
ever, the type system allows x to be polymorphic. The constants ref, !, and setref 
provide the usual operations on references. We use the curried binary assignment oper- 
ator setter rather than the customary infix := to simplify the language. The application 
of setref to one value is a value---it may be thought of as a capability to assign to a 
cell. Therefore, the application of setref to a value is included in the syntactic class of 
values. 

Free and bound identifiers are defined as usual. Following Barendregt [1], we assume 
that  bound identifiers are always distinct from free identifiers in distinct metavariables 
ranging over expressions, and we identify expressions that  differ by only a consistent 
renaming of the bound identifiers. 

2.2 Semantics 
Rather than using (a variant of) structural operational semantics [13, 14] to give a 
formal semantics for our language, we define the semantics with a term rewriting system, 
using the technique of reduction semantics [5, 6, 7]. This formulation allows a compact 
and elegant presentation of the semantics and a simple proof of type soundness [19]. 

Evaluation proceeds as a sequence of rewriting steps, or reductions, from one inter- 
mediate state of evaluation to another. Each state has a syntactic representation: 

(State) s ::= pO.e 
(Store) e ::= { (z, ,,) }* 

The sequence 0 represents the contents of the store. The first component of a pair 
(x, v / is a location name; the second component is the value stored there. The phrase 
p(xl, Vl) . . .  (xn, vn).e binds x z , . . . ,  xn in v l , . . . ,  Vn, e; hence, p-phrases permit recursive 
bindings. While 0 is syntactically a sequence of pairs, we treat 0 as a finite function, 
i.e., we disregard the order of pairs and require that  the first components be unique. 
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(5) pO.E[c c'], , pO.E[5(c,c')] 
(fl,) pO.E[()tx.e) v] ~-* pe.E[e[x/vl] 
(letv) pe.E[let x =- v in e], , pO.E[e[x/v]] 
(tel) pO.E[ref v] ~ pO(~, v).E[z] 
(:) p0(., @El! .] ~-~ p0(.,.).E[.] 
(setter) pO(x, v').E[setref x v] s.-+ pO(x, v).E[v] 

Z : : = D [ E  e [ v  E [ l e t x =  Z i n e  

Figure 1: The  reduction relat ion,  , 

if 5(c, c') is defined 

As with expressions, we identify states tha t  differ by a consistent renaming of bound 
identifiers. 

Figure 1 specifies the reduction relation ~ ~: State x State.  The  notat ion e[x/v] 
means the capture-avoiding substi tution of v for free z in e. The  partial  function 
5 : Const x Const ~ Const interprets the application of constants other than tel, !, 
and setref; the type system places some additional constraints on 5 to achieve soundness. 
The  renaming conventions ensure that  the identifiers bound by p-phrases in the re f, !, 
and setref  reductions are renamed appropriately to avoid capture, as in fly. 

The  definition of the reduction relation relies on evaluation contexts, E .  An evalua- 
tion context is an expression with one subexpression replaced by a hole, denoted [1. An 
expression may be placed in the hole of an evaluation context,  yielding an expression; 
we write E[e]. The  definition of evaluation contexts forces evaluation to proceed from 
left to right. As a result, the re la t ion,  > is a function. 

The  evaluation function eval maps programs to answers: 

eval(e) = a if and only if p.e, ,, a 

where , ,, is the transitive and reflexive closure of the reduction relation ~---~. Programs 
are simply closed expressions; answers (a) are states of the form pO.v. 

The  evaluation function is partial  and may be undefined for two reasons: evaluation 
may diverge, or it may become stuck. An expression diverges, writ ten e ~, if it has an 
infinite reduction sequence, i.e., if e : ~ e' for some e', and for all e' such tha t  e, ,, e', 
there exists e" such tha t  e ' ,  , e". Evaluation is stuck if it reaches a state tha t  is not  
an answer, but  from which no further reduction is possible. Stuck states represent the 
application of a primitive function to an argument for which it is not defined, or the 
application of a non-function; examples are p.(succ true) and p.(1 2). When a program 
reaches a stuck state, it is said to have caused a type error. The  intent of a stat ic type 
system is to filter out programs that  may cause type errors. 

3 T y p i n g  R e f e r e n c e s  

The  following subsections present a type system for our language. The  system requires 
a syntactic description of types and type inference rules for assigning types to programs. 
A type soundness theorem establishes tha t  the system filters out all type errors. 
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3 . 1  T y p e s  a n d  E f f e c t s  

The sets of types, effects, and type schemes are defined inductively as follows: 

(Type) I ,  I 
(Effect) A ::= ~,* 
(TypeScheme) r ::= Vt~*. v 

(Vat) ::= 

c~ E Type Var ~ E Effect Var t E TypeConst 

The  set TypeConst is a finite set of ground types, like int and bool. The  sets TypeVar 
and Effect Var are countably infinite and disjoint. An effect is syntactically a sequence 
of type and effect variables, but  we treat  effects as finite sets, identifying effects tha t  
have the same elements. We write ~ for the empty effect. We also identify V.r with r ;  
hence, the set of types is a proper subset of the set of type schemes. 

A type scheme V~I �9 �9 �9 ~,.  r binds v1 through t'n in r ,  giving rise to free and bound 
variables for types and type schemes; FV(cr) is the set of free variables of a. A type 
scheme V~l . . .  t,n.v denotes the set of types that  may be obtained by subst i tut ing for 
its bound variables: 

{ r~ I C = # r  for some substi tut ion # with domain { v l , . . . ,  vn}}. 

Substi tut ions are finite maps from type variables to types and effect variables to effects; 
juxtaposi t ion denotes application. Substi tutions are applied to types as usual, but  the 
application of a subst i tut ion/~ to an effect A yields the set of variables appearing in 
the pointwise application of # to each member of A: 

# A -  U FV(#v) .  
yEA 

For example, with # = {a ~-. (/~ 7-*/~)) and A = ar 

#A -- FV(#a)  U FV(#q) - F V ( ~  7. ~) U FV(~) - flTq. 

So far, our definitions admit  several different type schemes tha t  denote the same set 
of types. As usual, we identify type schemes tha t  differ by only a consistent renaming 
of bound variables. However, this does not identify all type schemes tha t  denote the 
same set of types; witness V ~ .  (~ ~ ~) ~ a and V/~r (fl r162 r162 To identify 
these type schemes, we extend the renaming process to allow the consistent replacement 
of an effect variable by one or more effect variables. Under this extended process of 
renaming, all type schemes that  denote the same set of types are equivalent. 

3 . 2  T y p e  a n d  E f f e c t  A s s i g n m e n t  

The  type system in Figure 2 is a deductive proof  system that  assigns a type and an 
effect to an expression. A type judgement  F I- e : r, A states tha t  expression e has 
type r and effect A in type environment F. A type environment is a finite map from 
identifiers to type schemes; type environments give types to the free identifiers of an 
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(id) 

(coast)  

(let)  

( ub) 

TypeOf(ref)  = Vcx~. ~ ~ ~ re] 

TypeO](!) = Var a re[ r c~ 

TypeO](setref) = Vo~qlr ~ re] ~ ot ~ ot 

r ~ - x : r , $  if r e r ( z )  

F t - c : r ,  0 if r 6  TypeO](c) 

r [ x / n ]  e : r2, A 

P ~- )~x.e : rl --* r2,0 

F t- el : l"l "--, r2, A~ r l- e~ : r~, A~ 

r ~- el  e2 : "r2, l~l U 1~2 U 1~3 

r l - l e t x = e ~  in ez : r2 ,  AxUAz 

I ' l - e : r , A ~  A a C _ A ~  

1 ~ I- e : r ,  A~  

Close(r, r ,  a )  = Vva . . .  v,,. r where {v , , . . . ,  v,} = F V ( r )  \ ( F V ( r )  u F V ( A ) )  

Figure 2: T y p e  and effect assignment 

expression. The  nota t ion  F[z/cr] means the functional extension or upda te  of I" at  z to 
or. An expression e is wel l - typed  if there exists a derivation tha t  assigns a type  ~" and 
an effect A to e in the empty  environment;  we write F e : r ,  A. 

The  rules for typing variables and constants depend on a notion of general iza t ion .  
A type scheme ~ = V v l . . .  vn. r '  generalizes a type r ,  wri t ten ~- E a,  if there exists a 
subst i tu t ion p with domain { v l , . . . ,  ~,,} such tha t  /~7"' = 1", i.e.,  if ~" is in the set of 
types denoted by g. Alternatively,  we say tha t  r is an instance of a.  For example,  

int  ~-~ in t  E Vo~c;. oL ~-+ c~ 
ot~ 

In the last example,  note tha t  when the subst i tut ion {c~ ~-+ (8 ~-~ 8); r ~-~ $} is applied 
to the effect c~ on the function arrow, the result is the "flattened" effect fiT. 

As rule ( id )  indicates, an identifier may  have any type  tha t  is an instance of its type  
scheme in the type  environment .  As an identifier has a binding in the type  environment  
only if it is bound by a surrounding let- or h-expression, well-typed programs are closed. 
An identifier has the empty  effect since its evaluation allocates no reference cells. 

Rule ( cons t )  uses the function T y p e O f  : Coas t  --* T y p e S e h e m e  to assign type  
schemes to constants.  For type  soundness to make sense for an unspecified set of  
constants,  we impose a typabil i ty  condition on the interpretat ion of constants: 

T' ~-~ v e T y p e O f ( c l )  and r '  e T y p e O f ( c 2 )  
(6-typabil i ty) implies 

6(cl, c2) is defined and r e T y p e O f ( ~ ( c l ,  c2)). 



481 

This condition requires & to be defined for all constants of functional type and arguments 
of matching type, and restricts the range of values that it may produce. 2 

The type of an abstraction Ax.e is determined from the type and effect of its body, 
as (abs) indicates. Assuming that the argument x has type 7"1, if the body e has type 

A 
~-2 and effect A, then the abstraction is a function of type ~-1 --* r2. Since the evaluation 
of an abstraction itself creates no reference cells, the effect of an abstraction is empty. 

To determine the type of an application, the argument's type is required to match 
the function's type as usual. The effect of an application is the union of the effects of 
its subexpressions and of the effect the function causes. 

The type of a Jet-expression is determined from the type of the body, in a type 
environment extended with a generalization of the most general type of the bound ex- 
pression. The function Close generalizes free type and effect variables of the bound 
expression's type that are not also free in the type environment or in the bound ex- 
pression's effect (the function F V  is extended pointwise to type environments). 

The subsumption rule (sub) allows any expression to be treated as having more 
effects than it actually does. By applying subsumption to the body of an abstraction, 
the abstraction may be treated as causing more effects when applied than it actually 

A 
does; for example, ,~x.x may be typed as a ~ ce for any effect A. Hence the type 
scheme for a function includes an effect variable in its type. For example, the type 
scheme for the identity function ,kx.x is Va,~. c~ ~ c~; likewise, the type scheme for ref 

is Var ~ , a ref .  Without subsumption, a value of type Jut ~ i ~  and a value of 

type ini  i ~  int  could not both be passed as arguments to the same (non-polymorphic) 
function, because the function and argument types would have to match exactly. 

3 . 3  T y p e  S o u n d n e s s  

To prove that this type system is sound, we use our extension of subject reduction 
to imperative languages [19]. By expressing the semantics of the language as a term 
rewriting system, we can use the type system to check that each intermediate state 
of evaluation is well-typed, and thus show that evaluation preserves typing. Since no 
stuck state is typable, it follows that evaluation cannot reach a stuck state and cause a 
type error. The soundness theorem states that all well-typed programs either diverge 
or produce an answer of the expected type. 

T h e o r e m  3.1 ( T y p e  S o u n d n e s s )  I f  ~- s : r , A  then s f r  or  s ,  , a  and P a : r , A .  

P r o o f  Sketch .  In order to show that evMuation preserves typing, it must be possible 
to type all intermediate states of evaluation. Therefore, we augment the type system 
with a typing rule for states: 

re/] ... r e / ]  e e : ZX 

r e / ] . . ,  re/] vi : $ 1 < / < n 

F p(= , ,  V l ) . . .  (= , ,  v , ) . e  : r ,  A 

2This condition precludes partial  constant  functions tha t  are not defined on all values of their  input 
type, such as - : in t  x in t  ~ i n t .  Such functions may be extended to total  functions by raising 
exceptions. Typing exceptions requires similar restrict ions on polyraorphism as typing references; type 
soundness for exceptions is t reated in [19]. 
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In the augmented  system, reductions preserve the type and effect of a state: 

i f  t - s l : r , A  and sz , ~ s2 then }- s2 : r , A .  

This  l e m m a  (subject  reduction) is proved by case analysis according to the reduction. 
Stuck s tates  have the form: 

pO.E[c v] where 6(c, v) is undefined and c # ref, !, setref; 

pO.E[! v] where v ~ Id; 
pg.E[setref vl v2] where vl ~ Id; or 

By examining each case in the definition of stuck states,  we can show tha t  no stuck 
s ta te  is typable.  

Finally, we know tha t  either s t ,  s: :" a, or s: :: s ~ and s ~ is stuck. Since }- s : v ,A ,  
type  and effect preservation implies }- a : T, A and I- s ~ : r, A.  Suppose s, *~ s ~ and s ~ 
is stuck. Since stuck s tates  are untypable,  I- s ~ : v, A is a contradiction,  therefore this 
case cannot  occur. Hence either s {l" or s ~ ~ a and I- a : r, A. II 

4 I m p l e m e n t i n g  t h e  T y p e  S y s t e m  

The  type  sys tem of the preceding section m a y  be used to verify tha t  a typing is valid, 
bu t  we would like an algorilhm tha t  infers a typing if one exists. The  algori thms for 
functional  languages rely on ordinary unification to achieve efficient implementa t ion .  
However, our function types include effect sets, hence unifying two function types appar -  
ently requires unifying two sets. Fortunately,  we can obtain  an indirr reformulat ion 
of the type  sys tem tha t  has a corresponding a lgor i thm using ordinary unification. 

Subsumpt ion  is the key to avoiding set unification. To type the applicat ion (el e2) 
where el and e~ have types: 

and 

we must  unify r ~ r '  and r ~ r ' .  But  subsumpt ion  permits  embedded effects to be 
unbounded,  hence we can re type el and e2 as: 

el : (r r" and e2 : r r'. 

The  function and argument  types now match  appropriately.  
To permi t  the use of ordinary unification, we replace the effect sets on function 

arrows with labels and record the effect information separately  in a constraint. The  
constraint  is s imply a list of  label-effect pairs; the effect informat ion corresponding to a 
given label is determined by pairs in the constraint  with tha t  label. To unite two effects 
embedded in types, we s imply unify their labels in bo th  the types and the constraint .  
Effect variables provide a convenient source of labels. 

In the following subsections we present the indirect system, sketch a proof  of  its 
correspondence to the direct system, and give the type  inference algori thm. 
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4 . 1  T h e  I n d i r e c t  S y s t e m  

In the indirect system, functions are labeled with only a single effect variable. 
s~raints record the effect information separately: 

Con- 

(Type) 
(Constraint) 
(TypeScheme) 

: := { }* 
: : =  V v * .  v w i th  

A constraint  is t reated as a set of pairs of an effect variable and either a type variable 
or an effect variable. The effect information associated with an effect variable ~ under 
constraint ~ is the least set E of type and effect variables such that  ~ 6 E, and if ~' 6 E 
and (~', v) 6 a then u 6 E. For example, the effect information corresponding to ~1 in 
the constraint (~1, ~1)(~1, a2)(r ~2)(~2, a3> <~3, c~4) is {~1, ~2, (~a, ~1, ~2}. 

Generalization for the indirect system is defined as: 

(r, ~) 6 Vvl . . .  vn. r' with ~' 
iff 

Dom(S) = {v1,..., vn} and St' = r and S~' _C 

where S is a substi tut ion from type variables to types and from effect variables to effect 
variables. Application of substi tutions to types is defined as usual; subst i tut ion on 
constraints is defined as follows: 

= U occurs in Sv}. 
(r 

The  indirect system derives judgements of the form F ~ e : r ,  r ir meaning tha t  ex- 
pression e has type r and effect r in type environment r under constraint  ~. Figure 3 
presents the typing rules for the indirect formulation; Figure 4 defines the function 
I F V  to compute free type and effect variables for the indirect formulation.  

4 . 2  C o r r e s p o n d e n c e  o f  t h e  D i r e c t  a n d  I n d i r e c t  S y s t e m s  

To prove that  an expression has a type in the indirect system if and only if it has 
a type in the direct system, we must account for two differences between the direct 
and indirect systems. First, the indirect system represents effect information by con- 
straints. Second, the indirect system does not have an explicit subsumption rule, but  
instead folds subsumption into the other rules. We prove each direction separately by 
constructing translations from a type derivation in one system into a derivation in the 
other system. 

For the translat ion from the indirect system to the direct system, Figure 5 defines 
the translat ion 7:) from indirect types to direct types. The  two systems must  agree on 
the types of constants, hence we require that  all constants be of closed type, and that :  

TypeO/(c) =  )[IndTypeOf(c)]  for all  

If c has a derivation in the indirect system, then e has a corresponding derivation in 
the direct system. 
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(id) 

( ~o.,t) 

( ~b~ ) 

(~) 

(~) 

IndTypeOJ(re O = V~rr a ~-~ a re] with (r ct) 
IndTypeO](!) = Var a re] ~-~ ~ with 

IndTypeO](setref) = Vachr a re] ~ ~ ~ ~ with 

r ~ ~ :  ~, r ~ if  (r ,  ~)  �9 r ( ~ )  

F ~ c : r, g, ~ if (r, ~) �9 IndTypeOJ(c) 

r [ = / ~ ]  ~ :  ~ , r  ~ 

F~ Ax.r : 1"1 ~-X r~,~',~ 

r D e l  : T1 --~. "r2, g', ~ ~ I> e2 : Vl,r ~; 

r ~ ~ ~ :  ~2, r ~ u ((r r 

r ~ e~ : r~,r ( ~ , ~ )  = W o ~ 4 n , r , r  r [ ~ / a ]  ~ e~ : r ~ , ~ , ~  

r c, let x = c~ in e2 : r2,g,~2 

Close(r, F ,  g, ~ )  = ( V a ~ . . .  a , , r  �9 �9 �9 g , .  r w i t h  ~ ' ,  tr \ ~') 
where {al . . . . .  am, r r = IFVCr, ~) \ (1Fvcr ,  ~) u IFV(r  ~)) 

~' = {(r ~) I (r ~) �9 ~, r �9 {r  r 

Figure 3: Indirect type assignment 

IFV(r ,~)  = O 

I F V ( r  re[,~) = I f Y ( r , ~ )  
I F V ( r l  2g r~, ~) = IFV(r l ,~ )  U IFV(r2,  ~) U IFV(~,  ~) 

IFV(g,Ir = {r U U(,,~)e~IFV(v, {(g',v') I ( r  �9 ~, r r r 
I F g ( V v l . . . v , . r  with ~',~) = IFV(r ,~ '  U ~) \ { v l , . . . , v , }  

IFV(r, g )  = U x E D o m ( P )  IFV(r(x), g ) .  

Figure 4: Free variables for the indirect system 

T h e o r e m  4.1 ( I n d i r e c t  t o  D i r e c t )  I f  r c, e : r, r ~ then :DID]It I- e :  :D[r]tc,:D[r 

The  proof  of this theorem proceeds by induction on the derivation of I" c, e : r, r x. 
For this induction, it is critical that  the translation D preserve free type and effect 
variables: 

I F V ( r , ~ )  = FV(:Dir ]g) ;  IFV(cr,  m) = FV(:Di(r]g); 
I F V ( r  = FV(~[ r  I F v ( r , a )  = rY(T)[I ' ]m).  

For the translat ion from the direct system to the indirect system, Figure 6 defines 
the translat ion 2: from direct types to indirect types. The function ~" is any one-to-one 
function from effects to effect variables such that  its range is fresh (no element appears 
in any derivation). ~ represents sets of effect variables. Let E be the relation between 
constraints such that  gi E ~2 iff: 

Dom(gi )  C Dom(~2) and I F V ( r  ~l) = I F V ( r  ~2) for all r �9 Dom(~i) .  
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vid~  

v [d~  
:V[W,~ . . .  ~,,,. r with ~']~ 

v[r]~ 

Ot 

= let A - D [ r  r~ = D i r e l y ,  r~ = D [ r 2 ] x  in r~ ~ r~ 

= IFV(r  ~) 
= w ~ . . .  ~,. ~[~](~ u ~') (~ , . . . ,  ~, r ~) 
= {x ~ :P[r(~)]~ I �9 �9 Dora(r)} 

Figure 5: Translation from indirect types to direct types 

z[,] 

z i r  ~l ]  

z[zq 
Z[V~l ... u,. r] 

zff]  

= 0 , 0 , ~ )  
= (a, ~, ~) 
= let  ( r ' ,  g, Z)  ---- Z[[r]] in ( r '  re] ,  x, Z)  

= let  ~ = .T(A)  in (g, {(~,v)  [ v E A} U {(g , r  

= let (r',,,, ~) = z[~] ,  ~' = {(r ~,) �9 ~ I r �9 {~,,..., ~-} u ~} 
in (Vul . . .  un~.  r '  with g ' ,  ~ \ g ' )  

= le t  (a~, g~) = z[ r (x0]  for x~ �9 Dora(r) 
in ({~, ~ ~,},  U ,  ~') 

Figure 6: Translation from direct types to indirect types 

If e has a derivation in the direct system, then e has a derivation in the indirect system. 

T h e o r e m  4.2 (Di rec t  to  Ind i r ec t )  I f  r }- e : r, A and (Y, tCr, ~,) = Z[r] and 
(7, ~ a )  = z i z ~ ]  and (~ ,  ~r)  = z i r l  then ~ ~ e : ~,  7, ~ whet ,  mr, ~ ,  ~ a  C_ ~. 

Again, the proof relies on the translation Z preserving free type and effect variables: 

i / z i r l  = (~,,~, ~) then I F V ( ~ , , , )  = F V O ' )  u Z; 
if Z[A] -- (7, ~) then I F V ( ~ ,  ~) = F V ( A )  U {~}; 
i f  Z[a] = ('~, t~) then IFV( '~ ,  ~) "- FV(a) ;  
i f  z [ r ]  = (r, ~) then IFV(F, x) = F v ( r ) .  

4 . 3  A l g o r i t h m  

Obtaining an algorithm from the indirect system is straightforward [10]. Given an 
expression, a type environment, and a constraint, algorithm W in Figure 7 computes a 
type, a substitution to be applied to the type environment, an effect variable, and a new 
constraint. The function unify performs ordinary unification, returning a substitution 
that unifies its arguments; I is the identity substitution. Soundness and completeness 
theorems may be demonstrated to establish the correspondence of the Mgorithm to the 
indirect system as usual [2, 17]. 
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W(=, r ,  ~) 

W(c, r ,  ~) 

w(;~x.e, r ,  ~) 

w((e~ e2), r, ~) 

= if z 6 Dom(s then fail (expression is not closed) 
let ' ' ~ , . . .  ~ b e f r e s h  (~ ,  O~ 1 ~ �9 �9 . ~ O l r n ,  

V a l  . . .  a,n~x ..- <,,. r with ~;' = F ( x )  
s = {~, ~ ~ ,  ~ ~ ~ }  

ia (St ,  I ,  r ~ u S d )  

= let r ~ , . . . ,  c~m, ~ 1 , '  ' . . .  , ~ be fresh 
Vc~x... c~rar �9 .. r v with ~' = IndTypeO](c) 

in (St,  I, ~, ~ U S~') 

= let a,~ be fresh 
(r, S, r  ~') = W(e, r tx/~] ,  ~) 

in (Sa ~ r ,  S ,  r ~') 

= l e t  a ,  r be fresh 
(~ ,S~, r  = W(e~,r ,~) 
(~=,s~,r = w ( . 2 , s , r , . , )  

s3 = u.ifu(s2~l, ~2 2.  ~) (may fail) 
$4 = unify(SaS2~l, $3~2) (will not fail) 

in ( s , s ~ ,  s,  o s~ o & o s, ,  s, s3r s , s ~ ( ~  u {(~,~2)})) 

w0et = = . ,  i . .2 ,  r, .)  = let ( . , , s , , ~ , , . , )  = wc~, ,r , . ) )  
(~, ~2) = CZo.e(~l, &r,r ~ )  

(~,  s~, r ,3)  = w(e2, (s, r ) [~ /~ ] , , 2 )  
$3 = unify(S2r ~=) (will not fail) 

in (S3r=, $3 o $2 o Sx, Sar Sa~3) 

Figure 7: Type  Inference Algorithm 

Our algori thm is similar to Milner's algori thm W [12] for a functional language. In 
our algorithm, the case for applications contains an additional invocation of  unify, but  
this second invocation always unifies two effect variables, and is very cheap. The  main 
difference is tha t  our algori thm must maintain a set of constraints tha t  grows linearly 
with the number of applications and that  must be searched in typing a let-expression. 
The practical performance of our algori thm depends on the efficiency of constraint  
handling; the techniques for manipulat ing constraints discussed by Leroy and Weis [10] 
should be applicable to our algorithm. 

5 C o m p a r i s o n  w i t h  O t h e r  S y s t e m s  

There  are several other systems for typing references in the presence of polymorphism; 
O'Toole [15] presents detailed comparisons between four of them. Ideally, we would 
like a simple, intuitive system that  is at least as powerful as any of the others, but  
unfortunately,  there are no systems tha t  meet this goal. While we believe our system 
is relatively simple and natural ,  it is incomparable to the other systems: there are 
expressions typable in one system but  not the other, and vice versa. Hence comparisons 
between systems must be pragmatic.  
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Tof te  [18] A system proposed by Tofte and adopted for STANDARD ML [13, 14] has 
two kinds of type variables: i m p e r a t i v e  variables and appl ica i ive  variables. Types are 
classified accordingly: imperative types may only contain imperative type variables; 
applicative types may contain either. The ref operator may only be applied to values 
of imperative type. In typing the expression let x = et in e2, imperative variables in 
the type of el can be generalized only if el is n o n - e x p a n s i v e ,  that is, if ez has a certain 
syntactic shape which guarantees that its evaluation does not allocate any references 
(in STANDARD ML, ez must be a variable, constant, or A-expression). We may think 
of ref as contaminating all type variables in the type of its argument. Generalizing 
contaminated (imperative) type variables may result in generalizing the type of a vMue 
in a reference cell; hence, generalization of contaminated types must be restricted. 
For example, the expression Ax. ! (ref x) has type a* --* a*, where the superscript * 
indicates that a* is an imperative type variable. However, a* can be generalized in the 
expression: 

l e t i =  Ax. ! ( refx)  in . . .  

as Ax. ! (ref x) is non-expansive, and hence does not allocate any references. 
A drawback to this system is that partial applications of imperative functions cannot 

be polymorphic. For example, the function imap (from Section 1.4) has type scheme: 

Va*t*. (a* --* l * )  --* a* lis~ --+ l *  list. 

When only partially applied, as in: 

let i = imap (Ax.x) in . . .  

i cannot be used polymorphically. The expression imap (Ax.x) has type a* l is t  ~ a* l ist  
and is expansive, hence a* cannot be generalized. However, in the expression: 

l e t i = A z ,  imap ( A x . x )  z i n  . . .  

a* can be generalized since the bound expression is non-expansive. 

M a c Q u e e n  [16] A system proposed by MacQueen and implemented by STANDARD 
ML OF NEW JERSEY attempts to address the curried application problem described 
above by recognizing how many arguments a function must be applied to before it 
creates any references. In this system, imap has type scheme (a 2 ---+/3 2) ---+ a 2 l is t  --~ 
/3 ~ l ist .  The result of the application imap (Ax.x) has type a 1 l is t  --* 11 list  and can be 
used polymorphically. The superscript indicates the number of times the function must 
be applied before a cell is allocated whose type involves that type variable; applications 
decrease the superscript. Variables with superscript 0 may not be generalized. 

Although the system addresses common uses of currying, such as the partial appli- 
cation of imap above, there are cases in which it fails. The system assigns a polymorphic 
type to f in only the second of the following two expressions: 

l e t f =  map ref in . . .  

l e t f =  Az. maprefz  in . . .  

The system is unable to recognize that map ref does not allocate any references until it is 
further applied, since the type scheme for the non-imperative function map : Vail. (a --* 
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f l )  --* a l is t  ~ f l  l is t  does not indicate that the functional argument to map is invoked 
only after a second argument is provided. Furthermore, the only formal description of 
the system is the NEw JERSEY compiler's source code; no inference rule formulation 
exists. The system is believed to be strictly stronger than Tofte's system, i.e., any 
expression typable by Tofte's system is typable by MacQueen's system [18]. 

In contrast to the above two systems, our system handles partial applications prop- 
erly. For example, our system assigns a polymorphic type to f in both of the following 
expressions: 

l e t f = i m a p A x . x  in . . .  

l e t f =  map ref in . . .  

Our system recognizes when allocations occur with greater precision by recording type 
effects above function type arrows. 

D a m a s  [3] Damas proposed one of the earliest systems for typing references. This 
system appears to lie between Tofte's and MacQueen's systems in power [18], and 
although the system has little advantage over Tofte's system, it did inspire our work. 
The system infers information similar to type effects, but records information on only 
the outermost arrow of a function type; hence, the determination of when allocation 
occurs is fairly imprecise. Damas was apparently aware of this problem, as he states that 
"the inclusion [of effects among function types], which would be the natural thing to do 
�9 would preclude the extension of the type assignment algorithm . . .  to this extended 
type inference system" [3: p. 90]. Our insight was to include effects in function types 
and use the constraint manipulation ideas of Leroy and Weis's system to construct an 
inference system with a corresponding algorithm. 

Leroy  g~ Weis [10] Leroy and Weis propose a closure typing system based on the 
observation that it is only necessary to prohibit generalization of type variables appear- 
ing in the types of cells reachable after the bound expression has been evaluated ( i . e . ,  
cells that would not be reclaimed by a garbage collection at this point). As cells may 
be reachable through the free identifiers of closures, the system records the types of 
the free identifiers of a function in the function's type. This system has the advantage 
that it can assign a fully polymorphic type to some functions that make purely local 
use of a reference cell, such as imap: the system is able to recognize when effects can be 
m a s k e d .  However, it fails to type some purely functional expressions that are typable 
in the functional sublanguage, such as the following: 

Az. let id = Ax. ( ( i f  t rue then z else Ay.(x; y) ) ;  x)  
inid 1; id true 

The problem is that by introducing the types of free variables into function types, 
additional type variables may be introduced into the type environment. In the above 
example, the if-expression forces z and Ay.(x; y) to have the same type�9 Suppose that 
x has type c~ and y has type ~. Since x is free in Ay.(x; y), this expression has type 

-~ fl, hence z has type fl-~a ft. As c~ appears in the type of z, c~ is free in the 
type environment of the let-expression, and cannot be generalized. In the ordinary 
Hindley/Milner system, Ay.(x; y) and z have type fl --+ ~, and c~ is not free in the 
type environment�9 All of the other systems, including ours, will assign types to such 
functional expressions. 
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Talp in  &: J o u v e l o t  [17] Talpin and Jouvelot present an ambitious system that  infers 
types, effects, and regions for expressions in a manner similar to our indirect system, s 
A reference cell containing a value of type r has type refpr; two reference cells share 
the same region p if they may alias. Regions provide finer grained information about 
allocation behavior tl~an our type effects, and the information about potential aliasing 
is used to mask local effects. The system includes subsumption on effects, and infers 
not only allocation effects but also read and write effects that  may be useful for com- 
piler optimizations. We conjecture that Talpin and Jouvelot's system is strictly more 
powerful than our system. 

5.1 Effect Masking 
A shortcoming of our system is its inability to recognize when a reference is only used 
locally and to mask the allocation. When local effects are masked, the function imap has 
the same type as its functional counterpart map. However, just as precisely determining 
when allocations occur is impossible, so too is precise effect masking. The following 
expression is rejected by both Leroy and Weis's system and Talpin and Jouvelot's 
system, 4 although these systems incorporate effect masking: 

Az. let id - -  Ax. ((if true then z else ~y. (ref x; y)); x) 
in id 1; idtrue 

This example is also rejected by our system, but ToRe's, Damas's, and MacQueen's 
systems accept it. 

Abstractly, adding effect masking to our system is easy: 

(mask) r b e : r, A1 A2 is maskable in e 
r ~ - e  : r, A1 \ A 2  

Selecting criteria to determine which effects are maskable is more difficult. Data flow 
analysis and compile time garbage collection techniques [4] might be used to discover 
references that are not reachable after the bound expression has been evaluated. Even 
the simplest local flow analysis algorithms would address examples such as the one 
above. 

Effect masking raises the issue of just how far to push static type systems for 
references. The more powerful the type system is, the more complex its description 
becomes. If flow analysis is used to mask effects, then a precise description of the flow 
analysis algorithm is an essential part of the description of the type system. Without 
a precise description of the type system, the set of well-typed programs is unspecified, 
and the programmer is left at the mercy of the implementor. 

A c k n o w l e d g e m e n t s  

I am indebted to Jean-Pierre Talpin and Pierre Jouvelot for many helpful discussions 
on direct and indirect formulations of effect inference, and to Matthias Felleisen for 
comments on drafts of this paper. 

3It should be possible to reformulate this system in a direct faslfion. 
4Talpln and Jouvelot now have a refined system that can type tlfis example [personal communica~ 

tlon, November '91]. 
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