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Abs t r ac t  

Linear types provide the framework for a safe embedding of mutable state in 
functional languages by enforcing the principle that variables of linear type must 
bc used exactly once. A potential disadvantage of this approach is that it places 
read accesses to such variables under the same restriction as write accesses, and 
thus prevents reads to proceed in parallel. We present here an extcnsion of linear 
types which augments the usual distinction between linear and non-linear by a 
third state, observers of linear variables. Since, unlike linear variables, observers 
can be duplicated, multiple concurrent reads are made possible. On the other hand, 
observers must be short-lived enough to never overlap with mutations. The resulting 
type system is in many aspects similar to the one of ML: It is polymorphic, has 
principal types, and admits a type reconstruction algorithm. 

1 I n t r o d u c t i o n  

We are investigating a type system that addresses the update  problem in functional 
languages: How can we implement updates efficiently, but  still retain a declarative se- 
mantics? Methods to solve this problem - -  of which there are many - -  usually come 
under the name of effect analysis. Effect analysis looks for opportunit ies to replace costly 
non-destructive operations on aggregates such as arrays or hash tables by cheaper de- 
structive ones. This can take place at run-time, using reference counting [GSH88] or 
reverse difference lists [Coh84]. It  can also be performed at compile-time, using one of 
the optimization techniques of [Hud87, NPD87, Blo89, Deu90, DP90], for instance. A 
third alternative is to let the programmer perform effect analysis, and reduce the task 
of the computer to effect checking; the computer  simply verifies tha t  the transition from 
non-destructive to destructive operations is semantics preserving. In this setting it is 
natural to regard effect information to be a kind of type information and effect checking 
to be an extension of type checking. 

The main advantage of this programmer-directed approach is tha t  the choice between 
copying and in-place updates is made visible. Hence, the programmer can avoid the 
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potentially drastic efficiency loss which could otherwise result from missed optimization 
opportunities. This is most important in the presence of separate compilation and soft- 
ware component libraries. Users of such libraries have to know how they can access the 
exported components without risking performance degradation. As the standard way of 
communicating such legal use-patterns is a type system, it seems to be a good idea to 
augment types with effect information. However, effect checking type systems face the 
double challenge of avoiding being either too restrictive or too complex. After all, unlike 
automatic optimizers, programmers are willing to digest only a limited amount of effect 
information. 

We present here an approach towards an effect checking type system which meets these 
challenges. Observable linear types are loosely based on Wadler's "steadfast, standard" 
version of linear types and extend it by adding "read-only" (in our terms: observer) 
accesses to linear variables. In [Wad91] this extension was acknowledged to be an open 
research problem. 

Linear type systems [Laf88, Abr90, Wad91] are related by the Curry-Howard isomorphism 
to Girard's linear logic [Gir87]. They are based on the principle that a variable of linear 
type must be used exactly once. If linear types are steadfast, that is, not convertible 
with non-linear types, this principle allows updates to linear variables to be performed 
destructively and also obviates the need for garbage collecting them. In the terminology 
of [Wadg0b], linear variables make up the "world", which can be neither duplicated nor 
discarded. 

The "no-duplication" restriction on linear variables makes them a bit awkward to use in 
programming. Observation of the world is placed under precisely the same restrictions 
as changes to it, although it is clearly much less intrusive. To address this shortcoming, 
Wadler suggested in [Wad90b] a construct which exceeds linear logic by allowing the 
world to be observed in a local context. This is written 

let! (a) x = e' in e. (1) 

Here, the linear variable a, used once in the outer expression e, may also be read arbi- 
trarily often in the local expression e'. To make this construct safe, Wadler proposed 
the following measures: First, a hyperstrict evaluation rule which specifies that e' be 
reduced to normal form before evaluation of e is begun. Second, a static restriction that 
all components of a and x have mutually distinct types. Finally, a static restriction that 
x may not be of function type. The static restrictions prevent the normal form of x 
from sharing the value of the linear variable a. Together with the hyperstrict evaluation 
rule this ensures safety, but at quite drastic cost: In particular the "mutually distinct 
types" requirement is an overly conservative approximation to the actual alia.sing in a 
let! construct. The approximation becomes even worse if the type system is polymorphic 
(the one in [Wad90b] isn't). In that case, the notion of equality between types has to 
be replaced by unifiability. As a consequence, virtually every let! construct is unsafe in 
which the type of either the linear or the bound variable is polymorphic. Hence, we see 
that linear types have so far been better at changing the world than at observing it. 

In this paper, we look at a more thorough solutioh to the observer problem. We will 
be concerned only with the "no-duplication" property of linear types, not with the "no- 
discarding" property which allows static garbage collection. The principal idea is to 
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extend the distinction between linear and nonlinear variables by a third state, which 
denotes observers of linear variables. In the lelI construct (1), all occurrences of the 
linear variable a in e I would now have type "observer". Unlike linear types themselves, 
observers can be duplicated freely (this implies that updates to observers are forbidden). 
However, observers have to be short-lived, they may not be exported out of the scope of 
a let! binding. This enforces observation and updating of linear variables to occur in a 
strictly alternating fashion, where no observer lives long enough to observe an update. 

Linear, non-linear and observer constitute the three basic aliasing states of a variable. 
These states are attributes of the types in our system. The type system has the following 
useful properties: 

It is polymorphic in types and alias states. Type polymorphism means that a type 
variable ranges over all types, linear, non-linear and observers. Aliasing polymor- 
phism means that the aliasing attribute of a type may be a variable. 

It has the principal type property. That is, given a closed initial type assignment 
A, every well-typed expression has a most general type-scheme ~. 

It admits a type reconstruction algorithm which assigns an expression its principal 
type-scheme. Type reconstruction can work without type declarations for bound 
variables. 

With a few straightforward abbreviations, function signatures can be written in 
a concise form, of comparative complexity to the use of in and out specifiers in 
Ada. This observation might seem somewhat surprising, since our type system is 
definitely more complex than the standard Hindley/Milner system, say. A partial 
explanation might be that much of our machinery has to do with observer types 
which occur only in a local context, and by definition do not show up in the type 
signatures of defined variables. 

O t h e r  R e l a t e d  W o r k  

Schmidt [Sch85] suggested a simple type system which gives conditions for safety of in- 
place updates. Other early work was done in the FX project [LG88, JG91] and the area 
has been an active research subject in the last few years. Observable linear types build on 
several previous approaches. Besides the strong connection to linear types, there is also a 
connection to Baker's "free" region analysis [Bak90] for type reconstruction. Regions do 
not enter our system explicitly, but the notion of region in [Bak90] or [TJ91] corresponds 
exactly to a collection of types with the same alias variable as an attribute. 

Another popular approach to the update problem uses abstract data types to encapsu- 
late accesses to mutable data structures. The idea is to have an abstract type of "state 
transformers", but no type for the transformed data structures itself [Wad90a]. There 
is a single operation, block, which creates a mutable data structure serving as a scratch 
area, applies a state transformer to it, and returns the (immutable) result of the appli- 
cation while discarding the scratch area. This has the advantage that no extension to 
traditional type systems is needed, but it requires programming in a continuation passing 
style. Also, it is currently not clear how the method should be extended to deal with 
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several mutated data structures. The latter problem is addressed in the non-standard 
type system of [SRI91] which again requires continuation passing style. Continuation 
passing style is problematic since it fully sequentializes lookups as well as updates. By 
contrast, observable linear types allow lookups to proceed in parallel and generally im- 
pose much less restrictions on programming style. The latter point is important in the 
situation where a purely functional program is transformed into a program with transpar- 
ent updates by changing the implementation of some data types. Observable linear types 
allow such efficiency-improving transformations to be performed incrementally, without 
requiring a complete rewrite. 

Compared to analyses based on liabilities and function effects [GH90, Ode91], linear 
types augmented with observers are less precise in some cases and more precise in oth- 
ers. Liabilities give information about which variables are possible aliases of each other, 
whereas alias states only record the fact that a variable might be aliased. Hence, using 
liabilities we can verify some expressions to be safe which cannot be handled by all other 
approaches. On the other hand, current liability-based approaches are less accurate for 
non-flat mutable structures. Moreover, when extended to higher-order functions, they 
do not admit "nice" principal types (i.e. they need disjunctive constraints, see [Ode91] 
for an example). We believe that approaches based on linear types will turn out to be 
more practical than liability-based approaches because they tend to be more concise and 
generalize naturally to the higher-order case. 

The rest of this paper is organized as follows: Section 2 defines the syntax of types in 
a small example language. Section 3 discusses their use in several program examples. 
Section 4 presents typing rules. Section 5 discusses a type reconstruction algorithm. 
Section 6 concludes. 

2 Observable  Linear T y p e s  

L a n g u a g e  

We use essentially the language of [Wad90b], with the exception of let! constructs, where 
in our case observers of linear variables need not be quoted. Quoting these variables 
explicitly is undesirable since it restricts polymorphism, and our type reconstruction 
algorithm can work without it. 

Expressions e ::= z identifiers 
e e' application 
A z. e abstraction 
A 1 z. e linear abstraction 
let z = e' in e definition 
let! z = e ~ in e sequential definition 
i f  el t h e n  e2 else ez conditionM 
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M o n o m o r p h i c  T y p e s  

We start with a type system which is monomorphic in its aliasing aspects (but polymor- 
phic in its structural aspects). A type in this system (called a monotype in the following) 
consists of two parts c~-v which describe outside aliasing and internal structure, respec- 
tively. The components are separated by an infix dot (.). 

Monomorphic types r = ~ basic type 
[ list r list type 
[ rl --* r2 function type 
[ a . r  alias s tate . type 
[ t type variable 

Alias states a = 01112 observer, linear, non-linear 

In our example language, we will use only a few different forms of types r, namely 
(immutable) basic types, mutable lists, and function types. We will see in Section 3 
how other mutable data structures such as arrays or matrices can be constructed from 
mutable lists. Hence, there is no need for modeling these structures in the type system 
(although an implementation should certainly treat them as special cases). 

The aliasing part a of a monotype is one of the three constants 0, 1, and 2. Variables 
of a 1-type may be accessed only once, and we have the invariant that at most one 
reference can exist to values of these types. 1-types correspond to linear types, and, in 
a slight misuse of language, we will also call them linear. The correspondence is not 
exact, since we are concerned only with the "no-duplication" property of 1-types, and 
allow discarding a value of 1-type, whereas this is forbidden in pure linear type systems. 
Variables of 2-type (or: non-linear type) may be accessed arbitrarily often and may share 
references with other non-linear variables. The third category of types are the observer-, 
or 0-types. Observer types allow linear variables to be used more than once. They don't 
"add to" linear uses (that's why they are given denotation 0). When used locally in 
a let! construct, all occurrences of a variable which is linear at the outside are given 
observer type inside. There may be several such occurrences, but no observer variable 
may form part of the value which is locally defined in that expression. Put in other 
words, all components of the type of a variable defined by a let! must have 1- or 2-type. 
Assuming that the evaluation of let! definitions is hyperstrict, we can hence ensure that 
observation and updating of linear variables occur in a strictly alternating fashion. 

Composite list types have an alias ing attribute for the whole type and an attribute for 
the element type at each level. Not every combination of alias attributes is permissible, 
we require that a list type is well-formed: 

Defini t ion.  The monotype ~.list (/~.v) is well-formed iff 

The well-formedness condition is needed to ensure that a linear element is not shared (or 
observed) indirectly by sharing (or observing) its parent. 
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Monomorphic observable linear types give rise to a type system which extends the stead- 
fast types of [Wad91] with observers. As an example of its use, consider a function which 
copies an array element to another index position. Assume for the time being that  ar- 
rays are implemented as lists, with operations (!) for indexing and (update) for in-place 
updates. 

assign = At. Aj. Aa. let! z = a!i in  update j z a 

Our type system will assign type O.list (2.v) to the first, local occurrence of the array a. 
The type of the locally defined variable z is (2. v) and thus satisfies the restriction tha t  
local definitions in a let! cannot be of observer type. The last occurrence of a has type 
1.list 2.v,  reflecting the fact that  variable a is modified. The type of the whole function 
is: 

assign : int ~ int ---* 1. list (2. v) ---* 1.1ist (2. v). 

This expresses that  the array argument is modified (and therefore has to be linear), 
whereas one of its elements is duplicated (and therefore must be non-linear). The observer 
state was used only locally; it allowed us to use the linear variable a twice. 

The monomorphic type system is still quite inflexible. For instance, it is not possible 
to formulate a function head which works equally on linear and non-linear lists, since 
the alias state of function arguments is fixed. The obvious way to lift this restriction 
is to introduce variables which range over alias states, and we will do so in the next 
sub-section. 

Polymorphie Types 

A polymorphic observable linear type (called polytype in the following) has a variable in 
its alias component. The variable usually ranges over the three alias states, but its range 
can be constrained by predicates. Following [Jon91a], we express this using the syntax 
of qualified types: 

Alias Parts o~ = 0 l 1  I 2 I t I 0 
Qualified Types p = r ~ p  [ r 
Predicates ~r = ~ < ~  [ ~ <  1 1  a <  2 [ ~_.3r  
Type Schemes ~ = VI.~ [ p 

Observer tags 0 are the polymorphic equivalent of the mapping from (monomorphic) 
linear to observer status in the monomorphic system. If  a bound variable z has type a.v 
outside of a let!-construct, it is given type Oa.v inside. This serves as a "reminder" that  
any value assumed by variable a at the outside has to be translated to observer status 
inside. 

Type variables can be constrained by predicates. There are two forms of such predicates. 
The first form, a < ~, constrains the range of c~ to a a subset of all three alias-sets. The 
three two-element alias-sets are characterized as complements of a singleton set. 0 (non- 
observer, or original) encompasses 1 and 2. Variables defined in a let!  are required to be 
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originals. Y (aliased) encompasses 0 and 2. If a function uses an argument several times 
outside of a let!  construct, the argument 's  type falls in this set. Finally, 2 encompasses 
0 and 1. 

Note that  by combining any two of these constraints, we get a monotype i. For instance, 
V a . a  < -0 ::r a < 1 ::r a . r  is equivalent to 2 . r .  If  a variable is simultaneously bounded 
by all three constraints, the constraint set is unsatisfiable and the corresponding type is 
empty. 

The second form of constraint makes the well-formedness criterion for list types explicit. 
The predicate c~ D r is equivalent to the constraint set 

~ i  ~ ~ i  

where/~ ranges over all the alias parts of r and its component types. The typing rules are 
such that  every occurrence of c~.(list  r )  in a principal type is constrained by a predicate 
or D ( l i s t  7"). 

E x a m p l e  2.1 The type of function m a p  would be expressed as follows: 

m a p  : V s V t V a V b .  (a D_D - l ist  s)  ::~ (b D_D. l ist  t )  =~ 2.(s --* t) ~ a . l i s t  s ~ b . l i s t  t ,  

For conciseness, we will in the following drop (a D v) constraints on a type if they are 
implied by the structure of the type itself, i.e. if the type contains a subtype of the form 
c~. v. We will also drop the alias part of a type altogether if it is trivial, i.e. equal to 
an unconstrained, unshared type variable. Finally, we allow multiple predicates to be 
grouped together, i.e. (71" 1 =:~ 71" 2 ==~ /9) = (71"1,71" 2 ~ p) .  

E x a m p l e  2.2 Using these shorthands, the type of m a p  would be written: 

m a p  : V s V t .  2.(s ---* t )  ~ list  s ---* list  t .  

Predefined Identifiers 

As predefined we assume the fixpoint operator fix, and a set of operators on lists. Be- 
sides the conventional operators ni l ,  cons ,  hd and t l ,  we also have a destructive update 
operation on lists, rplac  takes as arguments two functions f and g which map list heads 
to list heads and list tails to list tails. Its third argument is a list zs of linear type. The 
value of 

 ,tac f g xs is cons (f (hd (g (tl xs)), 

and as a side-effect the f r s t  cons -node  of zs is replaced by this value. The types of the 
predefined identifiers are: 

ni l  : V a V t .  a . l i s t  t 

cons : V a V t .  t ~ a . l i s t  t ~ a . l i s t  t 
hd : V a V t .  a . l i s t  t ~ t 
tl  : V a V t .  a . l i s t  t ~ a . l i s t  t 
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rplac : VaVbV~. 2.(t --~ t) ~ 2 . (a . l i s t  t ~ b.list t) ---* 1. l is t  t ~ b.l ist  t 
fiz : Vv. 2.(2.v ---* 2.v) ---* 2.v . 

The type of rplac merits further consideration. One might think that since the tail- 
replacing function in the second argument is passed a linear list, its type should really 
be (1.list t ---* b.list 4). This would lead to some needless loss of polymorphism, however. 
After all, just because an argument is linear (i.e. unshared), a function applied to it 
should not be required to exploit the linearity by overwriting the argument. The correct 
interpretation is that arguments which are known to be linear can safely be used in 
any way whatsoever. The most general type of the tail-replacing function is therefore 
(a . l i s t  t ---, b.list t).  

The type of the fixpoint operator also needs some explanation, fix is defined only on 
transformations between non-linear values and its result is again a non-linear value. To 
see why taking the fixpoint of a transformation between linear values is problematic, 
consider the expression 

mkcirc : 1. l is t  InL ~ 1. l is t  Int  

mkcirc = )~zs. cons 1 (rplac ( -1 )  id xs) , 

where ( -1)  is the predecessor function on integers. I f  f ix were defined for transformations 
between linear values, fix mkcirc would be legal, of type 1. list In t .  But what is the 
value of this expression? If we disregard side-effects and look at the definition of rplac's 
result above, it should be the list [1, 0, 0, ...]. If we take side-effects into account, however, 
and assume that the list is evaluated in a head-strict order, we get the list [0, 0, 0, ...]. 
This violates the requirement that all side-effects of well-typed expressions should be 
transparent. 

3 Examples  

This section tries to give a "feel" of our type system by means of small example programs. 
"vVe hope to convey the impression that the type signatures of most functions occurring 
in practice are quite reasonable in size and complexity and also closely correspond to the 
programmer's intuition. First, here is a side-effecting version of the append function: 

append = fix )~append. )~xs. ,~l YS. 
i f  xs = nil t hen  ys 
else rplac id (All. append tl ys) xs 

The typing rules presented in the next section give append the type: 

append VaVt. 1.l ist  t ---, 1 . (a . l i s t  t --* a. l is t  t) 

Since the first list argument to append gets updated, it must be linear, of type 1.1ist t. 
The type of a curried application like append xs must also be linear, because append xs 
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contains a reference to a linear variable. Otherwise, we could duplicate accesses to zs in 
an expression such as  

(Af.  ( f  y s , f  zs)) (append zs).  

The language has a special form of ,~-abstraction, denoted "~1, to define linear functions 
which have "global" side-effects (i.e. which modify variables other than  their arguments). 
Having two forms of h-abstraction does cause some loss of polymorphism in that  we have 
to declare statically whether a function is going to have a global side-effect or not. This 
can be difficult to predict for higher-order functions. It appears that  our type system 
could be extended to deal with just  one kind of h abstraction for linear and non-linear 
functions using a technique similar to the one in [Wad91]. This would add constraints 
to type signatures, however, something we wanted to avoid because of the syntactic 
overhead associated with it. A good alternative, which also avoids the use of h l ,  is to 
have the modified argument come last: 

append' : VaVt. a.list t --~ 1.1ist t --* a. l is t  t 

append' xs ys = append ys xs 

To simplify presentation, we will from now on allow functions to be written in the equa- 
tional style. The translation to ,~-abstractions and fixpoint operators should be obvious. 

The append function uses the rather "heavyweight" operation rplae. We can simplify 
this by using specialized versions of rplac which replace only heads or only tails: 

rplhd : Vt. 2.( t  ~ t) ---, 1. l ist  t ---* list t 

rpltl : VaVt. 2.( l is t  t ---* a.list t) ~ 1. l is t  t ~ a.list  t 

rplhd f = rplac f id 
rpltl f = rplac id f 

Remember that  list t, the result type of rplhd, is an abbreviation for a.list t, where a is 
a fresh type variable. Tha t  is, the alias part of rplhd's result type is unconstrained. 

Here are linear equivalents of the higher order functions map and foldl: 

maplin 

maplin f = 

foldlin 
foldlin f xs ace= 

Vt. 2.( t  --~ t) ---, 1.1ist t ---, list t 

rplac f (maplin f )  

Vs.Vt. 2 .( t  ~ s ---* s) ~ list t ---* s ~ s. 
i f  xs = nil t h e n  ace 

else foldlin f (tl  xs) ( f  (hd xs) acc) 

maplin maps a function on a linear list, replacing every node of that  list by its corre- 
sponding node in the result list. foldlin does not restrict any argument to be linear, in 
fact it is just Haskell's foldl with the second and third argument swapped, foldlin f is 
side-effecting if f is, and is pure otherwise. 

Here are some other functions on lists: 
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upd 

upd i f 

swap 

swap i j xs 

: Yr. int ~ 2. ( t  ---, t) ~ 1.1isl t --* list t 

= i f  i = 0 t h e n  rplhd f else  upd ( i -  1) f o t l  

: Yr. int ~ int ~ 1. list t ---* list t 

= le t !  z = zs! i  in  

le t !  y = xs! j  

in  (upd i ( K  y) o upd j ( K  x) )  xs 

Function upd updates a selected element of a list, and swap exchanges two list elements. 
Using lookups (!) and updates (upd),  we can express mutable vectors in terms of lists. 
ttigher-dimensional mutable arrays can be defined, too. For instance, the update  opera- 
tion for a matrix,  represented as a list of lists, is: 

t y p e  a . m a t  t = a. l is t  (a . l i s t  t) 

upd2 : int ~ int ~ 2 . ( t  ~ t ) --~ l . m a t  t ~ mat  t 

upd2 i j f = upd i (upd j f )  

For a larger example, we now turn to topological sorting. We want to find a total  order 
for the nodes of a graph in which every node precedes its successors. To make our task 
of designing an efficient algorithm easier, we assume that  the graph is in a convenient 
representation, given by: 

�9 the list sources : list node of all sources in the graph, 

�9 a list succs :  list (list node) which contains for every node in the graph the list of 
all its successors. 

�9 a linear list npreds : 1 . l i s t  int which contains for every node in the graph the 
number of its predecessors. This list serves as a "scratch area". 

We also assume that  node = int such that  we can index lists with nodes. Given this 
graph representation, we can formulate the topological sorting function as follows: 

tsort : 2 . l i s t  node ~ list (list node) ~ 1 . l i s t  int --* list node 

tsort sources succs npreds = 

i f  sources = nil  t h e n  

e lse  

nil 

l e t  src = hd sources in  
l e t  decnth = )in. upd n ( - 1 )  in  

le t !  npreds' = foldl in decnth (succs!src)  npreds in  

let! sources' = filter ()ix. npreds'!  = O) (succs!src) tl sources 
in  cons src ( tsort  sources'  succs npreds')  

If we assume that  mutable lists are implemented as vectors, such that  lookups and 
updates have both constant cost, then the complexity of topsort  is O(Inodes  I+  I edgesD, 
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vat A , P  I- x:cr  ( z : a E A )  

VI A , P  b e : ~  
A,P k e:V~.a (~ ~ t v A U t v P )  

VE A , P  b e :Vt.o- 
A , P  ~" e : [ r = : t ] a  

=~ I A,P.~r b e : p 
A , P  I- e : l r = ~ p  

:e~ E A, P I- e : lr ::~ p ( p h i l )  
A, P I- e : p  

Figure 1: Structural  Rules for OLT 

taut  

lit 

obs 

PH-  ( reP)  

P H - I  <-O P H - 2 < ' O  
P ~ O < $  P H - 2 < I  
P H - O < 2  P H - I < 2  

PH- Oa < l PPr  Oa < 2 

P h L a D_ list (fl.r) P H- a D_ list (B.r) P h  t - a < i  

P H- c~ D_ r P H- fl < I 

Figure 2: Entai lment  Rules for H- 

which matches the best known imperative algorithms. This remains true even if we use 
a more s tandard graph representation consisting of a node list and an edge list, since 
these lists can be converted in O(]nodes I+ I edgesl) t ime into the representation we have 
assumed. 

4 Typing Rules 

We formulate the system OLT of observable linear types as a a system of qualified types 
[:lon91a]. Sequents are of the form A, P I- e : or, where the type assignment A is a set 
of assumptions z : ~1, and the context P is a set of predicates 7r. We use tv v, or tv A 
to denote the free type variables in a type scheme or type assignment. We use f v e  to 
denote the free program variables in an expression. We use letters P,  Q, R to denote 
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---*I 

~ E  

let 

let! 

// 

A.z:r t ,  P b e : r  

A , P  ~- A x . e : a . ( r ' - - + r )  

A.z:rI,  P }- e : r  
A,P  P A l z . e : l . ( r ' - * r )  

A , P  t- e : a . ( r ' - ,  r) 

(P ~ NL A) 

A , P  i- e' : r' 
A,P b e e ~ : r  

(P ~- {a < -0, } U NL Alf. ,,nfo .) 

A , P  ~- e' : cr A.x:sigma, P b e : r 
A , P  ~" le t  z = e' in e : r 

(P H- NL AII. ,,nf~ ,) 

A ' , P  b e ' : a  A . x : a , P  b e : r  
A ,P  t- l e t ! z = e ' i n e : r  

(obs(A', A , b  e), o,'ig (P =:, ,,) 

A t ,P  P el :booi  A , P  b e ~ : r  A , P  k" e 3 : r  
A , P  l- i f  et t hen  e2 else ea : r 

(obs(W, A, fvel  U fv e2)) 

Figure 3: Logical Rules for OLT 

sets of predicates ~r. Type schemes (r will often be written Vai.P =O r, where cq denotes 
the bound variables and P denotes the predicates in ~. Analogous to qualified types, we 
will also use qualified type schemes of the form P =# r where the predicate P constrains 
the free variables in r 

Structural rules for OLT are given in Figure 1. Rule (=> E) is based on an entailment 
relation ~ between predicate sets and predicates, which is defined in Figure 2. Here, 
rules (lit) define the relationship between monomorphic alias sets 0, 1, 2 and alias sets 
0, 1, 2, as explained Section 2. Rules (obs) determine the predicates that hold for tagged 
alias parts On: they are never linear, and are of 2-type iff the untagged alias part is of 
2-type. Finally, rules (wf) correspond to the well-formedness criterion on list types. 

Relation if- is extended to a relation between predicate sets by defining Q tb P iff Q h ~ ~" 
for all r E P. It has the following useful properties: 

T h e o r e m  4.1 (a) I+- is monotonic, lr E P implies P I+- lr. 
(b) ~ is transitive, P h L Q and Q h t- R imply P I+- R. 
(e) I+- is closed under substitution, P ~ Q implies SP ~ SQ for every substitution S. 

Proof: (a) follows from rule (taut), (b) and (c) follow from the fact that ~ is defined by 
a sequent calculus. 

Defini t ion.  Let F denote the constraint set {a < ~ [ n  E {0, 1,2}}, for an arbitrary 
alias part a. A constraint set P is satisfiable iff P 0 a F. A qualified type scheme 
P ~ (Vai. Q => p) is empty if P u Q is unsatisfiable. 

T h e o r e m  4.2 (a) For every constraint set P and substitution S, If P is unsatisfiable, 
then so is SP. 
(b) For every constraint set P, it is decidable whether P is satisfiable or not. 
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Proof: C a) is a direct consequence of Theorem 4.1(c). We now prove Cb). Let P be a 
set of predicates and let P* be the h t- closure of P. Then, P I+- F iff P* _D F. We show 
that it suffices to look at the subset P~ of P* which consist of all predicates in P* whose 
alias-parts also appear in P. A predicate on an alias part that is in P* but not in P can 
only be generated by application of rule Cobs), with conclusion Oa < -if, say. But then 
there is no way to deduce 0 c~ < O, since there is no rule with a conclusion of this form. 
Hence, P I"I- F r P* D_ F r P' D D - F. Since pt is finite, (b) follows. [] 

Logical rules are given in Figure 3. There are two rules for the introduction of functions. 
I~ule (--,~ I) introduces linear functions which can have global side-effects. R,ule (-* I) 
introduces functions without such effects. Absence of global side-effects is enforced in 
(--* I) by the condition that no identifier in the type assignment A can have linear type. 

l~ules (~I), C--+ E) and (let) impose a nonlinearity constraint on Cpart of a) type assign- 
ment. NL A yields a set of constraints which together imply that A contains no linear 
types. It is defined by: 

N L A  = {c~_<T]x:a-reA} 

The conditions in rule (let!) replace the "distinct types" condition of [Wad90b]. First, 
the local environment A t and the global environment A are related by a constraint 
obs(A~,A,fv e), in words: A' observes A on the free variables of e. We define rela- 
tion obs between type assignments, type schemes and types, and alias parts by a set of 
Horn clauses as follows: 

Vz E f v s .obs (A ' z ,Az )  =1, obs(A' ,A, fvs)  
obs(~',~) ~ ob~(w.~ ' ,v , .~ )  
obs(p',p) ~ obs(~ ~ p,, ~ ~ p) 
obs(T',r) ~ ob~(O~.r',~-~) 
obs(~', ,)  ~ obs(2.~',2-r) 
obs(r',r) ~ obs(0-~', l-~) 
obs(~', ~) ~ obs(li~ r  list.~) 

ohiO-;, n),  obsO-;, r~) ~ obs(,l ~ r;,,-1 ---, r2) 
obs(~, ~) 

This expresses that the local environment is isomorphic to the global environment, but 
with every part in Alf,s mapped to observer status. This mapping to observer state, 
together with the requirement that the type v of the locally defined value may not 
contain observers, make the let! construct safe. The latter requirement is expressed by 
orig (P =~ or), defined as follows: 

or ig (P=~Vo~i .Q=vr )  = P u Q I t - { o ~ < o l ~ i s a n a l i a s p a r t i n r }  

The interpretation of these rules has to take into account that constraint sets may be un- 
satisfiable and that types may be empty. Since the primary motivation for type checking 
is to detect empty types, we adopt the following definition: 



403 

var 

---~I 

---'i I 

--*E 

let 

let[ 

if 

A , P  t- z : r  ( x : ~ E A , ~ ( P = > r ) )  

A.x:rt,  p P e : r  

A , P  F Az.e : o~.(r' ~ r) 

A.x:rI ,  P F e : r 

A , P  P A l z . e : l . ( r ' - - + r  ) 

A , P  F e : a.(r'--+ r) 

(P H- NL A) 

A , P  b e ' : r  t 

A , P  I- e e' : r 

A , P '  ~- e ' : r '  A . a : g e n ( A , P ' = ~ r ' ) , P  ~- e : r  

A , P  F l e t z = e ' i n e : r  

(P H- {4 <_ -O} u NL AII~ ,,n:,, ~) 

(P h t- NL AII. .,hi. .) 

A',Pt  1-- et :7" 

A.x : gen(A', P' =~ r O, P P e : r 
A , P  ~- l e t ! x =  d i n e : r  

(obs(A', A,yv e)), orig (P' ~ r')) 

A ' , P '  P el : bool A , P  ~- e2 : r A , P  b ea : r 

A , P  I- i f  el t hen  e~ else ea : r 
(obs(A', A , b  el u b  e2)) 

Figure 4: Deterministic Typing Rules for DOLT 

Defini t ion.  An expression e has a type scheme ~ under type assignment A and con- 
straints P, written A, P D e:~r, if there is a proof in 0LT of A, P t- e :~  such that every 
proof step has a conclusion A', P'  b e' : # with P '  :0 a '  satisfiable. 

5 P r i n c i p a l  T y p i n g s  a n d  T y p e  R e c o n s t r u c t i o n  

This section states and proves the principal type property for observable linear types 
and gives a sketch of a type reconstruction algorithm. To simplify our task, we first 
define in Figure 4 another type system, DOLT, and prove its equivalence to OLT. Unlike 
OLT, DOLT is deterministic and syntax-directed; the structure of all proof trees for a 
given typing are isomorphic, and every proof step is determined uniquely by the form of 
the expression e. The typing rules of DOLT translate directly into a Prolog or Typol 
[CDD+85] program for type reconstruction. 

The following definitions, theorems, and proofs lean heavily on the theory of qualified 
types developed in [Jon91a, Jon91b]. We will concentrate here on aspects which are 
specific to observable linear types, while referring to Jones' work for all aspects that 
apply to systems of qualified types in general. This is possible since the entailment 
relation ~ satisfies the requirements set out in [Jon91a], as stated in Theorem 4.1. 

Defini t ion.  A qualified type scheme P =r (Vai.Q =r r) has a generic instance R ~ p,, 
written P ~ (Vai.Q ~ r) ~- R ~ #, iffthere are types ri such that 

= [4, ~-. rd r and R H- e U [4, ~. r~] Q. 
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D e f i n i t i o n .  A qualified type scheme P => a is more general than a qualified type scheme 
P '  ~ a ' ,  written P => ~ >- P '  =r a ' , i f f ( P '  ~ a ' )  >- p ~ (P  => a ' )  >- p. for all 
qualified types p. Clearly, >- is a preorder. 

D e f i n i t i o n .  A qualified type scheme P :r cr is principal for an expression e and a type 
assignment A, iff A, P D e : a,  and, if A, P '  D e : cr' then P ::~ cr >- P '  =r ~r'. 

In the following, we will use b '  for deduction in DOLT, and continue to use I- for 
deduction in OLT.  

T h e o r e m  5.1 (Soundness of DOLT) If A, P k-' e : r  then A, P I- e : r .  

Proof: A straightforward induction on the structure of the prot)f of A, P b '  e : r .  

The  next four lemmata  have equivalents in [Jon91b] and are proved in essentially the 
same way as done there. 

L e m m a  5.2 (Substi tution lemma) If A, P t-' e : r then SA, SP t-' e : Sr ,  for every 
substi tution S. 

L e m m a  5.3 If A, P ~-' e : r  and Q H- P then A, Q I-' e : r .  

L e m m a  5.4 If P I+- P '  then gen(A, P' ::> r) >- gen(A, P ~ r). 

L e m m a  5.5 If A.x  :or, P I-' e : r and or' ~ P ::> cr then A.z : q' ,  P I-' e : r .  

T h e o r e m  5.6 (Completeness of DOLT) If A, P I- e : r  then there is a set of predicates 
P '  and a type r such that  A , P '  ~- e : r  and gen (A ,P '  => r) >- P =r ~. 

Proof: By induction on the structure of the proof of A, P I- e : r .  The  structural  rules 
are treated exactly as in the proof of Theorem 2, [Jon91b]. The  cases for the logical rules 
are as follows: 

Case(--+ I)  : We have a derivation of the form 

A . x : r ' , P  I- e : r  

A, P I- Ax.e : c~ . (r'  --, r) 
(P  H- NL A). 

By induction, A . z : r ' , P '  t-' e : v  for some P ' , v  with g e n ( A . z : r ' , P '  => v) ~ P :=> r. By 
the definition of gen, there is a substi tut ion S on the free type variables a i  of P '  ::~ v, 
such that  P H- SP'  and r = Sv.  By Lemma 5.2, and the fact tha t  none of the a i  appear 
in A.z  : r', A . z  : r', SP'  ~'~ e : r. Define R = SP'  U NI, A. Then P Pr R H- SP' .  We can 
thus construct the derivation: 

A.z  : r', SP'  I-' e : r 

A.x:7  J ,R[ - t  e :7" 

A ,  1~ t-' ~ z . e  : ~ . ( r '  - +  r )  

( Lemma 5.3) 
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Furthermore, by Lemma 5.4, gen(A, R =t, a .  (7-' ---* 7-)) ~- gen(A,  P :=~ ~ .  ( r '  ---+ r ) )  
P =:t, o~ �9 (7-' ---* 7-). 

Case  (---* E)  : We have a derivation of the form: 

A, P f- e :c~-(7-1---.7-) A, P F- e l : r  ' 
(P  H- ~ < "0, P H- NZ AIs~ , ' ,s~ , )  

A , P  F- e d : 7 -  

By induction, A, P '  I-' e : v with gen(A, P'  =V v) >- P ~ a . ( r '  --+ r) .  By the definition of 
gen, there is a substi tution S on the free type variables oti of pt  =,, v, such that  P H- S P  I 
and o~.(7- t ---+ 7-) = Sv .  By Lemma 5.2, and the fact tha t  none of the a i  appear  in A, 
A, SP'  ~" e : a.(r '  --+ 7-). Using the induction hypothesis on the second premise of (---+ E) ,  
we can show by a similar argument tha t  A, SIQ I F "l e I : r '  for some predicate set Qi and 
substitution S'  such that  P H- SI Q'. Define R = SP  U S ' P '  U {~ < "0} U NL AIs. ,,ni~ , .  
Then P H- 12. We can thus construct the following derivation: 

A, SP '  I'-' e : or.(7- I ---+ r )  .(Lemma 5.3) 
A, R ~-' e : a .  (7-' --+ 7-) 

A, S '  Q' I-' e' : 7-' 
A,  12 f-' e' : r'  (Lemma 5.3) 

(--. E) 
A,121 -I e e I :7" 

Also, by construction, R h t- {a  < O} U NL Aly~ ,,nI~ ,). Furthermore,  using L e m m a  5.4, 
gen(A, n ~ 7-) >- gen(A, P ~ 7-) ~ P ~ 7-. 

Case  (let!) : We have a derivation of the form: 

A ' , P  t- e ' : a  A . z : g , P  I- e : r  
A, P f- let[ x = e' in  e : r 

(obs(A' ,  A , f v  e), orig(P =r ~)) 

By induction, we have 

A t ,pt~_t e : v ,  

A . x :a ,  Qt ~_, e' : r ' ,  

at = gen(A l, p i  :r v) >-_ P =r ~, 

gen( A . z  : a, Qt =~ r ')  >- P =r r. 

Without  loss of generality, we can assume (A): lv P N Iv (Q'  =r r ')  c Iv (A.x :a) .  This 
can always be achieved by a suitable renaming of the free variables in Qt =~ ft .  We can 
construct the derivation 

A t , p l l_ t  e :O 

A .x  : o', QI [_.I el : rt  

A.x :a ,  P U  Q ' l - '  e' : r '  
A.x : o", P U Q' I -I e I : r I 

A, PU Q' I-' let!  z = e' in  e : r I 

( Lemma 5.3) 

( Lemma 5.5) 

(tat) 

with conditions obs(A',  A,.fv e), orig( P U Q' ~ a) satisfied. Furthermore,  using the in- 
duction hypothesis and (A): 

gen( A, P tO Q' ::r r ' )  ~- gen( A.x : or, P U Q' =r r') 
>- P ~ gen( A.x : a, Q' ~ r') 
~- P = ~ P = ~ r  
- P ~ r  
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Cases (let) and (if) are similar to cases (let!) and (---* E). �9 

The rules in OLT translate directly into a Prolog program where every application of 
a clause is determined uniquely by the outermost constructor of an expression. This 
program can be used to find a candidate cr for a principal type scheme of an exprssion 
e, together with its proof tree. Given this proof tree, we can check with Theorem 4.2 
(b) that  the type schemes in the conclusions of all proof steps are nonempty. If they 
are, ~ is a principal type scheme for e. If one of the types is empty, we can show with 
Theorem 4.2 (a) that  e has no type. It therefore follows: 

T h e o r e m  5.7 (a) If an expression e has a type scheme then it has a principal type 
scheme. (b) There is a decision procedure ~p which returns the principal type scheme of 
an expression if it has one, and returns failure otherwise. 

6 C o n c l u s i o n  

We have presented a type system which augments linear types with observers. We claim 
that  the extension makes linear types practical, since it is polymorphic, accommodates 
a familiar programming style, and allows observer accesses to proceed in parallel. Al- 
though the typing rules are more complex than those of the classical Hindley/Milner 
system, typical type signatures occurring in practice are quite moderate in size and com- 
plexity. Furthermore, programmers need not write down types since principal types can 
be reconstructed. We see the type system as a possible candidate for future programming 
languages which add state to a functional core. 

On the theoretical side, more research is needed to explore connections between observer 
types and linear logic. 
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