
Approximate Fixed Points in Abstract Interpretation

Chris Hankin and Sebastian Hunt

Department of Computing

Imperial College of Science, Technology and Medicine

180 Queen's Gate, London SW7 2BZ

Abstract

Much of the earlier development of abstract interpretation, and its application to imperative

programming languages, has concerned techniques for finding fixed points in large (often

infinite) lattices. The standard approach in the abstract interpretation of functional languages

has been to work with small, finite lattices and this supposedly circumvents the need for such

techniques. However, practical experience has shown that, in the presence of higher order

functions, the lattices soon become too large (although still finite) for the fixed-point finding

problem to be tractable. This paper develops some approximation techniques which were first

proposed by Hunt and shows how these techniques relate to the earlier use of widening and

narrowing operations by the Cousots.

1. Introduction

Any account of abstract interpretation of functional languages must address the problem of

def'ming a suitable abstraction of functional values. There are a number of alternatives, ranging

from the relational approach espoused in the Cousot's work and instantiated in the minimal

function graph approach of [Jon85] to the approach of [BHA86] where functions are abstracted

by functions. In the following we will adopt the latter approach. In such a setting it is well-

known that the problem of finding fixed points, the central operation in abstract interpretation,

is of n-iterated exponential complexity [Mey85]. There was a naive expectation that the

development of clever algorithms such as the frontiers algorithm [CPJ85], [MH87], [HH91]

would ameliorate this situation but practical experience has shown that this was misplaced

optimism.

In [Hun89] and [HH91], we developed a formal approach to allow the evaluation of

approximate fixed points, in fact generating upper and lower bounds for the true fixed point.

In the classical approach to abstract interpretation pioneered by Patrick and Radhia Cousot it is

common to work with lattices that do not satisfy the ascending chain condition and, in this

220

context, it is essential to work with approximate fixed points; they have developed a general

theory of widening and narrowing operations to support this work. It is possible to relate our

approach to the widening/narrowing approach of the Cousots and this is our programme in this

paper; indeed our work constitutes the only published example of higher-order

widening/narrowing.

In the next section, we review the main results from [HH91]. Section 3 develops the theory

somewhat further and presents a scheme for using the approach in fixed point computation.

Section 4 defines widening and narrowing operations and demonstrates the correspondence

between the two approaches. We conclude with Section 5.

2. The Abstraction Ordering

We work with a family of finite lattices L:

2 e L where 2 ~ ({0,1 }, 0<1)

D • LifDe L

DTe LifDe L

DIx D2E LifDie L,i=l,2

[D-~D'] e LifD, D'e L

where [D ---> D'] is the lattice of monotonic functions from D to D'. Such a family of finite

lattices has proved to be useful in a wide range of analyses including strictness analysis,

parallel sharing analysis, and binding time analysis.

We define an abstraction ordering on L:

2 <Dfora l lDE L

D_L < D ' • <D'

DT < D'TifD <D '

D 1XD 2 < D ' 1x D' 2ffD I<_D' l andD 2 < D ' 2

[A --~ B] < [A'---> B'] i fA < A' and B < B '1

Notice that < is a partial order.

1Note that ~ does not capture the usual notion of approximation which has ~ contravariant
in its first argument. We will see that _< means that there is a Galois connection between the
two lattices - this amounts to the standard domain theoretic practice of using
embedding/projection pairs to avoid the contravariance of ~ .

221

We introduce the categories FL, FL Oe and FL ep.

FL finite lattices, monotone maps

FL ee finite lattices, embedding-closure pairs

FL ep "f'mite lattices, embedding-projection pairs 2

We write the left and right components of an embedding-closure (embedding-projection) pair

as r and r (ere and r Given an embedding-closure pair ~, r and r determine each other

uniquely. Similarly for embedding-projection pairs. Thus FLoe and F L ep may both be viewed

as sub-categories of FL.

We introduce the functors -.L, -T, _x_ and ---> on FLoe and FL ep. These functors have the

same (formal) definitions for both categories. The definitions of these functors are the expected

ones, in particular:

A--> B = [A--> B]

for (~ : A 1 --r A 2 and ~ : B 1 ---> B2,

r --> ~ : [A 1 ~ B t] --r [A 2 ----> B 2] is defined by
(r v)e f = ~q/e o f o r c

go r r

It is straightforward to verify that these are indeed functors on the appropriate category (FL ep

and FL~ We next define two pairs of maps between pairs of lattices related by the

abstraction ordering. The safe maps give overestimates of values and the live maps give

underestimates.

Defini t ion 2.1

For each A < B ~ L, we define an FLoe-morphism SafeA, B : A ---> B. We write UpSA, B for

SafeA,B e and DownSBA for SafeA,Be:

UPS2, B a = .L B if a = 0

T B if a = 1

DownSB, 2 b = 0 if b = s

1 otherwise

SafeA_L,B.L = (Safea,B).L

SafeAT,BT = (SafeA,B) T

SafeA1 x B1,A2 x B2 = SafeA1,A2 x SafeB1,B 2

= An embedding-closure pair is a pair of continuous functions (e:A ->B,c:B ~ A) such that:
eoc>id and coe=id

and an embedding-projection pair is a pair of continuous functions (e:A ~ B,p:B --> A) such that:
e ~ pOe = id.

222

Safe[AI~B1],[A2._)B2] = SafeA1,A2----)SafeB1,B2
[]

We must verify that:

i) UPS2, B o DownSB, 2 > id B

ii) DownSB, 2 o UPS2, B = id 2

These verifications are routine.

D e f i n i t i o n 2.2

For each A < B e L, we define an FLeP-morphism LiveA,B : A ---) B. We write UpLA, B for

LiveAj~e and DownLBA for LiveAj3P. The definitions of the Live maps are (formally) identical

to those of the Safe maps except for DownLB, 2 which is:

DownLB, 2 b = 1 if b = T B

0 otherwise

It is tempting to say that the Live maps are dual to the Safe maps, i.e.:

LiveA, B = SafeAOP, BOP

We cannot actually say this since the family L is not closed under the operation of forming

opposites. However, we can establish an order (_<) isomorphism O : L ---) L such that for each

A e L we have:

O(A) ~ A Ov

Thus:

0(2) = 2

O(A• = (O(A)) T

O(A T) = (O(A))•

O(A • B) = O(A) x 003)

O([A --) B]) = [O(A) -* 003)]

Note that O(O(A)) = A. For each A e L, the isomorphism of A OP and O(A) is established via

the (contravariant) map RA: A ---) O(A):

R20 = 1

Ra_l_ .1_ = T

RATT = /

RA x B (a,b) = (R A a, R B b)

R[A -~ B] f = R B o f o RO(A)

Note that:

R 2 1 = 0

RA• (lift a) = colift(R A a)

RAT (colift a) = lift(R A a)

223

RO(A) o R A = id A

A key property of the R maps is the following:

Lemma 2.3

For all A,B ~ L:

RB(f a) (R[A ~ B] f) (RA a) []

Fact 2.4

For all A_<B ~ L:

i) UpLo(A),OfB) =

ii) DownLOfB),O(A) =

R[A -> B](UpSA.B)

RIB -) A](DownSB~.)

The following properties of the Safe and Live maps are standard for embedding-closure pairs

and embedding-projection pairs [GHK*80]:

�9 UpS and UpL are injective

�9 DownS and DownL are onto and strict

�9 UpS is T-preserving and UpL is strict.

In addition we have the following:

Lemma 2.5

For all A < B e L, UpSA, B is strict.

P r o o f

induction on the height of the proof that A e L

Corollary 2.6

For all A < B ~ L, UpLA, B is T-preserving.

P r o o f

Let A < B ~ L. Since O : L ---> L is an order isomorphism, we can write A as O(A') and B as

O(B'). Then

UpLo(A%O(B3 TO(A3

= (R(UpSA,2,)) TO(A)

= (R(UpSA,~,)) (R _LA,)

= R(UpSA,,B,-J-A')

= R(IB')

-- TOfB)

by Fact 2.4

since R an isomorphism of A 'OP onto O(A')

by Lemma 2.3

by the Lemma 2.5

since R an isomorphism of B'OP onto O(B') []

224

In what follows we will assume "dual" results such as this corollary to be clear and will not

spell out the details of their proof.

Lemma 2.7

F o r a U A < B < C ~ L :

i) SafeA, C =

ii) SafeA, A =

P roof

(i) proof by induction over the type of A:

A-= 2: UpSB,c(UpS2, B 0)

SafeB, c o SafeA, B

id A

= UpSB,c s by definition

= J -o by].,emma 2.5

UpSB,c(UpS2, B 1) = UpSB, C T B, by definition

= T D since UpS is top-preserving

DownSB,2(DownSC,B x) = 0 ~ DownSc, B x = .1_ B

::::# X = .]..C3

in this case DownSc, 2 x = 0 as well.

DownSB,2(DownSc, B x) = 1 ~ DownSc, B x ~ .L B, by def'mition

=> x ~ _k O since Downs is strict.

and thus Downs C,2 x = 1.

The result follows by extensionality. ~

The inductive cases are all the same and follow from the functorial properties of the

constructors that we use; we illustrate two cases - the unary functor _• and the binary functor

x:

A - A'•

Then B --- B '• and C - C '• and then:

SafeA'z,C'_L = (SafeA,,C,) •

(SafeB,,C, o SafeA,,B,)/by IH

(SafeB,,C,)• (SafeA,,B,)_ L since -.L is a functor

SafeB, c o SafeAj]

A - A 1 xA2:

Then B - B1 x B2 and C = C1 x C2 and:

3Both implications hold because DownS is bottom-reflecting which follows by a simple argument using
the properties of embedding-projection pairs.

225

SafeA, C SafeA1,C 1 • SafeA2,C 2

= (SafeB 1,C 1 o SafeA1,B 1) x (SafeB2,C 2 o SafeA2,B 2)

by IH

= (SafeB1,C 1 x SafeB2,C2) o (SafeA1,B 1 • SafeA2,B 2)

= SafeB, C o SafeA, B

(ii) follows from Safe2, 2 = id 2 since functors (_x_, _--->_, etc...) preserve identities.

[]

Thus we may view Safe as being a functor from the (poset) category L to FLec. By the "dual"

of the Lemma, Live is a functor from L to F L ep.

The main result concerning these maps and their interaction with the least fixed point operator,

fix, in [HH91] is the following:

Fact 2.8

For all lattices D, D' ~ /. such that D' < D:

(i) f ix D, = Downs f ix D

fix D, = DownL f ix D

(ii) UpS fix D, > fix D

UpL fix D, < fix D []

2.8(ii) gives a formal basis for the method of finding upper and lower bounds for a true fixed

point by iterating in a smaller lattice using safe and live approximations, respectively. In this

paper we develop this technique and relate it to Cousot's widening and narrowing operations.

3.Further Properties of the Abstraction Ordering

We start by noting that x is a pre-fixedpoint of f if:

x __. f ix)

and a post-fixed point of f if:

f(x) _< x

We can now state and prove one of the main results of the paper.

Proposition 3.1

Let A' < A ~ / , and let:

226

D - [A-> A]

D' -= [A' -> A']

Then for all f e D and for all x e A' :

(DownSD, D, f) x = x ==>

Proof

UpSA,,A x =

f (UpSA,,A x) < UpSA,,A x

UpSA,,A((DownSD,D, f)x)

(UpSA,,AoDOwnSA,A , ofoUpSA,,A)X

f (UpSA,,A x)

by assumption

by definition

[]

Coro l la ry 3.2

For any [A -> A], [A' -> A'], [A" -> A"]

and any fixed point x of (DownS[A~A],[A,,~A,,] g), we have:

(DownS[A~A],[A,~A,] g) (UpSA,,,A, x) < UpSA,,,A, x

Proof

Use Proposition 3.1 with f = DownS[A~A],[A,~A,] g and use Lemma 2.7

L, with A" < A' < A then for all g ~ [A -> A]

[]

This result says that when any fixed point of the approximation of g in a smaller lattice is

embedded into any larger lattice it becomes a post-fixed point of the approximation of g in that

larger lattice. The dual result for the live maps is that any fixed point becomes a pre-fixed point

in the larger lattice.

Proposition 3.3

For any D, D', D" e L, such that:

D - [A -> A]

D' - [A' -> A']

D" - [A" -> A"]

with A" < A' < A and for any f e D:

(i) UpSA.,A,(fixA,,(DownSD,D,, f)) > fixA,(DownSD, D, f)

(ii) UpLA.,A,(fixA,,(DownLD,D,, f)) < fixA,(DownLD, D, f)

Proof

These follow immediately from Fact 2.8 (ii) and Lemma 2.7(i).

Finally, we restate some obvious properties of pre- and post-fixed points.

227

Fact 3.4

For all f ~ [A ---> A] and x~ A:

(i) if x is a pre-fixed point of f and x is less than fixAf then {In(x) I n > 0} is an ascending

chain and for all n:

In(x) < fi xAf

Moreover, since we are working with finite lattices, the chain will eventually stabilise and the

limit will be fi xAf.

(ii) if x is a post-fixed point of f and x is greater than fi xAf then { In(x) I n > 0} is a descending

chain and for all n:

In(x) _> fixAf

However, notice that the limit of such a descending chain may not be fixAf but some other

fixed point. (Thus the need for the generality of Corollary 3.2) []

We can now present the scheme for finding approximate fixed points (to any desired accuracy):

Step 1: Choose some small lattice in which the problem of fmding fixed points is tractable and

iterate from bottom to find the least fixed point of both the safe and live abstractions of the

function.

Step 2: The previous step gives upper and lower bounds for the true fixed point. If these

agree on the interesting arguments, or if a safe answer is sufficient, use the upper bound;

otherwise

Step 3: Apply UpS to the safe approximation and UpL to the live approximation to move to a

larger, intermediate lattice and iterate down from the resultant post-fixed point and up from the

resultant pre-fixed point. Repeat Step 2.

One word of caution: if the post-(pre-)fixed point of the safe (live) image of the function in

some intermediate lattice happens to be a fixed point then no further improvement of the

upper(lower) bound is possible. On the other hand, when the pre-fixed point is a fixed point,

it must be the least fixed point.

228

4. Widening and Narrowing Operations

We start by recalling some definitions and results from [Cou81].

Definition 4.1

For any complete lattice L, an operation V e bI ~ ((L x L) ---) L) is a widening operation iff it

satisfies the following conditions:

(i) Vj > 0, Vx,y e L , x v y < x V(j)y

(ii) For all ascending chains x 0 < x I < ... < x n < . . . in L, the chain Y0 =

x0, Yl = Y0 V(1) x 1 Yn = Yn-1 V(n) x n is eventually stable; i.e.

there exists a k >_ 0 such for all i > k, Yi = Yk-

[]

A widening operator may be used to generate an "accelerated" fixed point iteration (which in

general will overshoot the least fixed point) as shown by the following proposition.

Proposition 4.2

Let f be a monotone operator on L and V a widening operator. The limit u of the sequence:

x0=_L

Xn+ 1 = Xn, if f(Xn) < x n

Xn+ 1 = x n V(n+l) f(Xn), otherwise

can be computed in a finite number of steps. Moreover fi x(f) < u and f(u) < []

The iteration process described by the proposition and its relationship to the Ascending Kleene

Chain is illustrated in the following figure:

I

I f x2"" '~v ~ 3

f t ' - L ~ I

fl I ~ - . - ~ Xl

I _L

Let f : B ~ B with A < B ~ /. and consider the sequence (DownS f)n _L. For the purposes of

229

comparison with widening, we embed this sequence into B using UpS. It is easily shown that

the resulting sequence UpS((DownS f) n /) is just (UpS o DownS o O n .1_, giving the modified

diagram:

/

x = (UpS=DownS~f)~ .L)
I f x 2 / j 3

f 3 j . J f~• f X ~ / i ~ (UpSoDownS~f) t .L)

] / x= (UpSoDownS4) (•
fl.L

I
.L

and consequently we have:

L e m m a 4.3

For any lattices D, D'~ L, such that D' < D:

~.j.Z(x,y).x v UpSD,D(DownSD,D, y))

is a widening operation.

Proof

Observe that UpS D,D(DownSD,D, y)) > y by the definition of embedding-closure pairs and

thus:

x v UpSD,D(DownSD,D, y)) > x v y

Any ascending chain must be eventually stable since the lattices are all finite.

[]

In our earlier discussion, we presented three steps for computing approximate fixed points.

We have now shown the equivalence of step 1 of that process and the Cousot's notion of

widening. However, it may be preferable to use the approach of the last section for efficiency

reasons since the explicit use of the widening operator requires us to work in a larger lattice.

Still considering the safe maps, we now turn to the process of refining the approximation and

start by defining the concept of narrowing.

Definition 4.4

For any complete lattice L, an operation A ~ Iq ~ ((L x L) ~ L) is a narrowing operation iff it

satisfies the following conditions:

230

(i)

(ii)
V j > O , (V x , y e L : y < x) , y < x A (j) y < x

For all descending chains x 0 _> x 1 > ... >_ x n > ... in L, the chain YO

= Xo, Yl = YO A(1) x 1 Yn = Yn-1 A(n) x n is eventually stable; i.e.

there exists a k > 0 such for all i > k, Yi = Yk"

[]

Proposition 4.5

Let f be a monotone operator on L and A a narrowing operator. Let ue L be such that f i x f < u

and f(u) < u. The decreasing chain:

x 0 = u

Xn+ 1 = x n A(n+l) f(Xn)

is eventually stable. Moreover Vk >__ 0, f ix(f) < x k.

[]

Step 3 o f the procedure outlined in the last section proposed the use of a decreasing iteration

which we might reasonably expect to correspond to a narrowing. We now present a very

general process, which corresponds to Step 3, in which each iterate may be from a different

intermediate lattice. We consider a sequence o f lattices A 1 A n such that Ai<_Ai+ 1 and A n -

A, then we have D i = [A i --r Ai]. We construct the sequence:

Z O, z 1

where

z 0 = The fixed point found in Step 1

zi+ 1 = (DownS D,Di+I f) (UpSAi,Ai+I zi)

The embedding of {Zn} into A via the maps UpSAi,A results in the decreasing sequence

associated with the narrowing operation defined in the following Lemma.

L e r n m a 4.6

For any sequence of lattices A0,A 1 A n = A ~ L, such that A i < Ai+ 1 (the A i need not be

distinct), D i - [A i ~ Ai], D - D n, f ~ D:

A - ~.j.~(x,y).x ^ UpSAj,A(DownSA,Aj y)

is a narrowing operation.

Proof

x A(j)(u) y --- x ^ UpSAj,A(DownSA,Aj y)

231

< x by definition of ̂

Since UpSAj,A(DownSA,Aj y) > y (by the defining property of embedding-closure pairs), we

also have for y < x that:

x A(j)(u) y > y

Eventual stability of the sequence follows from finiteness of the lattices.

[]

To summarise: the upwards iteration in the smaller lattice using a safe approximation of the

function corresponds to widening and the refinement of the upper bound by iterating

downwards in intermediate lattices corresponds to narrowing.

The situation with live maps is somewhat less straightforward. The live approximations

approach the true fixed point from below; this is true both of the initial approximation and the

successive refinements. This runs counter to the development of [Cou81] and later work. In

[Cou78] alternative definitions of widening and narrowing operators are introduced but these

do not correspond very closely to our application. This merits further investigation.

As a closing remark notice that the exact correspondence proved in Lemma 4.3 gives the basis

for an alternative proof of the post-fixed point property proved in Proposition 3.1 since any

widening operation has this property [Cou78].

5. Conclusions

We have developed the work on approximate fixed points first reported in [Hun89] and shown

how it connects with the widening/narrowing approach used in traditional abstract

interpretation. We have presented a scheme which computes arbitrarily precise upper and

lower approximations of the true least fixed point of a function.

An alternative approach is based on the observation that often only a small part of the function

graph is actually required. If a suitable superset of the subgraph (which avoids the plateaux

problems described in [CPJ85]) can be identified then an accurate fixed point in the superset

can be used. Since the needed elements of the graph may be many orders of magnitude

smaller than the cardinality of the graph, this accurate fixed point can be computed very

efficiently. These ideas, which are related to Jones and Mycroft's minimal function graphs

[Jon85] are currently being developed.

232

Acknowledgements
We are indebted to our colleagues on the Semantique project for their willingness to discuss

this work and for their constructive criticism; specifically, the categorical approach used in

Section 2 was suggested by John Hughes and has led to a considerbale simplification of our

work. The first author was partially funded by ESPRIT BRA 3124 - Semantique and both

authors were partially funded by ESPRIT BRA 3074 - SemaGraph.

References

[BHA86] G.L. Burn, C. L. Hankin and S. Abramsky, Strictness Analysis for Higher-

order functions, Science of Computer Programming 7 (1986), pp 249-278,

North-Holland.

[Cou78] P. Cousot, Mdthodes ltdratives de Construction et d'Approximation de Points

Fixes d'Opdrateurs Monotones sur un Treilli, Analyse Sdmantique des

Programmes, Th~se dq~tat, Universit6 de Grenoble, 1978.

[Cou81] P. Cousot, Semantic foundations ofprogram analysis, in Muchnick S. S. and

Jones N. D. (eds) Program Flow Analysis, pp 303-342, Prentice-Hall, 1981.

[CPJ85] C. Clack and S. L. Peyton Jones, Strictness Analysis - a practical approach, in J.

-P. Jouannaud (ed), Functional Programming Languages and Computer

Architecture, LNCS 201, pp 35-49, Springer Verlag.

[GHK*80] G.K. Gierz, K. H. Hoffmann, K. Keimel, J. D. Lawson, M. Mislove, and D.

S. Scott, A Compendium of Continuous Lattices, Springer Verlag.

[Hun89] S. Hunt, Frontiers and open sets in abstract interpretation, in D. MacQueen (ed),

Functional Programming Languages and Computer Architecture, pp 1-11, ACM

Press.

[HH91] S. Hunt and C. L. Hankin, Fixed Points and Frontiers: a new perspective,

Journal of Functional Programming 1 (1), pp 91-120, Cambridge University

Press.

[Jon85] Jones N. D. and Mycroft A. Dataflow Analysis of Applicative Programs using

Minimal Function Graphs, privately circulated manuscript, October 1985.

[Mey85] A.R. Meyer, Complexity of Program Flow Analysis for Strictness: Application

of a Fundamental Theorem of Denotational Semantics, private communication.

[MH87] C.C. Martin and C. L. Hankin, Finding Fixed Points in Finite Lattices, in G.

Kahn (ed), Functional Programming Languages and Computer Architecture,

LNCS 274, pp 426-445, Springer Verlag.

