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A b s t r a c t  
A system is described which supports proofs of both behavioural and logical properties of 

concurrent systems; these are specified by means of a process algebra and its associated logics. The logic 
is an action based version of the branching time logic CTL which we call ACTL; it is interpreted over 
transition labelled structures while CTL is interpreted over state labelled ones. The core of the system are 
two existing tools, AUTO and EMC. The f'wst builds the labelled transition system corresponding to a 
term of a process algebra and permits proof of equivalence and simplification of terms, while the second 
chocks validity of CTL logical formulae. The integration is realized by memos of two translation functions 
from the action based branching time logic ACTL to CTL and from transition-labelled to state-labelled 
structures. The correctness of the integration is guaranteed by the proof that the two functions when 
coupled preserve satisfiability of logical formulae. 

1. Introduction 

Process algebras UMi189, Bwg0, Hoa85, Hen88] are generally recognized as a convenient tool for 
describing concurrent systems at different levels of abstraction. They rely on a small set of basic 
operators which correspond to primitive notions of concurrent systems and on one or more notions of 
behavioural equivalence or preorder. The operators are used to build complex systems from more 
elementary ones. The behavioural equivalences are used to study the relationships between different 

descriptions (e.g. specification and implementation) of the same system at different levels of abstractions 

and thus to perform part of the analysis. 
In this paper we want to propose a general framework for verifying properties of any process 

algebra by relying on the fact that they all have a single underlying model: Labelled Transition Systems. 
There are already a few verification environments in which properties of concurrent systems 

specified by means of process algebras can be proved [CPS90, GLZ89, dSV90, BC89, Gsg0]. All of 
them provide tools for verifying equivalences or preorders on process algebras specifications. This 
equivalence-based approach to system verification has a major disadvantage: specifications, even at the 
most abstract level, tend to be too concrete; they are, anyway, descriptions of system behaviours even 

when it is assumed that some of the actual actions are invisible. 

Logic is a good candidate to provide more abstract specifications; it permits describing systems 
properties rather than systems behaviours. Indeed, different types of temporal and modal logics have been 

proposed for the abstract specification of concurrent systems; in particular, modal and temporal logics 
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have been recognized as suitable for specifying system properties [EH86, HM85, MP89] due to their 
ability to deal with the notions of necessity, possibility, eventuality, etc.. Logics have been equipped 
with model checkers to prove satisfiability of formulae and thus systems properties: a system is 
considered as a potential model for the formula expressing the desired property. Actually, very interesting 

logics like CTL and CTL* which require formulating properties of systems in terms of their states, have 
been put forward [BCG88, EH86, ES89]; also, sophisticated and efficient model checkers have been 
developed for them [CES86]. 

Thus, the behavioural and logical approaches to system specification and verification can be seen 
as complementary; the fn'st is more fruitfully used to specify abstract properties while the second permits 
describing more naturally behavioural and structural properties of systems. It would be of great 
importance to have a uniform setting for reasoning with the support of the tools made available by both 
methods. Unfortunately, up to now the most successful representatives of the two approaches have been 
based on different semantic models which take a different standpoint for looking at specifications. State 
changes and state properties are the base for interpreting logical specifications. Actions causing state 
changes are the key for interpreting systems behaviours described via process algebras. The semantic 
models used in the two cases are Kripke Structures and Labelled Transition Systems, respectively. In the 

first kind of structures, states are labelled to describe how they are modified by the transitions, while in 

the second, transitions are labelled to describe the actions which cause state changes. Temporal and modal 

logics and the associated complexity issue have been thoroughly investigated in the setting of Kripke 

Structures while combinators for transition systems and the issue of behavioural equivalences have 

received more attention in the setting of Labelled Transition Systems. Due to the success of process 

algebras, other logics have been proposed (see e.g. [HM85, BGS88, Lar88, Sti89]) which are interpreted 
over LTS's and tools have been developed to support reasoning with them. However in this case either 
we have logics, like Hennessy-Milner logic [HM85], that are not sufficiently expressive or logics, Like the 

g-calcdus [Koz83], that require exponential time for model checking. 
A recent result from [DV90a] has brought the world of modal logic and process algebras closer. A 

new logic for process algebras has been defined which is very similar to CTL* but based on actions and 
interpreted over Labelled Transition Systems. This new logic, ACTL*, is the natural analogue of CTL* 

but contains relativized modalities like Xar p - to be read "the next transition is labelled by action a and the 

remaining path satisfies qr as demanded by the interpretation model. Like it has been done for CTL*, a 

purely branching time subset of ACTL*, called ACTL, has been introduced; it is more expressive than 
Hennessy-Miiner Logic and can describe safety and liveness properties [DV90b]. 

The question is now whether it is possible to have an efficient model checker for ACTL. We show 
how to use existing model checkers for CTL also to check validity of ACTL formulae. This is done by 
means of two translation functions, one from ACTL to CTL formulae, the other from Labelled Transition 
Systems to Kripke Structures. Both translations are linear; this, coupled with the linear algorithm used by 
the EMC [CES86], guarantees linear model checking. 

Indeed, by relying on the translation functions, we define a verification environment that permits 
both to verify equivalences on systems described by means of a process algebra and properties of such 
systems expressed in ACTL. The environment consists of two existing tools, AUTO [dSV90] and EMC 
model checker [CES86], and of two modules, the model translator and the logic translator, performing 
the necessary translations. AUTO builds the labelled transition systems corresponding to process algebra 
terms and permits minimizing and checking equivalences of transition systems. The model translator 
transforms the transition systems built by AUTO into Kripke structures. The latter are used as models to 
verify, via EMC model checker, satisfiability of ACTL formulae which have been translated into CTL by 
the logic translator. 
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The rest of  the paper is organized as follows. In the next section, the relevant definitions of the 

used logics are summarized. Section 3, the core of  the paper, contains the description of  our verification 
environment. In Section 4, a specification and verification example is presented to give a flavour of  the 

potentiality of the verification environment. 

2. A C T L :  A n  a c t i o n  b a s e d  v e r s i o n  o f  C T L  

In this section we present the logic CTL [EH86] whose interpretation domains are Kripke 

Structures and the logic ACTL proposed in [DV90b], based on actions rather than states, whose 

interpretation domains are Labelled Transition Systems. 

A Kripke Structure (or KS) is a 4-tuple K = (S, AP, L,  ---*) where: 

�9 S is a set of  states; 

�9 AP is a finite, nonempty set of  atomic proposition names ranged over by p, q, ...; 

�9 L :  S --~ 2 AP is a function that labels each state with a set of atomic propositions true in that state; 

�9 ---~S• is the transition relation; an element (r, s)r ~ is called a transition and is written as r---~s. 

A Labelled Transition System (or LTS) is a structure A = (S, A, ---~) where: 

�9 S is a set of states; 

�9 A is a finite, non-empty set of act/ons; the silent action x is not in A; 

�9 ~ ~ S • (Av{x})  • S is the transition relation; an element (r,cx,s)~ ~ is called a transition, and is 

written as r-ct--~s. 

We let A x = Au{x) ;  A E = Au{e} ,  e �9 A x. Moreover, we let r, s . . . .  range over states; a, b . . . .  over A; 

r 13 . . . .  over Ax and k .. . .  over Ae. 

Let us now introduce the notion of paths and runs over a LTS, A = (S, A, -~): 

�9 A sequence (s0,(z0,sl) (Sl ,al ,s2) . . .  r _~oo is called apath from so; a path that cannot be extended, 

i.e. is infinite or ends in a state without outgoing transitions, is called afuUpath; 

�9 a run from s r S is a pair p = (s,~), where 7r is a path from s; we write first(p) = s and path(p) = ~; 

if  7r is finite then last(p) denotes the last state of ~; a maximal run is a run whose second element is a 

fuUpath; 

�9 concatenation of  runs is denoted by juxtaposition: "q = p0; it is only defined if p is finite and 

last(p)=first(0). When ~q = p0 we say that 0 is a suffix of  TI; it is a proper suffix if p ~ E. 

We write run(s) for the set of runs from s and let 7r . . . .  range over paths and p, a,  1"1 ... over runs. 

The notation for runs that we have introduced for LTS's carries over to Kripke Structures K = (S, AP, 

L, -*) in the obvious way. The only difference is that transitions are no longer triples but pairs. 

CTL is a language of  state formulae interpreted over Kripke Structures and it is just a subset of 

CTL* [EH86]; CTL* combines linear and branching time operators; its syntax is given in terms of path 

formulae that are interpreted over full paths and state formulae that are true or false of a state. CTL is the 

branching time subset of  CTL* in which every linear time operator is immediately preceded by a path 

quantifier; it is defined as the set of state formulae ~0 given by the following grammar, where yranges on 

path formulae and p ranges on AP: 
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q) ::= p l ~ q )  l ( p ^ c p l 3 y I V y  

T ::= X(plq)U(p 

We write t rue for ~(p0A-,p0 ) where P0 is some arbitrarily chosen atomic proposition name. 

As usual, a set of logic operators and modalities can be derived from the basic ones: false, q) v 

cO' (or), (p =~ tO' (implies), FrO (eventually), G~p (always) [EH86]. 

Let g.  = (S, AP, L,  -~) be a Kripke Structure. We give below a maximal interpretation of CTL 

formulae, that is we suppose that all maximal runs in Y,, have infinite length. Satisfaction of a CTL 

formula q) (~) by a state s (run p), notation s ~ r or just s ~ cp (p g~ T, or p D y), is defined inductively 

by: 

s ~ p  iff 

s ~ - - ~  iff 

S ~ (~^(p' iff 

s ~ 3u  iff 

s ~ VT iff 

p ~ (pUq)' iff 

p ~ X(p iff 

p r L(s); 

s g(p; 

s ~ p  and s ~cp'; 

there exists a run 0 r run(s) such that 0 ~ y;, 

for all runs 0 r run(s) 0 ~ T, 

there exists a suffix 0 of p such that first(O) ~ r and for all suffixes 

11 of p, which have 0 as proper suffix: first(Q) ~ (p; 

there exist s, s', 0 such that p = (s, (s, s'))O and s' ~ (p. 

In order to define the logic ACTL, in [DV90b], a tiny auxiliary logic of actions is introduced. 

The collection Afor of action formulae over A is defined by the following grammar where X, X', range 
over action formulae, and a~ A: 

X ::= a I "~X I EAX' 

We write t rue for -~(aoA~aO), where a 0 is some arbitrarily chosen action, and false for ~ true. 

The satisfaction of an action formula X by an action a, notation a ~ X, is defined inductively by: 

a ~ b  fff a = b ;  

a ~ ~X iff a g X; 

a ~X^X' iff a ~ x  and a ~X'. 

The syntax of the logic ACTL, a subset of ACTL*, is defined by the state formulae generated by 

the following grammar, where (p, (p', ... range over state-formulae, T over path formulae and X and X' 
are action formulae: 

~p : : :  true I -~(p I (p^(p' I :~ '  I Vy 

We give below the satisfaction relation for ACTL formulae; as above we assume a maximal interpretation, 
that is, we suppose all maximal runs in the LTS are infinite in length. 

Let ,A = (S, A, -~) be a LTS. Satisfaction of an ACTL-formula (p (T) by a state s (run p), notation s ~A 

q) or just s D q) (p ~A T, or p ~ T), is given inductively by: 
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s ~ t rue 

s ~ - - O  
s ~ r 
s ~3y 
s ~ V y  
p ~ ~p xUx'qr 

p J= ~p zUcp' 

p ~ Xxq~ 
p ~x~o 

always; 
i f f  s ~ (p; 

i f f  s ~ ~o and s ~ ~p'; 

iff there exists a run O ~ run(s) such that O ~ y, 
iff for all runs 0 ~ run(s) 0 ~ y, 

iff there exists 0 = (s,(s,a,s'))0', suffix of p, s.t. s' ~ q~', a ~ Z', s ~ q) 
and for all 11 = (r,(r,[3,r'))~', suffixes of p, which have 0 as proper 
suffix, we have r ~ ~ and ( [3~ ~ or I~ = x ); 

iff there exists a suffix 0 of p s. t. first(0) ~ q~' and for all 11 = (r,(r,l~,r'))~' 
which have 0 as proper suffix we have r ~ q~ and ( ~3 ~ Z or ~3 = ~ ); 

iff p = (s,(s,a,s'))O and s' ~ r and a ~ Z; 
iff p = (s,(s,z,s'))O and s' ~ r 

As usual, derived modalities such as false, r v (p', r ~ ~', F~,  Gcp are introduced. Other derived 

modalities similar to those of Hennessy-Milner logic with until defined in [DV9Oa] are: 

q) <a> r for 3 (~  falseUa q~'), 
<E>~' for 3(cp false U (p'), 

<k> (p for t rue  <k> ~, 
[k] ~0 for -~ <k>--~qx 

The indexed next modalities Xgq), Xz( p say that in the next state of the run, reached respectively with an 

action in Z or with a x, the formula r holds. 

In [DVg0b] it has been proved that every formula in ACTL can be translated in one of CTL. In 
order to define the mapping I)t between them, they need to introduce a corresponding translation tn l ;  
between their models, that is Labelled Transition Systems and Kripke Structures. In the next section the 
complete definition of the translation functions tr t t  and Dt is given; these are variants of the original ones 
ks  a n d k s ' .  

3.  T h e  V e r i f i c a t i o n  T o o l  

To obtain a general verification environment which enables the user to verify both bisimulation 

based equivalences and ACTL properties of terms of a process algebras, we have chosen to integrate two 
tools: AUTO [dSV90] and EMC [CES86]. AUTO is able to generate a Labelled Transition System from a 
CCS [Mi189] or Meije [AB84] specification and permits verification of bisimulation based equivalences 
and minimization of states. EMC permits to verify the validity of a CTL formula over a Kripke Structure. 

Indeed, to perform the check of an ACTL formula r on a Labelled Transition System M, the following 
steps are needed: 
I) Input M and cp; 
2) Translate M into the corresponding Kripke SmJcture M'; 

3) Translate r into the corresponding CTL formula 9'; 
4) Perform the Model Checking of r on M'. 

The architecture of our environment is summarized by the picture below: 
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LTS 

Results 

3.1. Generating the Labelled Transition System 

To build the Labelled Transition System corresponding to a term we use AUTO. It must be said 

that the actual construction phase starts only if a finiteness test is passed. Indeed, some terms might lead 

to generating an infinite number of states and AUTO; before starting the actual construction of the LTS, 

takes advantage of the sufficient conditions for finiteness #oven in [MV90]. 

The LTS provided by AUTO can be written in a number of different formats; one of these is 

called format commun; it has been proposed as standard format for representing automata. 

3.2. The Model Translator 

The Model Translator transforms the LTS produced by AUTO into a suitable input for the EMC, 

i.e. a Kripke Structure. In order to provide this functionality we have implemented the T1 algorithm #oven 

below. 
Given a Labelled Transition System the corresponding Kripke Structure is obtained by splitting 

the transitions labelled by visible actions and creating a new state for each of them, labelled by the label of 
the original transition; the generated system has almost the same structure of the original one. In the 
picture below, the translations of an observable and of an unobservable transition are shown: 

ix} {a} {• 

{-} {• 

LTS KS 

T I  (From LTS" s to KS's) 

Let A = (S, A,--c) be a LTS, S d the subset of states of S without successors, and .l_ be a fresh symbol 

not in A. The KS, t n t ( A ) ,  is defined as (S', AP, L, --~') where: 

�9 S' = S u {(r,a,s) I a~ A and r - a - r  s} u N, with N = {sf} if Sd# { } and N = { } otherwise; 
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�9 A P = A  u [.L}; 

�9 --->' = {(r,s) I r-x--> s} u {(r,(r,a,s)) I r-a---> s} u {((r,a,s),s) I r -a--> s} u T, 

with T- -  [(t, sf)I t e Sd} u[(sf ,  sf)} if Sd~{ } and T = {} otherwise; 

�9 Forr ,  s e S a n d a a  A : L ( s ) =  {.L}, L((r,a,s)) = {a} 

�9 L(sf) = {d-}. 

Note that the translation produces a Kripke Structure with a larger number of states; new states 

are labelled with the same label of the corresponding transition while old ones are labelled with afresh 

symbol, _1_, which can be interpreted as: no visible actions occurred. To comply with maximal 

interpretation of ACTL formulae, we have added an additional step to the original translation in [DV90b]: 

if there exist finite maximal runs in the LTS then in the corresponding KS a self looping new state sf is 

created, labelled by .L and f'mite paths are extended to relate deadlocked states with sf. 

The size of the sets of states and transitions of the Kripke Structure produced by the above algorithm is 

given by the following formulae, where n = ISI, d = ISdl, m = I-->l, and u is the number of unobservable 

transitions in --~: 
iS, l = ~ n + m - u  i f d = 0  and I--$1= f 2 m - u  i f d = 0  

1 n + m - u + l  ifd;~O 1 2 m - u + l  +d ifd ;~0 

3 . 3 .  T h e  L o g i c - T r a n s l a t o r  

This module transforms an ACTL formula into a suitable input formula for the EMC, i.e. a CTL 

formula. This translation step has been implemented by parsing the ACTL formula before presenting it to 

EMC; once an A C r L  formula is parsed, its translation into CTL is given according to the following ~t 

function. We have modified the original function presented in [DV90b] in order to take into account 

quantifications over linear time operators. 

T2 (From ACTL to CTL) 

The mapping [,t: ACTL -~ CTL is inductively defined by: 

�9 l t ( t r u e )  = 

�9 l t ( - ~ )  = 

�9 I t ( ~ A ~ ' )  = 

�9 I t (3 (~  xUx, ~')) = 

�9 ~t(3(~ xu ~,)) = 

�9 lt(3X~p) = 

�9 lt(V(q~ zUz,  qf)) = 

�9 lt(V(~o zU ~')) = 

�9 lt(VXx~ ) = 

�9 ~ t ~ v x ~ )  = 

t r u e ,  

-~ I t ( ~ ) ,  

I t ( ~ )  A I t ( ~ ' ) ,  

3(((• A It(~0)) v ( - d  AZ)) U ((-d_ A Z') A 3X(•  A It(~')))), 

( I  ^ l t(~'))  V 3( ( ( I  A It(~)) V (-~L AZ)) U ( I  A It(~'))),  

3X(-~• ^ ~ ^ 3X(It(~0))), 

• A 3X(• A It(~0)), 

V(((• A l t (~))  V (-~• A~)) U ( ( - ~  ^ X') A VX(• A It(~')))), 

(• ^ It(~')) V V(((• ^ It(~)) v ( -~.  AZ)) U (• ^ It(~'))),  

VX(-~• A ~ A VX(It(~))), 

• A VX(• ^ It(~)). 
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The key result about [g is that it preserves truth, that is if ~1. is a LTS and q~ is an ACTL-formula then 

A ~ p  if and only if mt(A)~s An interesting property of the T2 algorithm is that the size of s is 

linear in the size of ~p. 

Proposition: Let A an LTS, g the corresponding KS obtained by means of algorithm T1, and s~ S; 

then s ~A q~ if and only if s gg lt(tp). 

Sketch of the t~roof: 

This proof is made by induction on the length of the ACTL formulae. We show for every formula tp that 

sgA9 implies s l~l t (9)  and sl=At p implies sgglt(9). 

Note that in the construction of m r ( A )  to every state in S there corresponds a state in S' with the same 

name; moreover, oaly states corresponding to existing ones are labeUed with .I.. New states in m r ( A )  are 

labelled with the action associated to the corresponding transition; then, if the label of the transition 

satisfies a given action formula g we have that the corresponding state satisfies the CTL formula g. We 

refer the interested reader to the forthcoming version of the paper. 

3.4. Model Checking 

The output of the Model Translation phase is given as input to EMC. The ACTL expressions to 
be verified can be given as input to the EMC prompt; any time an ACTL formula is given, EMC calls the 
Logic Translator providing the corresponding CTL formula; then EMC checks the CTL formula on the 
Kripke Structure, giving as result true or false. 

It is not difficult to see that we can perform model checking for ACTL with time complexity 
O((ISl+l-->l) x 191). Indeed, if we let A be a finite LTS, s be a state of A and q~ be an ACTL formula, in 
order to determine whether s ~,t tp it suffices to check whether s g g s162 We can compute trig(A) in 
O(ISl+l-->l)-time and the number of states and transitions of m r ( A )  will be of order ISl+l-->l. The formula 
s can be computed in O(191)-time and its size will be of order 19t. Model checking of formula t# on A 
with the algorithm for CTL of [CES86] can be therefore performed in O((ISl+l--fl) • Itpl)-time. 

4. The Crossing example 

We present now an example starting from the CCS specification in [BS90], in which a road 
crossing a railway is specified. This crossing is such that the barriers on the road are usually kept down 
and lifted when a car approaches and tries to Cross; the traffic lights on the railway are usually red and 
turn green when a train approaches and tries to cross. In the CCS-Meije specification below the actions 
'train' and 'car' represent respectively the action of a train and a car approaching, 'tcross' and 'ccross' the 
passage of a train and the passage of a car. The process Semaphore controls the barriers and the traffic 
lights. The notation a? represents the complementary action of a. 

let rec {Rail = train: green: tcross: red?: Rail} in Rail; 
let rec {Road -- car: up: ccross: down?: Road} in Road; 

let rec { Semaphore = geen?: red: Semaphore + up?: down: Semaphore } in Semaphore; 
let rec { Crossing = (Road//Rail//Semaphore)\green~red~p~lown } in Crossing; 

Our aim is checking wether the process Crossing satisfies the safety property (mutual exclusion): 
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it never happens that both a car and a train are able to cross, and the following liveness property 
(fairness): 

whenever a train (a car) approaches, it eventually crosses. 

To express mutual exclusion, we need describing by means of an ACTL formula that whenever a car can 
cross then trains cannot cross until the car does it and viceversa: 

VO(('/X~,~true->V(true . ~ U c a o ~  true))^ (3X~true ->V(true ._~mssUtavss true))) (1) 

We can express the liveness property with the following ACTL formula: 

VO(([train] V(~e ._,ranOtc~s true)) ̂ ([car] V(Cue _,carU, mss true))) (2) 

Below we show the LTS produced by AUTO and the Kripke Structure resulting from the Model 

Translation phase. 

Figure 1: the LTS for Crossing 

'T T 
~ o. 

[c .j .....  ,.Tn i 
fresh fresh 

Figure 2: the Kripke Structure in the EMC format. 

After the Logic Translation phase, the EMC can be used to check whether the formulae (1) and (2) hold on 
the Kripke Slructure. The result of the model checking phase is that the level crossing does not enjoy the 

liveness property (2), while it does enjoy the safety property (1). 
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5. Conclusions 

We have presented a uniform environment for the verification of logical and behavioural 
properties of Process Def'mition Languages; both classes of properties are interpreted over a single model, 
namely Labelled Transition Systems. The verification environment is the result of the integration of two 
existing tools, the EMC model checker [CES86] and AUTO [dSV90], by means of two translation 
functions from Labelled Transition Systems to Kripke Structures, and from the logic ACTL to the logic 
CTL. A work similar to ours in this respect is presented in [JKP90]. These authors use CTL as a logic 
for Labelled Transition Systems but substantially change the satisfaction relation; they have a relativized 

satisfaction relation <a, s> ~ 9 instead of the relativized modality X a q~. The expressive power of the two 

languages is similar, but the satisfaction relation used here is more immediate. Besides, they do not 
consider invisible actions and we have not yet seen a generalization of their approach to systems with 
silent steps in a way that would preserve some behavioural equivalence. 

We see our tool as an experiment and as a means of assessing the expressivity of the action logic, 
if it proves fruitful then we would certainly write a direct model checker for ACTL. 

In this way we could implement the useful "counterexample" facility provided by EMC: if a 
formula does not hold in the model, EMC looks for a path in the model which falsifies the given formula. 
We have considered the possibility of importing this functionality in our framework, but it is not an easy 
task to reinterprete all the CTL formulae provided by the EMC counterexample facility as ACTL ones. 
The effort needed to reverse both the logic and the transition system translators appears not smaller than 
that needed to build a new model checker for ACTL from the scratch. 
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