
An action based framework for verifying logical and
behavioural properties of concurrent systems

R. De Nicola ~r A. Fantechi ~', S. Gnesi r G. Ristori o
.~ Universita La Sapienza Roma

r I.E.I. - C.N.R. Pisa
C.P.R. Pisa

A b s t r a c t
A system is described which supports proofs of both behavioural and logical properties of

concurrent systems; these are specified by means of a process algebra and its associated logics. The logic
is an action based version of the branching time logic CTL which we call ACTL; it is interpreted over
transition labelled structures while CTL is interpreted over state labelled ones. The core of the system are
two existing tools, AUTO and EMC. The f'wst builds the labelled transition system corresponding to a
term of a process algebra and permits proof of equivalence and simplification of terms, while the second
chocks validity of CTL logical formulae. The integration is realized by memos of two translation functions
from the action based branching time logic ACTL to CTL and from transition-labelled to state-labelled
structures. The correctness of the integration is guaranteed by the proof that the two functions when
coupled preserve satisfiability of logical formulae.

1. Introduction

Process algebras UMi189, Bwg0, Hoa85, Hen88] are generally recognized as a convenient tool for
describing concurrent systems at different levels of abstraction. They rely on a small set of basic
operators which correspond to primitive notions of concurrent systems and on one or more notions of
behavioural equivalence or preorder. The operators are used to build complex systems from more
elementary ones. The behavioural equivalences are used to study the relationships between different

descriptions (e.g. specification and implementation) of the same system at different levels of abstractions

and thus to perform part of the analysis.
In this paper we want to propose a general framework for verifying properties of any process

algebra by relying on the fact that they all have a single underlying model: Labelled Transition Systems.
There are already a few verification environments in which properties of concurrent systems

specified by means of process algebras can be proved [CPS90, GLZ89, dSV90, BC89, Gsg0]. All of
them provide tools for verifying equivalences or preorders on process algebras specifications. This
equivalence-based approach to system verification has a major disadvantage: specifications, even at the
most abstract level, tend to be too concrete; they are, anyway, descriptions of system behaviours even

when it is assumed that some of the actual actions are invisible.

Logic is a good candidate to provide more abstract specifications; it permits describing systems
properties rather than systems behaviours. Indeed, different types of temporal and modal logics have been

proposed for the abstract specification of concurrent systems; in particular, modal and temporal logics

Note: The research has been partially supported by the CEC under ESPRIT project 2304 LOTOSPHERE and
EBRA project 3011 CEDISYS and by "Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo ~ of CNR.

38

have been recognized as suitable for specifying system properties [EH86, HM85, MP89] due to their
ability to deal with the notions of necessity, possibility, eventuality, etc.. Logics have been equipped
with model checkers to prove satisfiability of formulae and thus systems properties: a system is
considered as a potential model for the formula expressing the desired property. Actually, very interesting

logics like CTL and CTL* which require formulating properties of systems in terms of their states, have
been put forward [BCG88, EH86, ES89]; also, sophisticated and efficient model checkers have been
developed for them [CES86].

Thus, the behavioural and logical approaches to system specification and verification can be seen
as complementary; the fn'st is more fruitfully used to specify abstract properties while the second permits
describing more naturally behavioural and structural properties of systems. It would be of great
importance to have a uniform setting for reasoning with the support of the tools made available by both
methods. Unfortunately, up to now the most successful representatives of the two approaches have been
based on different semantic models which take a different standpoint for looking at specifications. State
changes and state properties are the base for interpreting logical specifications. Actions causing state
changes are the key for interpreting systems behaviours described via process algebras. The semantic
models used in the two cases are Kripke Structures and Labelled Transition Systems, respectively. In the

first kind of structures, states are labelled to describe how they are modified by the transitions, while in

the second, transitions are labelled to describe the actions which cause state changes. Temporal and modal

logics and the associated complexity issue have been thoroughly investigated in the setting of Kripke

Structures while combinators for transition systems and the issue of behavioural equivalences have

received more attention in the setting of Labelled Transition Systems. Due to the success of process

algebras, other logics have been proposed (see e.g. [HM85, BGS88, Lar88, Sti89]) which are interpreted
over LTS's and tools have been developed to support reasoning with them. However in this case either
we have logics, like Hennessy-Milner logic [HM85], that are not sufficiently expressive or logics, Like the

g-calcdus [Koz83], that require exponential time for model checking.
A recent result from [DV90a] has brought the world of modal logic and process algebras closer. A

new logic for process algebras has been defined which is very similar to CTL* but based on actions and
interpreted over Labelled Transition Systems. This new logic, ACTL*, is the natural analogue of CTL*

but contains relativized modalities like Xar p - to be read "the next transition is labelled by action a and the

remaining path satisfies qr as demanded by the interpretation model. Like it has been done for CTL*, a

purely branching time subset of ACTL*, called ACTL, has been introduced; it is more expressive than
Hennessy-Miiner Logic and can describe safety and liveness properties [DV90b].

The question is now whether it is possible to have an efficient model checker for ACTL. We show
how to use existing model checkers for CTL also to check validity of ACTL formulae. This is done by
means of two translation functions, one from ACTL to CTL formulae, the other from Labelled Transition
Systems to Kripke Structures. Both translations are linear; this, coupled with the linear algorithm used by
the EMC [CES86], guarantees linear model checking.

Indeed, by relying on the translation functions, we define a verification environment that permits
both to verify equivalences on systems described by means of a process algebra and properties of such
systems expressed in ACTL. The environment consists of two existing tools, AUTO [dSV90] and EMC
model checker [CES86], and of two modules, the model translator and the logic translator, performing
the necessary translations. AUTO builds the labelled transition systems corresponding to process algebra
terms and permits minimizing and checking equivalences of transition systems. The model translator
transforms the transition systems built by AUTO into Kripke structures. The latter are used as models to
verify, via EMC model checker, satisfiability of ACTL formulae which have been translated into CTL by
the logic translator.

39

The rest of the paper is organized as follows. In the next section, the relevant definitions of the

used logics are summarized. Section 3, the core of the paper, contains the description of our verification
environment. In Section 4, a specification and verification example is presented to give a flavour of the

potentiality of the verification environment.

2. A C T L : A n a c t i o n b a s e d v e r s i o n o f C T L

In this section we present the logic CTL [EH86] whose interpretation domains are Kripke

Structures and the logic ACTL proposed in [DV90b], based on actions rather than states, whose

interpretation domains are Labelled Transition Systems.

A Kripke Structure (or KS) is a 4-tuple K = (S, AP, L, ---*) where:

�9 S is a set of states;

�9 AP is a finite, nonempty set of atomic proposition names ranged over by p, q, ...;

�9 L : S --~ 2 AP is a function that labels each state with a set of atomic propositions true in that state;

�9 ---~S• is the transition relation; an element (r, s)r ~ is called a transition and is written as r---~s.

A Labelled Transition System (or LTS) is a structure A = (S, A, ---~) where:

�9 S is a set of states;

�9 A is a finite, non-empty set of act/ons; the silent action x is not in A;

�9 ~ ~ S • (Av{x}) • S is the transition relation; an element (r,cx,s)~ ~ is called a transition, and is

written as r-ct--~s.

We let A x = Au{x) ; A E = Au{e} , e �9 A x. Moreover, we let r, s range over states; a, b over A;

r 13 over Ax and k over Ae.

Let us now introduce the notion of paths and runs over a LTS, A = (S, A, -~):

�9 A sequence (s0,(z0,sl) (Sl ,al ,s2) . . . r _~oo is called apath from so; a path that cannot be extended,

i.e. is infinite or ends in a state without outgoing transitions, is called afuUpath;

�9 a run from s r S is a pair p = (s,~), where 7r is a path from s; we write first(p) = s and path(p) = ~;

if 7r is finite then last(p) denotes the last state of ~; a maximal run is a run whose second element is a

fuUpath;

�9 concatenation of runs is denoted by juxtaposition: "q = p0; it is only defined if p is finite and

last(p)=first(0). When ~q = p0 we say that 0 is a suffix of TI; it is a proper suffix if p ~ E.

We write run(s) for the set of runs from s and let 7r range over paths and p, a, 1"1 ... over runs.

The notation for runs that we have introduced for LTS's carries over to Kripke Structures K = (S, AP,

L, -*) in the obvious way. The only difference is that transitions are no longer triples but pairs.

CTL is a language of state formulae interpreted over Kripke Structures and it is just a subset of

CTL* [EH86]; CTL* combines linear and branching time operators; its syntax is given in terms of path

formulae that are interpreted over full paths and state formulae that are true or false of a state. CTL is the

branching time subset of CTL* in which every linear time operator is immediately preceded by a path

quantifier; it is defined as the set of state formulae ~0 given by the following grammar, where yranges on

path formulae and p ranges on AP:

40

q) ::= p l ~ q) l (p ^ c p l 3 y I V y

T ::= X(plq)U(p

We write t rue for ~(p0A-,p0) where P0 is some arbitrarily chosen atomic proposition name.

As usual, a set of logic operators and modalities can be derived from the basic ones: false, q) v

cO' (or), (p =~ tO' (implies), FrO (eventually), G~p (always) [EH86].

Let g. = (S, AP, L, -~) be a Kripke Structure. We give below a maximal interpretation of CTL

formulae, that is we suppose that all maximal runs in Y,, have infinite length. Satisfaction of a CTL

formula q) (~) by a state s (run p), notation s ~ r or just s ~ cp (p g~ T, or p D y), is defined inductively

by:

s ~ p iff

s ~ - - ~ iff

S ~ (~^(p' iff

s ~ 3u iff

s ~ VT iff

p ~ (pUq)' iff

p ~ X(p iff

p r L(s);

s g(p;

s ~ p and s ~cp';

there exists a run 0 r run(s) such that 0 ~ y;,

for all runs 0 r run(s) 0 ~ T,

there exists a suffix 0 of p such that first(O) ~ r and for all suffixes

11 of p, which have 0 as proper suffix: first(Q) ~ (p;

there exist s, s', 0 such that p = (s, (s, s'))O and s' ~ (p.

In order to define the logic ACTL, in [DV90b], a tiny auxiliary logic of actions is introduced.

The collection Afor of action formulae over A is defined by the following grammar where X, X', range
over action formulae, and a~ A:

X ::= a I "~X I EAX'

We write t rue for -~(aoA~aO), where a 0 is some arbitrarily chosen action, and false for ~ true.

The satisfaction of an action formula X by an action a, notation a ~ X, is defined inductively by:

a ~ b fff a = b ;

a ~ ~X iff a g X;

a ~X^X' iff a ~ x and a ~X'.

The syntax of the logic ACTL, a subset of ACTL*, is defined by the state formulae generated by

the following grammar, where (p, (p', ... range over state-formulae, T over path formulae and X and X'
are action formulae:

~p : : : true I -~(p I (p^(p' I :~ ' I Vy

We give below the satisfaction relation for ACTL formulae; as above we assume a maximal interpretation,
that is, we suppose all maximal runs in the LTS are infinite in length.

Let ,A = (S, A, -~) be a LTS. Satisfaction of an ACTL-formula (p (T) by a state s (run p), notation s ~A

q) or just s D q) (p ~A T, or p ~ T), is given inductively by:

41

s ~ t rue

s ~ - - O
s ~ r
s ~3y
s ~ V y
p ~ ~p xUx'qr

p J= ~p zUcp'

p ~ Xxq~
p ~x~o

always;
i f f s ~ (p;

i f f s ~ ~o and s ~ ~p';

iff there exists a run O ~ run(s) such that O ~ y,
iff for all runs 0 ~ run(s) 0 ~ y,

iff there exists 0 = (s,(s,a,s'))0', suffix of p, s.t. s' ~ q~', a ~ Z', s ~ q)
and for all 11 = (r,(r,[3,r'))~', suffixes of p, which have 0 as proper
suffix, we have r ~ ~ and ([3~ ~ or I~ = x);

iff there exists a suffix 0 of p s. t. first(0) ~ q~' and for all 11 = (r,(r,l~,r'))~'
which have 0 as proper suffix we have r ~ q~ and (~3 ~ Z or ~3 = ~);

iff p = (s,(s,a,s'))O and s' ~ r and a ~ Z;
iff p = (s,(s,z,s'))O and s' ~ r

As usual, derived modalities such as false, r v (p', r ~ ~', F~, Gcp are introduced. Other derived

modalities similar to those of Hennessy-Milner logic with until defined in [DV9Oa] are:

q) <a> r for 3 (~ falseUa q~'),
<E>~' for 3(cp false U (p'),

<k> (p for t rue <k> ~,
[k] ~0 for -~ <k>--~qx

The indexed next modalities Xgq), Xz(p say that in the next state of the run, reached respectively with an

action in Z or with a x, the formula r holds.

In [DVg0b] it has been proved that every formula in ACTL can be translated in one of CTL. In
order to define the mapping I)t between them, they need to introduce a corresponding translation tn l ;
between their models, that is Labelled Transition Systems and Kripke Structures. In the next section the
complete definition of the translation functions tr t t and Dt is given; these are variants of the original ones
ks a n d k s ' .

3. T h e V e r i f i c a t i o n T o o l

To obtain a general verification environment which enables the user to verify both bisimulation

based equivalences and ACTL properties of terms of a process algebras, we have chosen to integrate two
tools: AUTO [dSV90] and EMC [CES86]. AUTO is able to generate a Labelled Transition System from a
CCS [Mi189] or Meije [AB84] specification and permits verification of bisimulation based equivalences
and minimization of states. EMC permits to verify the validity of a CTL formula over a Kripke Structure.

Indeed, to perform the check of an ACTL formula r on a Labelled Transition System M, the following
steps are needed:
I) Input M and cp;
2) Translate M into the corresponding Kripke SmJcture M';

3) Translate r into the corresponding CTL formula 9';
4) Perform the Model Checking of r on M'.

The architecture of our environment is summarized by the picture below:

42

.." I ~.&.qTh.Eo.~gLg .

Translator

H
4

~CTL Formula Model
Translator i

"

[] existing tools

Process

LTS

Results

3.1. Generating the Labelled Transition System

To build the Labelled Transition System corresponding to a term we use AUTO. It must be said

that the actual construction phase starts only if a finiteness test is passed. Indeed, some terms might lead

to generating an infinite number of states and AUTO; before starting the actual construction of the LTS,

takes advantage of the sufficient conditions for finiteness #oven in [MV90].

The LTS provided by AUTO can be written in a number of different formats; one of these is

called format commun; it has been proposed as standard format for representing automata.

3.2. The Model Translator

The Model Translator transforms the LTS produced by AUTO into a suitable input for the EMC,

i.e. a Kripke Structure. In order to provide this functionality we have implemented the T1 algorithm #oven

below.
Given a Labelled Transition System the corresponding Kripke Structure is obtained by splitting

the transitions labelled by visible actions and creating a new state for each of them, labelled by the label of
the original transition; the generated system has almost the same structure of the original one. In the
picture below, the translations of an observable and of an unobservable transition are shown:

ix} {a} {•

{-} {•

LTS KS

T I (From LTS" s to KS's)

Let A = (S, A,--c) be a LTS, S d the subset of states of S without successors, and .l_ be a fresh symbol

not in A. The KS, t n t (A) , is defined as (S', AP, L, --~') where:

�9 S' = S u {(r,a,s) I a~ A and r - a - r s} u N, with N = {sf} if Sd# { } and N = { } otherwise;

43

�9 A P = A u [.L};

�9 --->' = {(r,s) I r-x--> s} u {(r,(r,a,s)) I r-a---> s} u {((r,a,s),s) I r -a--> s} u T,

with T- - [(t, sf)I t e Sd} u[(sf , sf)} if Sd~{ } and T = {} otherwise;

�9 Forr , s e S a n d a a A : L (s) = {.L}, L((r,a,s)) = {a}

�9 L(sf) = {d-}.

Note that the translation produces a Kripke Structure with a larger number of states; new states

are labelled with the same label of the corresponding transition while old ones are labelled with afresh

symbol, _1_, which can be interpreted as: no visible actions occurred. To comply with maximal

interpretation of ACTL formulae, we have added an additional step to the original translation in [DV90b]:

if there exist finite maximal runs in the LTS then in the corresponding KS a self looping new state sf is

created, labelled by .L and f'mite paths are extended to relate deadlocked states with sf.

The size of the sets of states and transitions of the Kripke Structure produced by the above algorithm is

given by the following formulae, where n = ISI, d = ISdl, m = I-->l, and u is the number of unobservable

transitions in --~:
iS, l = ~ n + m - u i f d = 0 and I--$1= f 2 m - u i f d = 0

1 n + m - u + l ifd;~O 1 2 m - u + l +d ifd ;~0

3 . 3 . T h e L o g i c - T r a n s l a t o r

This module transforms an ACTL formula into a suitable input formula for the EMC, i.e. a CTL

formula. This translation step has been implemented by parsing the ACTL formula before presenting it to

EMC; once an A C r L formula is parsed, its translation into CTL is given according to the following ~t

function. We have modified the original function presented in [DV90b] in order to take into account

quantifications over linear time operators.

T2 (From ACTL to CTL)

The mapping [,t: ACTL -~ CTL is inductively defined by:

�9 l t (t r u e) =

�9 l t (- ~) =

�9 I t (~ A ~ ') =

�9 I t (3 (~ xUx, ~')) =

�9 ~t(3(~ xu ~,)) =

�9 lt(3X~p) =

�9 lt(V(q~ zUz, qf)) =

�9 lt(V(~o zU ~')) =

�9 lt(VXx~) =

�9 ~ t ~ v x ~) =

t r u e ,

-~ I t (~) ,

I t (~) A I t (~ ') ,

3(((• A It(~0)) v (- d AZ)) U ((-d_ A Z') A 3X(• A It(~')))),

(I ^ l t(~')) V 3(((I A It(~)) V (-~L AZ)) U (I A It(~'))),

3X(-~• ^ ~ ^ 3X(It(~0))),

• A 3X(• A It(~0)),

V(((• A l t (~)) V (-~• A~)) U ((- ~ ^ X') A VX(• A It(~')))),

(• ^ It(~')) V V(((• ^ It(~)) v (-~. AZ)) U (• ^ It(~'))),

VX(-~• A ~ A VX(It(~))),

• A VX(• ^ It(~)).

44

The key result about [g is that it preserves truth, that is if ~1. is a LTS and q~ is an ACTL-formula then

A ~ p if and only if mt(A)~s An interesting property of the T2 algorithm is that the size of s is

linear in the size of ~p.

Proposition: Let A an LTS, g the corresponding KS obtained by means of algorithm T1, and s~ S;

then s ~A q~ if and only if s gg lt(tp).

Sketch of the t~roof:

This proof is made by induction on the length of the ACTL formulae. We show for every formula tp that

sgA9 implies s l~l t (9) and sl=At p implies sgglt(9).

Note that in the construction of m r (A) to every state in S there corresponds a state in S' with the same

name; moreover, oaly states corresponding to existing ones are labeUed with .I.. New states in m r (A) are

labelled with the action associated to the corresponding transition; then, if the label of the transition

satisfies a given action formula g we have that the corresponding state satisfies the CTL formula g. We

refer the interested reader to the forthcoming version of the paper.

3.4. Model Checking

The output of the Model Translation phase is given as input to EMC. The ACTL expressions to
be verified can be given as input to the EMC prompt; any time an ACTL formula is given, EMC calls the
Logic Translator providing the corresponding CTL formula; then EMC checks the CTL formula on the
Kripke Structure, giving as result true or false.

It is not difficult to see that we can perform model checking for ACTL with time complexity
O((ISl+l-->l) x 191). Indeed, if we let A be a finite LTS, s be a state of A and q~ be an ACTL formula, in
order to determine whether s ~,t tp it suffices to check whether s g g s162 We can compute trig(A) in
O(ISl+l-->l)-time and the number of states and transitions of m r (A) will be of order ISl+l-->l. The formula
s can be computed in O(191)-time and its size will be of order 19t. Model checking of formula t# on A
with the algorithm for CTL of [CES86] can be therefore performed in O((ISl+l--fl) • Itpl)-time.

4. The Crossing example

We present now an example starting from the CCS specification in [BS90], in which a road
crossing a railway is specified. This crossing is such that the barriers on the road are usually kept down
and lifted when a car approaches and tries to Cross; the traffic lights on the railway are usually red and
turn green when a train approaches and tries to cross. In the CCS-Meije specification below the actions
'train' and 'car' represent respectively the action of a train and a car approaching, 'tcross' and 'ccross' the
passage of a train and the passage of a car. The process Semaphore controls the barriers and the traffic
lights. The notation a? represents the complementary action of a.

let rec {Rail = train: green: tcross: red?: Rail} in Rail;
let rec {Road -- car: up: ccross: down?: Road} in Road;

let rec { Semaphore = geen?: red: Semaphore + up?: down: Semaphore } in Semaphore;
let rec { Crossing = (Road//Rail//Semaphore)\green~red~p~lown } in Crossing;

Our aim is checking wether the process Crossing satisfies the safety property (mutual exclusion):

45

it never happens that both a car and a train are able to cross, and the following liveness property
(fairness):

whenever a train (a car) approaches, it eventually crosses.

To express mutual exclusion, we need describing by means of an ACTL formula that whenever a car can
cross then trains cannot cross until the car does it and viceversa:

VO(('/X~,~true->V(true . ~ U c a o ~ true))^ (3X~true ->V(true ._~mssUtavss true))) (1)

We can express the liveness property with the following ACTL formula:

VO(([train] V(~e ._,ranOtc~s true)) ̂ ([car] V(Cue _,carU, mss true))) (2)

Below we show the LTS produced by AUTO and the Kripke Structure resulting from the Model

Translation phase.

Figure 1: the LTS for Crossing

'T T
~ o.

[c .j ,.Tn i
fresh fresh

Figure 2: the Kripke Structure in the EMC format.

After the Logic Translation phase, the EMC can be used to check whether the formulae (1) and (2) hold on
the Kripke Slructure. The result of the model checking phase is that the level crossing does not enjoy the

liveness property (2), while it does enjoy the safety property (1).

46

5. Conclusions

We have presented a uniform environment for the verification of logical and behavioural
properties of Process Def'mition Languages; both classes of properties are interpreted over a single model,
namely Labelled Transition Systems. The verification environment is the result of the integration of two
existing tools, the EMC model checker [CES86] and AUTO [dSV90], by means of two translation
functions from Labelled Transition Systems to Kripke Structures, and from the logic ACTL to the logic
CTL. A work similar to ours in this respect is presented in [JKP90]. These authors use CTL as a logic
for Labelled Transition Systems but substantially change the satisfaction relation; they have a relativized

satisfaction relation <a, s> ~ 9 instead of the relativized modality X a q~. The expressive power of the two

languages is similar, but the satisfaction relation used here is more immediate. Besides, they do not
consider invisible actions and we have not yet seen a generalization of their approach to systems with
silent steps in a way that would preserve some behavioural equivalence.

We see our tool as an experiment and as a means of assessing the expressivity of the action logic,
if it proves fruitful then we would certainly write a direct model checker for ACTL.

In this way we could implement the useful "counterexample" facility provided by EMC: if a
formula does not hold in the model, EMC looks for a path in the model which falsifies the given formula.
We have considered the possibility of importing this functionality in our framework, but it is not an easy
task to reinterprete all the CTL formulae provided by the EMC counterexample facility as ACTL ones.
The effort needed to reverse both the logic and the transition system translators appears not smaller than
that needed to build a new model checker for ACTL from the scratch.

Acknowledgements
The first author would like to thank Frits Vaandrager for joint work and discussions on the topics of the

paper.

References

[AB84] D. Austry, G. Boudol: Alg~bre de Processus et Synchronization. Theoretical Computer Science,
30, (1) 1984, pp. 91-131

[BC89] T. Bolognesi, M. Caneve: Squiggles: a Tool for the Analysis of LOTOS Specifications, in
"Formal Description Techniques" (K. Turner, ed.), North-Holland, 1989.

[BCG88] M.C. Browne, E.M. Clarke, O. Grtimberg: Characterizing Finite Kripke Structures in
Propositional Temporal Logic. Theoretical Computer Science, 59 (1,2), 1988, pp. 115-131.

[BGS88] A. Boujjani, S. Graf, J. Sifakis: A Logic for the Description of Behaviours and Properties of
Concurrent Systems. In Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, (de Bakker, Let al., eds.) LNCS 354, Springer-Verlag, 1989, pp. 398-410.

[BS90] J. Bradfield, C. Stifling: Verifying Temporal Properties of Processes. in Concur 90(J. C. P.
Baeten, J. W. Klop, eds), LNCS 458, Springer-Verlag, 1990, pp. 115-125.

[BW90] J. C. M. Baeten, W. P. Weijland: Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18. Cambridge University Press, 1990.

[CES86] E.M. Clarke, E.A. Emerson, A.P. Sisfla: Automatic Verification of Finite State Concurrent
Systems using Temporal Logic Specifications. ACM Toplas, 8 (2), 1986, pp. 244-263.

47

[CPS90] R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench. In Automatic Verification
Methods for Finite State Systems (J. Sifakis, ed.) LNCS 407, Springer-Verlag, 1990, pp. 24-37.

[dSV90] R. de Simone, D. Vergamini: Aboard AUTO, I.N.R.I.A. Technical Report 111 (1990).

[DV90a] R. De Nicola, F. W. Vaandrager: Three Logics for Branching Bisimulations (Extended
Abstract) in LICS '90, IEEE Computer Society Press, 1990, pp. 118-129.

[DV90b] R. De Nicola, F. W. Vaandrager: Action versus State based Logics for Transition Systems. In
Semantics of Systems of Concurrent Processes (I. Guessarian,ed.), LNCS 469, 1990, pp. 407-419.

[EH86] E. A. Emerson, J. Y. Halpern: "Sometimes" and "Not Never" Revisited: on Branching Time
versus Linear Time Temporal Logic. Journal of ACM, 33, 1, 1986, pp. 151-178.

[ES89] E. A. Emerson, J. Srinivasan: Branching Time Temporal Logic. In Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, (de Bakker et al., eds.) LNCS 354,
Springer-Verlag, 1989, pp. 123-172.

[GLZ89] J. C. Godskesen, K. G. Larsen, M. Zeeberg: TAV Users Manual, Internal Report, Aalborg
University Center, Denmark, (1989).

[GS90] H. Garavel, J Sifakis: Compilation and Verification of LOTOS Specifications, in Protocol
Specification, Testing and Verification, X, (L. Logrippo et al., eds.) North Holland, 1990.

[Hen88] M. Hennessy" An Algebraic Theory of Processes, MIT Press, Cambridge, 1988.

[HM85] M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concurrency. Journal of
ACM, 32, 1985, pp. 137-161.

[Hoa85] C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall International, 1985.

[JKP90] B. Jonsson, A.H. Khan, J. Parrow: Implementing a model checking algorithm by adapting
existing automated tools. In Automatic Verification Methods for Finite State Systems (J. Sifakis,
ed.) LNCS 407, Springer-Verlag, 1990, pp. 179-188.

[Koz83] D. Kozen: Results on the Propositional It-calculus, Theoretical Computer Science, 27, 1983.

[Lar88] K. G. Larsen: Proof Systems for Hennessy-Milner Logic with Recursion, in Proceedings
CAAP '88 (M. Dauchet & M. Nivat eds) LNCS 299, Springer-Verlag, 1988.

[Mi189] R. Milner: Communication and Concurrency, Prentice Hall International, 1989.

[MP89] Z. Manna, A. Pnueli: The Anchored Version of the Temporal Framework, in Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, (de Bakker et al., eds.)
LNCS 354, Springer-Verlag, 1989.

[MV90] E. Madeleine, D. Vergamini: AUTO: A Verification Tool for Distributed Systems Using
Reduction of Finite Automata Networks, in Formal Description Techniques H (S.T. Vuong, ed.),
North-Holland, 1990.

[Sti89] C. Stirling: Temporal Logics for CCS, in Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, (de Bakker et. al., eds.) LNCS 354, Springer-Verlag, 1989,
pp. 660-672.

[vGW89] R. J. van Glabbeek, W. P. Weijland: Branching Time and Abstraction in Bisimulation
Semantics. In Information Processing '89 (G.X. Ritter, ed.), North Holland, 1989, pp. 613-618.

