
An Automata Theoretic Approach to Temporal Logic

Gjalt G. de Jong *

Eindhoven University of Technology
Department of Electrical Engineering

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Tel. +31 40 473345, Fax: +31 40 464527

Email: gjalt@es.ele.tue.nl

Abstract

A syntax directed mapping is presented from Propositional Temporal Logic (PTL) formu-
lae to Mailer type fni te automata. This is a direct and much more elegant and easier to
implement approach than previously described methods. Most of these methods are based
on tableau methods for satisfiability checking, and after that a Bachi type of automaton is
extracted. Bachi and Mallet automata are equally expressive. However, Mailer automata
have nicer properties than Biichi automata, for instance deterministic Mailer automata
are expressive as non-deterministic ones, while this is not true for Bachi automata. Also
deterministic Biichi automata are not closed under complement. This transformation is
the first step in a decision procedure, since the resulting Maller automaton represents the
models of the temporal logic formula, and on which further verification and analysis can
be performed.

1. Introduction

Temporal logic has proven to be a well suited formalism for program verification [1] as
well as hardware specification and verification [2, 3]. The theory of finite automata is also
very well-known and a very suitable formalism to describe and analyze systems in. Since
the semantics of temporal logic is based on a state transition graph, these two formalisms
can be linked together. It is shown in [4, 5] that propositional temporal logic is contained
in the class of to-regular expressions. This is based on a tableau kind decision procedure
from which then a Biichi automaton is extracted. From then on, papers have appeared to
show how certain properties, described as temporal logic formulae, can be stated as Biichi
automata, for instance [6, 7]. However, transformations from temporal logic formulae

* This research is part of the ASCIS project sponsored by the European Community under contract
BRA 3281.

478

onto Biichi automata all suffer from the drawback that deterministic Btichi automata are
not closed under complementation [8], which then gives a burden on the complexity [9].

This approach gives us alternative ways to check satisfiability and tautology, but also
allows us to mix freely temporal logic and state-transition based formalisms for
specification, verification [3] as well as manipulation.

This paper is organized as follows. First we will discuss temporal logic and give its
semantics. In the next chapter we will give a short overview of finite automata, and two
types of accepting conditions for automata accepting languages of infinitary-length words:
Btichi and Miiller acceptance condition. After that, we will present a syntax directed
transformation of temporal logic formulae onto Miiller automata, which describe the
models of the temporal logic formulae.

2. Tempora l Logic

Temporal logic is the natural extension of propositional logic to include time related infor-
mation. Whereas propositional logic can be said to express facts to be true or false at a
certain moment, or state, temporal logic allows one to express the relation between such
facts at several moments or states. Each state then announces particular atomic proposi-
tions to be true and others to be false. The language of propositional temporal logic (PTL)
may be regarded as a superset of the language of propositional logic adding the operators
[] (always), () (sometime), U (until) and O(next). Of intuitively means that f i s true in the
next state; [] f that f i s true in all future states; Of that f i s true in some future state; fUg
that f i s true for all states until g becomes valid in a state.

Formally, the semantics of a temporal logic formula (with a set P of propositional vari-
ables) is defined with respect to a triple M = (S , N , Pi), where S is a finite set of states,
N : S ~ S a total successor function giving for each state a unique next state and
Pi : S x P ~ { True, False } a truth-assignment giving a truth value to each propositional
variable in each state.

The truth of a PTL formula is inductively defined relative to a structure M and a state s by:

<M, s > l = p i f fpi(s ,p) = True, p ~ P

<M, s >1= ~ f iff not <M , s >1= f

<M, s > l = f v g i f f < M , s > l = f o r < M , s > l = g

<M, s>[= f a g i f f < M , s > l = f a n d < M , s>[= g

<M, s > l = O f i f f < M , N(s)>l= f (1)

479

<M, s>l= ()f iff i3L.o<M, Ni(s)>[= f

<M, s>l= C]f iff iVo<M, Ni(s)>l: f

<M, s > [: lUg iff i3_>o(<M, Ni(s)>l = g and

where Ni(s) denotes the i th successor of s.

V < M , NJ(s)>]= f) O~_j <i

An interpretation or model for a PTL formula consists of a structure M with a designated
set of states S, truth-assignment Pi, successor function N and an initial state So.

Because the set of states S is finite and the successor relation is a total function, any
infinite sequence of occurrences of states, may be represented in a finite way by a o~-
regular string over the alphabet S, i.e. it consists of a certain possible empty prefix
sequence followed by an endless repetition of a cycle of 1 or more states.

A PTL formula is satisfiable, i.e. can be made true, if we can find a model <M, so> such
that < M , s0> l= fho lds . If a formula is true in a model we also say that the model, or
sequence of states with associated truth-assignment satisfies the formula.

A formula is said to be valid, or is a tautology, iff it is true in every appropriate model,
notation: [= f. A formula that cannot be satisfied by any model is a contradiction. Two
formulas l a n d g are said to be equivalent, notated f = g, when [= (f o g) holds. Note
that a formula is unsatisfiable if and only if its negation is a tautology and conversely a
formula is valid iff its negation is unsatisfiable.

3. Finite Automata

A finite automaton M is a five tuple CL, Q, 5, I,F), where E is an alphabet of symbols, Q a
finite set of states, 5 a mapping QxE --> 2 Q that represent the state transitions labeled by a
symbol, I c Q a set of initial states and F c Q a set of final states. An automaton M accepts a
word w = ~l . . r (E Y~ *) whenever there exists a sequence qo ... qn (qi ~ Q) such that
q o E I, qi ~ 5(qi - 1, ffi) and qn ~ F. The language that an automaton M accepts is the set
of all words that are accepted by the automaton. The class of languages which can be
accepted by finite automata is the class of regular languages.

5 can be extended in the natural way to a mapping of QxY~ * ---> 2 Q. The symbol e ~ E
denotes the empty word. An automaton M is called deterministic, when it has only one ini-
tial state, and 5 is a mapping Q• ---> Q. Non-deterministic automata can be converted to
deterministic automata by the subset method [10].

Finite automata can also be used to accept the class of o-regular languages, which is a
class of languages consisting of infinitary-length words. A language is o-regular if it can
be written as UV r176 where U and V are regular languages. Two major types of finite

480

automata exist which are equally expressive, both able to recognize the class of o)-regular
languages: Mailer and Btichi automata. These automata differ only in their accepting con-
dition.

A Btichi automaton is a five tuple (]~, Q, 5 , / , F) as above. However, an infinitary length
word w is accepted by a Btichi automaton if INF(w) n F ;~ 0 , where INF(w) is defined
as the set of states that are 'visited' infinitely many times.

A MOiler automaton is a five tuple (]~, Q, 5, LA) with E, Q, 5 and I as before. But the
accepting condition is defined by A c 2 Q. A word w is accepted by a MOiler automaton if
INF(w) ~ A. More intuitively: if in the long run, a word stays in a particular subset of the
state space.

The class of Mtiller and Btichi automata is closed under union, intersection. Both types of
automata are also closed under the operation of prefixing with normal finite automata.
Only deterministic Mtiller automata are closed under complementation. These operations
are defined for Miiller automata as: (where fa i = (E, Qi, Si, Ii, Ai) and dfa is a deterministic
automaton.)

Union(fal,fa2) = (E, Q1 u Q2,51 u 52 , I 1 u I 2 , A1 u A 2)

Complementation(dfa) = (Z, Q, 5, I , 2 Q - A)

By DeMorgan, intersection, or product, is then also defined. But this may also be written
a s :

In tersec t ion (fa l , f a 2) = (~, , Q 1xQ2,5,11)</2, A 1xA2)
where (q i X q i , , (~ , q jXq j ,) E 5 if (qi , a , q j) E 51 and (qr , t~ , q j ,) ~ ~2.

Concatenation(fa l,fa 2) = (Y. , Q1 • Q2 , 51 ~) ~2 u 5fi , I 1 , A2),
where fa 1 is a normal finite automaton (Y~, Q 1 ,51 , F),

5fi = {(qfl , 8 , q i j) l q f i~ F 1 A q i j ~ 12}

and

These operations are similar in the case of Btichi automata, except for the complement
operation.

Determinization of Mtiller automata can also be done by the subset method, however it is
then necessary that there does not exist a path going out of an accepting component. So it
may be necessary to duplicate state sets, and its transitions. Duplication of an accepting set
A k ~ A is defined as:

M'=(E , Q', 8 ' , I , A ')
where

Q'= Q u {q'ilqi ~ Ak}
5 '=8L) {(qi, ~ , q~) I(qi, (Y, qj) ~ 5Aqi E A k Aqj ~ Ak}

(2)

481

u {(q'i , G , q~) l (qi , G , qj) ~ ~ ^ qi ~ Ak ^ qj ~ Ak}
A ' = {A'k} ,A 'k = {q'ilqi E Ak}

The accepting sets of the deterministic automaton after the subset method are:
A ' = { A k } , A k = {q ~ P (Q) I 3 A k ~ A : q c A k ;~ 0 }
Note that only those sets that are strongly connected contribute to accepting paths.

In Fig. 1 and Fig. 2 it is illustrated that duplication of states is indeed necessary.

(3)

b b

A = {{1}} A = {{<1>,<1,2>}}

Figure 1. Incorrect determinization with the subset method

b b

b

b

A ={{I'}} A = {{<1,2,1">}}

Figure 2, Determinization with the subset method after duplication of accepting sets

Theorem 1: Duplication of accepting sets of a MUller automaton M = (g , Q , 5 , I , A)
automaton results in an equivalent Mtiller automaton M' according to (2).

Proof: Since MUller automata are closed under union, let, without loss of generality, A =
{ a }. Let p be a run for an to-word accepted by M. Since there are no transitions removed,
every path in M also exists in M'. At some instant, p on M enters a (at state q o) and from
then on it will stay in a. The corresponding p' on M' also enters a (at the same state qo) on
M'. The next move on M will be from one state in a to a next state q 1 in a. M' can make
the corresponding move to state q'l in a', because for every move from a state qo ~ a
towards q 1 e a a transition is made from q o ~ a towards q I e a'. All subsequent moves
on M within a have corresponding moves on M' within a'. Thus L (M) c L (M').

482

The converse is analogous. Let p' be a run for an r accepted by M'. At some time,
p' moves on M' from a state qo~ta' to a state ql ~ a'. Because every transition towards a
state q' ~ a' on M' corresponds to a transition towards q ~ a on M, it is clear, that M can
enter its accepting set too. The only possible subsequent transitions on M' are all within a'
and because of the duplication, all these transitions have corresponding transitions within
a on M. Thus L (M')~L (M).

From Fig. 1 and Fig. 2 it is clear that the subset method does not result in a correct auto-
maton when transitions exist between states of accepting sets as defined in (3) and there
does not exist a corresponding transition, i.e. with the same label, within the original
accepting set. In the following it is proven that such transitions do not exist in the deter-
ministic automaton when all the accepting sets are duplicated according to (2).

Theorem 2: The subset method applied to a nondeterministic Miiller automaton
M = (X, Q, 5, I , A) with each accepting state set At duplicated according to (2) yields
an equivalent Mtiller automaton M' with A' according to (3).

Proof: We only need to show that no illegal transition exist, i.e. that no transitions exist
between accepting states if does not exist an corresponding transition within the accepting
set of the NFA after duplication.
Because Miiller automata are closed under union, let, without loss of generality,
M = (Z, Q, 5, I , A) be the NFA, where A is the singleton {a} which is the result of
duplication.
Let M' = (Z, Q', ~', F, A') the DFA, constructed via the subset-construction out of M.
Now take any (Q! , ~ , Q2) e ~', with Q1 ~ a' and Q2 ~ a'. Q1 is the 'super'state of M'
consisting of states in Q, which are all reachable in M from some state, by the same word.
If Q1 n a = O , then Q1 ~t A" and this implies a contradiction. Thus it follows
Qi n a ~ 0 . I f3qo ~ Q1 n a : 8(qo, G)~ ~ then of course Q2 E A' and the transition
is legal, because it has its corresponding transition within the accepting set of M. Else
Vqo~ Q l c h a : 8(q0,r = O . In that case, if V q a Q1 : 6 (q , ~) n a = O , then
Q2 ~ A', again a contradiction. Now take ql ~ Q1 and ql e ta and (q l , r q2) ~ 5,
with q2 e a. This implies, that this transition will occur in the accepting set a' of the DFA
M', while it was not in the accepting set a of the NFA M. However, the duplication
ensures, that the only transitions pointing towards a state q2 E a must come from a state
q 1 ~ a (contradiction) or else, an equivalent transition will exist within the accepting set,
i.e. 3q3 a a : (q3, r q2) e 5 and this q3 exists because it is the duplication o f q l . It also
follows from the duplication, that q 1 and q 3 are reachable from the initial states of M, by
the same word. That however would finally imply, that there is a corresponding transition
for (Q1, or, Q2) within the original accepting set a. This completes the proof, that there
can be no 'new' transition introduced in the accepting set of the DFA, when the duplica-
tion method is used, before the subset-construction.

It is proven that Biichi and Mtiller automata are equally expressive, since they both define
the class of to-regular languages [11]. It is also proven that deterministic and non-

483

deterministic Miiller automata are equally expressive, while deterministic Biichi automata
are less expressive [8]. Since also the complementation operation on Miiller automata is
much more efficient that on Btichi automata [9], we find the type Mtiller automata more
convenient for our purposes.

4. Temporal Logic to Miiller automata

For temporal logic, the above described types of automata are extended to be able to
model propositional logic formulae as the labels on the transitions, instead of symbols out
of an alphabet E. So a Mtiller type of automaton is then described by the five tuple:
(P , Q , 5 , I , A) with P the set of propositional variables, and 8 is a mapping
Q• --> 2 Q where PL is a propositional logic formula which can be seen as element of
2 p. All previous defined operations can be extended in the natural way on this type of
automaton. Note that in fact a boolean algebra on P is defined of which the conventional
type of transitions is a special case.

In fact, such an automaton can be seen as a compact representation of all the models
<M, s > with respect to which a PTL formula f i s defined. Only the states and transitions
have changed roles, because in a model for a PTL formula f each state has a set of propo-
sitions which are valid in that state. In our case, these sets of valid propositions are on the
transitions. But these two types of state transition graphs are each others dual and can
therefore be transformed into each other.

Now a transformation of a PTL formula f t o a MUller automaton M is given, for which the
set of all accepting paths t are all the models m of fwhere
M = (P , Q , 8 , I , A) (4)
t = < s o , s l > w i t h s o ~ l a n d (s i , p , s i + l) ~ 8
m = <s' 0 , s' 1 > with pi(si) = p , (s i , p , s i + 1) E

This transformation FA:PTL---> MFA, where MFA is the type of MUller automata, is
defined inductively as:

Case f = p ~ P:
F A (f) = (P , {qo, q l } , { (qo ,P , q l) (q l , True, q l)] , [qo}, [(q l)}

Case f = ~ f l :
FA (f) = Complement(FA (f l))

Case f = f l A f2:
FA (f) = lntersection(FA (f l) , FA(f2))

- - Casef=fl vf2:
FAl l) = Union(FA(fl), FA(f2))

484

True

F i g u r e 3. Automaton of a propositional formula p

- - Case f = O f l :

FA (f) = Concatenation (FA O, FA (f l))
where

F A o = (P , {q0, q l } , {(qo, True, q l)} , {qo}, {ql})
This is illustrated in Fig. 4 .

Figure 4. Automaton of Of

- - Case f = 0 f l :
FA (f) = Concatenation (FA O ' FA (f l))

where
FAo = (P , {q0}, {(qo, True, qo)}, {q0}, {q0})

This is illustrated in Fig. 5 .

True

Figure 5. Automaton o f O f

- - Case f = ["] f l :
Since Iqf = ~ 0 ~f, the automaton for I-ff can be constructed with the previous opera-
tions.

Case f = f l U f2:
Since f U g = 0g ^ (g v (f ^ (f U g))), the automaton for f U g can be constructed as
the automaton for 0g ^ E](X = g v (f ^ OX)), so by introducing an auxiliary variable
which can be hided later.

Now we proof that the above transformation results in a Mtiller automaton M for a PTL
formula f which accepts the same language as the PTL formula f, or equivalently
represents all models of f as defined in (4), The proof is based on language equivalence.
So we first define the following two functions L and M:

L :MFA ---> R to (5)

485

where R to is the type of o-regular languages. The alphabet may be seen as the set of pro-
positional variables P which have the value True assigned. This function is the classical
mapping of automata to (co-)regular languages.

M:PTL ~ Rto (6)
M is the mapping of models to co-regular strings as defined in section 2.

Theorem 3: L(FAOO) =MOO, or equivalently: the models of f are just the accepting
paths of M as defined in (4).

Proof: The proof is by induction on the length of PTL formula fi

Case f = p ~ P:
The models for this formula are the sequences <so , s 1, s2 > in which Pi(SO)=p
andpi(si) = True for all i>0. It is trivial to check that this is equivalent with FAOO.

Case f = ~ f l :
According to (1), MOO=Zt~ By induction, L(FA(f l))=M(f l) . Also
L(FA(f)) = L(FA(~ f l)) = Ec~ - L(FA(f l)). So L(FAOO) = MOO.

Case f = f l
According
L(FAOO) =

Case f = fl
According

L(FAOO) =

- - Case f = Ofl:
According to (1), MOO = True. M(fl) , which again is trivial to check that this is
equivalent with L(FA 09).

Case f = 0 f l :
According to (1), models for f consists of a prefix in which any truth assignment is
satisfactory, prefixed to models off1 . So MOO = True * . M(f l) to which L(FA(f)) is
equivalent.

The cases f = Ofl and f = f l Uf2 are a composition of the other cases.

v f2 :
to (1), M (f) = M (f l) u M (f 2) . By induction, L(FA(fi))=M(fi). Also
L(FA(f 1 v f2)) = L(FA(f l)) u L(FA(f 2)). So L(FA(f)) = M(f).

Af2:
to (1), M(f)=M(f l)C3M(f2) . By induction, L(FA(f i))=M~) . Also
L(FA(f 1 A f2)) = L(FA(f l)) n L(FA(f2)). So L(FA(f)) = MOO.

The subset method to make automata deterministic may cause an exponential blow-up in
the number of states. When implementing this transformation, it is clear that this approach
is only practical when determinizations of MUller automata have to be done as few times
as possible. Also the enumeration of the accepting sets in case of complementation may
cause an exponential blow-up.

Complement and intersection are determinism preserving operations, only the union
operation is not determinism preserving. Note that also the construction of arbitrary pro-
positional formulae is determinism preserving. This is even the case for PTL formulae

486

with only the O as temporal operator. So these type of formulae can be dealt with as spe-
cial simple cases. Examination of the transformation function FA even shows that the
other temporal cases can also be simplified when one or both arguments is a propositional
variable, or a PTL formula with only O operators.

The resulting automaton can be used as a model for the PTL formula, and on which other
verifications and analyses can be performed. For example, a test on satisfiability, or model
checking [12]. It is clear that satisfiability checking will become a trivial decision pro-
cedure, because when the PTL formula is satisfiable, it will result in a Mtiller automaton
which accepts a non-empty 'language'. And an unsatisfiable PTL formula, i.e. a contradic-
tion, results in an empty automaton.

Acknowledgements

I would like to thank the anonymous reviewers for their helpful and stimulating remarks.
Also I wish to thank my colleague Geert-Leon Janssen with whom I had innumerable dis-
cussions on temporal logic and the various ways for finite and efficient representations of
models.

The transformation method presented in this paper has been implemented on top of a finite
automaton manipulation package. Interested readers are invited to write to the author to
obtain a copy of the program and the finite automaton package.

References

[1] PNUELI, A., "Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends," Current Trends in Con-
currency: Overviews and Tutorials, ed. J. W. de Bakker, W.-P. de Roever and G.
Rozenberg, Lecture Notes in Computer Science 224, Springer Verlag, Berlin, pp.
510-584.

[2] V. BOCHMANN, G., "Hardware Specification with Temporal Logic: An Example,"
IEEE Trans. on Computers, vol. C-31, no. 3, March 1982, pp. 223-231.

[3] JANSSEN, G. L. J. M., "Hardware verification using Temporal Logic: A Practical
View," Formal VLSI Correctness Verification, VLSI Design Methods-ll, Proc. of
the IMEC-IFIP WGIO.2 WG 10.5 International Workshop on Applied Formal
Methods for Correct VLSI Design, ed. L. J. M. Claesen, North-Holland, 1990, pp.
159-168.

[4] WOLPER, P., "Temporal Logic Can Be More Expressive," Information and Con-
trol, vol. 56, 1983, pp. 72-99.

487

[5] WOLPER, P., M. Y. VARDI, AND A. P. SISTLA, "Reasoning about Infinite Compu-
tation Paths," Proc. 24 th Ann. Symp. on Foundations of Computer Science, Tucson,
AZ, November 7-9,1983, pp. 185-193.

[6] MANNA, Z. AND A. PNUELI, "Specification and Verification of Concurrent Pro-
grams by V-Automata," Proc. 14 th ACM Syrup. on Principles of Programming
Languages, Munich, January 21-23, 1987, pp. 1-12.

[7] ALPERN, B. AND F. B. SCHNEIDER, "Verifying Temporal Properties without Tem-
poral Logic," ACM Trans. on Programming Languages and Systems, vol. 11, no. 1,
January 1989, pp. 147-167.

[8] CHOUEKA, Y., "Theories of Automata on to-Tapes: a Simplified Approach," J.
Comput. System Sci., vol. 8, 1974, pp. 117-141.

[9] SISTLA, A. P., M. Y. VARDI, AND P. WOLPER, "The Complementation Problems
for Btichi Automata with Applications to Temporal Logic," Proc. 12 th Int. Collo-
quium on Automata, Languages and Programming (ICALP'85), Lecture Notes in
Computer Science 194, Springer Verlag, Berlin, Napflion, Greece, July 1985, pp.
465-474.

[10] RABIN, M. O. AND D. SCOTt, "Finite Automata and their Decision Problems,"
IBMJ. Res. Develop., vol. 3, 1959, pp. 114-125.

[11] MCNAUGHTON, R., "Testing an Generating Infinite Sequences by a Finite Automa-
ton," Information and Control, vol. 9, 1966, pp. 521-530.

[12] LICHTENSTEIN, O. AND A. PNUELI, "Checking That Finite State Concurrent Pro-
grams Satisfy Their Linear Specification," Proc. 12 th ACM Syrup. on Principles of
Programming Languages, New Orleans, January 14-16, 1985, pp. 97-107.

