
An Algebra of Boolean Processes *

Costas Courcoubetis
Department of Computer Science

University of Crete
Heraklion, Greece

Susanne Graf Joseph Sifalds
IMAG-LGI

BP 53X
F-38041 Grenoble

Abs t r ac t

This work has been motivated by the study of the SIR models which allow to represent
systems as a set of communicating state machines cooperating through a shared memory.

We show that S/R models can be expressed in terms of a process algebra called Boolean SCCS
which is a special case of Milner's SC C S, in the sense that the actions are elements of some boolean
algebra. We define for Boolean SCCS an operational and a symbolic semantics modulo strong
bisimulation equivalence. A complete axiomatisation of bisimulation and simulation equivalences
on this algebra is proposed.

Furthermore, we propose a very general renamin 9 operator, and show by means of examples
that it allows the definition of abstractions.

1 I n t r o d u c t i o n

Most existing algebraic specification languages for concurrent systems such as process algebras, are
based on the communicating processes model. They suppose that a system is composed of a set
of components with disjoint state spaces, interacting by exchanging messages. Although of equal
importance, models relying upon shared memory communication mechanisms did not a t t ract so much
the attention of researchers. A reason might be that the communicating processes model is sufficiently
general to represent them. On the other hand, the use of shared memory formalisms leads to compact
specifications due to the use of powerful communication mechanisms. By allowing processes to be
labelled with complex boolean formulas instead of simple actions, we obtain processes with fewer
states since a transition label can represent a set of atomic actions.

Besides obtaining compact specifications, there are other issues which make such formalisms very
interesting. They have to do with the possibility of doing reductions at tile symbolic level, and in
general, the possibility to perform a large part of the verification process at the same level. In order
to achieve that, one can use the symbolic manipulation mechanisms provided by the boolean calculus.
It is importmlt to note that any reduction at the symbolic level will greatly enhance the applicability
of the verification procedures by diminuishing the state explosion effects. This paper at tempts to
define the notions of symbolic bisimulation and abstraction for such shared memory communicating
processes. It also shows that the process algebra paradigm can be directly applied to shared memory
models. Interestingly enough, abstraction and renaming in the above models are richer concepts than
abstraction and renaming in the traditional communicating processes models.

In order to motivate the reader for using such shared memory formalisms, we start in Section 2 by
describing the example of such a formalism which has been successfully used for specifying and verifying
large concurrent systems. This is the Selection/Resolution model by R. Kurshan. In Section 3, we
give the general definition of boolean transition systems, that is, transition systems whose labels are
elements of a boolean algebra, and which is our model of the shared memory communicating processes.

*This work has been partially supported by ESPRIT Basic Research Action 'Spec'

455

Section 4 presents an algebra of boolean processes, for which two different semantics in terms of boolean
transition systems modulo bisimulation are defined: an 'operational' one, whose models are usual
action-labelled transition systems, and a 'symbolic' one, whose models are transition systems whose
labels are boolean expressions. We give notions of strong bisimulation for both semantics and show
that they coincide on terms. Furthermore, we propose a complete axiomatisation of bisirnulation on
terms, showing that our algebra is a particular case of S C C S with boolean actions. In this section, we
give also some results on renaming functions and illustrate their use for the definition of abstractions
by an example. In Section 5, we define notions of simulation preorder and equivalence.

2 The S e l e c t i o n / R e s o l u t i o n M o d e l

2.1 In fo rma l p r e s e n t a t i o n

The selection/resolution (S /R) model [AKS83a,AC85,GKS0,Ku90,ABM86a] provides a method of de-
scribing a system as a set of coordinating finite state machines. Experience has shown that complex
systems can be specified by using this model, and there are currently tools which automatical ly verify
properties of the behaviours of such formal specifications, managing systems with millions of reachable
states [KuY0]. An important feature is the fact that the coupling between machines is described in
terms of predicates. This helps in many cases to obtain concise and understandable specifications.

A system is decomposed into a set of simple components; each component or process is an edge
labelled directed graph (see Figure 1). The vertices of this graph are states of the process; each
directed edge describes a transition corresponding to one computat ion step. In each state, a process
can nondeterministically choose from a set of selections, which are essentially values of a shared memory
used for synchronization. In fact, there is a shared memory in the system consisting of a finite number
of variables ranging over a finite domain. With each process is associated a subset of selection variables
which are distinct for each process. A process can read all variables, whereas it can update only its
own selection variables (selections are enclosed in braces next to the states in Figure 1, an example in
which the selection functions are all deterministic).

A computation step of the system consists of a selection followed by a resolution phase. The
selection of a process consists in choosing a value for each one of its selection variables. The resolution
is done by calculating the global selection, i.e., the vector of all the current selections of the processes.
Each process checks which transitions are consistent with the current selections of all processes, and
then chooses one of these enabled transitions.

2.2 The S/R-processes
N o t a t i o n 2.1 13 is a boolean algebra with V, A , - , ~ denoting respectively disjunction, conjunction,
complementation and implication. By convention, 0 and 1 represent respectively the bottom and the
top element of I3 and atoms(13) is the set of atoms of 13.

D e f i n i t i o n 2.2 (S/R-process}
An S/R-process on a boolean algebra 13 is a triplet SR = (Q, 6, Cr), where

�9 Q is a set of states,

�9 ~ : Q. • Q ~-* 13 is a transition function,

�9 ~r : ~ ~-, 13 is a selector function.

An S/R-process can be represented by a state- and edge-labeUed directed graph whose vertices are
the states. There is an edge from state q to q~ labelled by l iff tf(q,q') = l and t ~ 0.

D e f i n i t i o n 2.3 (parallel composition on S/ R-processes)
Let SRi = (Qi,6i ,ai) for i -- 1,2 be two S/R-processes on B. The parallel composition of SR1 and
SR2 is the S/R-process SRlxSR2 = (Q,~,a) where,

456

�9 Q = QlxQ~,

�9 o'(ql, q2) = o' l (ql) A o'2(q2)

�9 ~((q~, q2), (ql, ql)) = 6~(q~, ql) ^ ~f2(q2, q'~)

E x a m p l e We demonstrate the use of the S /R model for the description of a simple modulo 8 counter
whose output (the integers between 0 and 7) is represented by 3 boolean variables Y0, Yl, Y2. Its input,
the signal incrementing the counter, is represented by a boolean variable x.

The counter is modelled as the parallel composition of three S/R-processes SRo, SRI,SR2 with
selection variables respectively y0, Yl and Y2 (Figure 1).

Such specifications can be treated by tools such as COSPAN and SPANNER and prove properties
of the infinite sequences of the global memory assignments (see [ABM86a,b], [ACWY0], [KK86]).

xyoy

SR2

~ YoYl Yl ~

{y2 -- o} o}

~.../Zyo
YoYl

SR1

x = 0}

0 = 1 }

s~

Figure 1: A modulo 8 counter

3 Boolean Trans i t ion Sys tems

In this section, we define boolean transition systems, which are transition systems labelled by elements
of a boolean algebra B. They differ from S/R-processes only by the fact that they have no labels on
states. We show the relationship between these two models.

3 . 1 S / R - p r o c e s s e s a s b o o l e a n t r a n s i t i o n s y s t e m s (B T S)

Def in i t ion 3.1 (Boolean transition systems)
A boolean transition system on a boolean algebra B is a pair S = (Q, - ,) , where

�9 Q is a set of states,

�9 --,_CQ • (B-{0}) x Q is the transition relation, where we write qt--L,q ' for (q,t,q') E --,.

Def in i t ion 3.2 With an S/R-process SR = (O,6,~r) on B, we associate a BTS, Bts(SR) = (f , ' ") ,
where ---, is defined as the least relation, subset of Q • (B - { 0 }) • 0 , such that:

(6(q,q') = g and g A a(q) ~ O) implies qt A__~q)q, .

The parMlel composition on S/R-processes can easily be translated into the parMlel composition of
boolean traaasition systems:

457

D e f i n i t i o n 3.3 (parallel composition on I3 TS)
Let Si = (Qi,-"~i) for i : 1,2 be two B TSs. The parallel composition of $1 and $2 is the BTS,
S = SlxS2 = (Q , ~) where,

�9 Q = Q~xQ=,

�9 (q,,qz) t--~--,(q~,q~) iff (l # 0 and3t,,12.(l = t, Al2 andqi-~q[fori = 1,2)).

In fact, we obtain in a straight forward manner the following proposition:

P ropos i t i on 3.4 For any S/R-processes SR1, SR2,
Bts(SR1 x SR2) = Bts(SRl) x Bts(SR.~).

E x a m p l e : t r ans l a t ion of a n S/R-process in to a B T S
Consider again the counter of Figure 1 given as an SIR model. The corresponding BTS,
Bts(SRo • SR1 • SR2) is obtained by calculating the parallel composition
Bts(SRo) • Bts(SR1) • Bts(SR2) as shown in Figure 2.

Y2zY~I l x ya zyo() x

~ 2 zy~ ~ y-~zyo

Bts(SR2) Bts(SR1)

A

nts(S no)

Figure 2: The modulo 8 counter as BTS

We introduce hereafter some useful notations for boolean transition systems.

Def in i t ion 3.5 Let S = (Q,--*) be a I3TS and q E Q. Then,

1. The enabling condition o] a state q, enable(q) is the boolean ezpression
enable(q) = V3~,.~_~/i .

2. q is called finitely branching iff
Vl E I3 there is a finite number of labels e' such that (q t._~ and ! ~ l').

3. q is called deterministic iff
12 V/1,12 q t"~t ql and q----,q2 implies (ll = t2 and ql = q2) or ll Al2 = O.

4. q is called complete iff enable(q) = 1

5. q is called canonical iffVq'(q t---,q ' implies e E atom,(B)).

S is respectively called finitely branching, deterministic, complete or canonical if all its states hav'e the
corresponding property.

458

4 B o o l e a n S C C S , a n a l g e b r a fo r b o o l e a n t r a n s i t i o n s y s t e m s

In this section, we define a process algebra that call be considered as a particular case of S C C S [Mi83],
i.e., a process algebra with a synchronous parallel operator. Its action operators are the elements of
some boolean algebra B. Processes of this algebra have boolean transition systems as underlying
models. We study in particular bisimulation semantics for this algebra.

N o t a t i o n 4.1 (renaming function)
Let B be a boolean algebra. Any mapping q5 : B ~ 13 satisfying r = 0 and which is distributive over
disjunction (Vtx, g2 E B .~b(~l V g2) = r V r is called a renaming function on B.

D e f i n i t i o n 4.2 (Syntax of B S C C S)
Let B be a boolean algebra, r a renaming function and Z a set of variables. Represent by t and z
respectively, elements of B and Z. Consider the term language defined by the following grammar:

t, ::= O l z l t t , l t , + t, lreez. t , ,
t ::= t, l t•162 l e t l t + t

We call B S C C S the sub-algebra of the closed terms, named also processes. As usually, a term is
called guarded if in any subterm of the form recz.t all occurrences of z in t are in the scope of an
action-operator ~.

Notice that a term of B S C C S has no occurrences of x within the scope of a recursion operator as we
want to restrict ourselves to regular processes.

4.1 Operat ional semantics

D e f i n i t i o n 4.3 (operational semantics)
For g E B,a,a ' E atoms(B) , t l , t2 , t E B S C C S , r a renaming function and z a process variable, the
transition relation .~ on B S C C S is defined as the smallest relation specified by the following rules.

1. gt .~t iff a=*. g
t l I 2. tl",~tl implies
a I a I 3. ~l'-zt I A t2"-zt 2

a I
4. t,,-*t ^ a' ~ r

a I a I a I t l + t2"-*tl and t2",~t 2 implies tl + t2"~t2

implies tlxt2-&t'~xt'2

implies t[q,ls162
a i a t 5. t',~t implies recz.s [recz.t/z]

These rules associate with any term of Boolean S C C S a canonical BTS by defining for any operator
an operator on BTSs. The set of atoms can also be considered as the set of labels of a usual labelled
transition system.

Remarks:

�9 If the boolean algebra B is generated by a set of boolean variables, then atoms can also be
coltsidered as valuations, i.e. functions associating boolean values with the boolean variables
generating the algebra,

�9 The renaming operator [r plays the role of both an abstraction and a restriction operator,
depending on the nature of r I r e associates 0 with some atoms, and leaves the others unchanged,
then it corresponds to a restriction operator. The use of renaming as an abstraction operator

will be illustrated later (see Section 4.5).

We are interested in strong bisimulation semantics on BTS.

459

N o t a t i o n 4 .4 (strong bisimulation ~,,)

�9 We denote by ,.~ the strong bisimulation relation induced by the transition relation -,.,.

�9 We denote as usual by " i the bisimulation up to depth i. We have ,-~ = a , even for
infinite 13 any term has only a finite number of 'a-derivations' for any a E atoms(13).

As in [Mi83], we obta in the following proposit ion. For the renaming operator to preserve b is imula t ion
it is necessary t h a t the renaming functions are str ict and dis t r ibut ive over disjunction.

P r o p o s i t i o n 4.5 -., is a congruence on 13SCCS.

4 . 2 S y m b o l i c s e m a n t i c s f o r B o o l e a n S C C S

In this section, we give a different operat ional semantics associat ing an a rb i t r a ry BTS wi th a t e rm of
Boolean S C C S . We define a symbolic bisimulation which is proven to coincide wi th s t rong b is imula t ion
on B S C C S .

D e f i n i t i o n 4 .6 (symbolic semantics)
For l x , g 2 , / E 13, t l , t2, t E 13SCCS and z a process variable, let --* be the transition relation, defined
as the smallest relation specified by the following rules.

1. l t t--L,t iff t ~ 0
t t l t s t t t 2. tl----~t 1 implies tl + t2----,t 1 and t~-----,t 2 implies tl -t- t2----*t 2

I i t 13 ~# 3. tl----~t 1 ^ t2---'*.2 ^ (!1 ^ l z ~ O) implies t l• t,A.~t, t,l• 2

4. t t--~t' ^ r ~ 0 implies t[C]~l-~0t'[r

5. t t-~t ' implies reez. t t--~t'[reez.t/z]

Remarks:

�9 As for the operat ional semantics, these rules allow to associate in an obvious m a n n e r wi th any
t e rm of Boolean S C C S a 13TS (not necessarily a canonical one) by defining for any opera tor an
opera tor on 13TSs.

�9 Conversely, wi th any finite 13TS can be associated a process in an obvious manner . Thus , in the
sequel we identify a t e rm of Boolean S C C S wi th its corresponding boolean t rans i t ion system.

�9 Therefore, the nota t ions of Definition 3.5 can be applied to terms. We say for a t e rm t,
enable(t)=g, t is respectively finitely branching, deterministic, complete or canonical if and only
if this is the case for the 13TS associated via i ts symbolic semantics.

D e f i n i t i o n 4 .7 (symbolic bisimulation)
Let be t l , t2 E 13SCCS. Then, ~- is defined as the largest symmetric relation, solution of @(~) = 7~,
where
(t l , t2) E ~(7~) if]

l I
Vg E 13 Vtl E 13SCCS (tx---~t x implies 3I.((g=~ Vielg,) and Vi E I 3tz,.(t2--~t2~ and (t'a,t2i) E 7~)))

As usually, we write t1~_tz ins tead of (t l , t2) E ~ and we say t h a t tx symbolically bisimulates t2.

460

Remarks:

�9 t l '~t2 implies enable(t1) = enable(t2).

�9 Any complete t e rm symbolically bisimulates the process 1 , defined as 1 = r e c z . l z .

The character izat ion of bis imulat ion as the intersect ion of bis imulat ions up to dep th i can also be
shown for symbolic bisimulat ion.

P r o p o s i t i o n 4 .8 ~ = f l ~ l ' q , where

�9 -~0 = BSCCS x BSCCS

�9 e'~i4-1 = ~('~ i) Vi E ~ , i > 0

This result can be used to compute "~, and thus to reduce processes, and also finite BTSs. In Figure 3,
we give two symbolically bisimilar BTSs. The small one is the quot ient modulo ~ of the other.

z y ~

_ m

X y Z

x (y V z

x~

X

Figure 3: Reduction modulo symbolic bisirnulation

P r o p o s i t i o n 4.9 Symbolic and strong bisimulation agree on Boolean S C C S , i.e. _~ = N.

Proof: We prove t h a t for any i, Ni = -~i by induct ion. The proof is easy if we use the observat ion

that Va E atoms(B) t.&t' iff31 E B.(a~ l and t t--~t ') D

Proposition 4.10 ~_ is a congruence on BSCCS.

Proof: Direct from the proposition above and the fact that ~ is a congruence on BSCCS. []

461

4 . 3 R e s u l t s f o r d e t e r m i n i s t i c p r o c e s s e s

For deterministic processes the definition of ~- can be simplified in the following manner:

Def ini t ion 4.11 Let ~_a be the largest symmetric relation on BSCCS, solution of ~1(7~) = 7~, where
(tx,t2) E r iff

�9 enable(tl) = enable(t2)

�9 t~t--~t'l implies Vt' , t~((tAl ' ~ 0 and ta----~t'z) implies (t~,t~) E 7~}

Propos i t i on 4.12 (characterization of ~- on deterministic processes)
For ta,tz E BSCCS, tl, t2 nondeterministic (t l~t2 iff tl~--dt2).

Proof: We have already noticed that tl~_t2 implies enable(tl) = enable(t2). Furthermore, the defini-
tion of ~_ says that for any d-transition of tl leading to t~, there exists a set of transitions from tz whose
labels cover l and which lead to equivalent terms. For a deterministic process the set of transitions
whose labels cover l is unique.

In this case the condition in the definition of -~, Vt E B31,{ t l } . ((V~ezl i ~ l) and Vi E I t--~t~) is

equivalent to Vl E B(3l ' E B,t ' E BSCCS.(IAI ' ~ 0and t t-~t')).
The fact that ~- and _~d coincide, is easy to deduce from this observation. [3

Notice that for the comparison of two terms t and t ~, it is sufficient that one of them is deterministic
in order that - and ~_d coincide. Furthermore, the relation ~_d gives rise to a simpler verification
algorithm.

4 . 4 A n a x i o m a t i s a t i o n o f s y m b o l i c b i s i m u l a t i o n o n B o o l e a n S C C S

The axioms and rules characterizing ~_ on Boolean SCC$ consist of the axioms characterizing strong
bisimulation on SCCS and some additional axioms due to the laws of the action set B.

T h e o r e m 4.13 (axiomatization}
The a~iomatization given in Table 1 is sound and complete for ~_ on Boolean SCCS.

Proof: The proof of soundness is standard, except for the axioms concerning renaming, for which we
need the fact that ~ is strict and distributes over disjunction.

The completeness can be deduced from the completeness of the axioms (1), (2) and (11) to (13)
for strong bisimulation on terms in canonical form obtained in the following manner.

In a first step, a term is transformed into an equivalent one without occurrences of x and renaming
operators by means of the axioms (4) to (10), commutativity and associativity. In a second step, such
a term can be transformed by using (14) to (16) into canonical form, in which the only action names
are atoms of B.

We have already shown that _ coincides with strong bisimulation, and on canonical terms strong
bisimulation can be characterized by the axioms and rules (1),(2) and (11) to (13) [Mi841. []

4 . 5 S o m e r e s u l t s o n r e n a m i n g

In the following propositions we give some sufficient conditions on functions ~b in order that the
corresponding renaming operators I~b] preserve particular properties of terms.

P ropos i t i on 4.14 Let ~ be a renaming function on B.
Vtx,t2 E BSCCS (tlxt2)[~b] = tl[~]xt2[~b], i.e., [~] distributes over x , iff
Vgl, t 2 ~ B ~(gl A ~2) = ~b(~l)A ~(~2), i.e. qb distributes over conjunction.

462

(1) A x i o m s of SCCS:

1. + is commutative, associative and idempotent,

2. t + Q = t

3. • is commutative and associative

4. t x Q = Q

5. t x (t l + t2) = (tx t l) + (txt2)

6. t l t l x l2 t2 = (~z At2)(t lxt~)

7. l x t = t

8. o[r = o

9. (at)[C] = aCt[el)

10. (Q + t2)[r = Q[~b] + t2[r

11. recz.(z + t') = recz.t '

12. recz.t = t[recz.t/z]

13. t ' = t[t'/z] implies t ' = recz. t provided that t ~ is guarded

(2) A x i o m s a n d ru les specific to BSCCS:

14. 0 t = Q

15. l~t + t~t = (l~ v 12)t

16. t l -=- 12 implies l i t = 12t

Table 1: Axiomatisation of _~ on BSCCS

Notice that distributivity over conjunction is a very strong requirement for a renaming function, and
the renaming functions used for abstraction of our example given at the end of the section do not have
this property.

P r o p o s i t i o n 4.15 Let r be a renaming function on B and t a term of Boolean SCCS.

1. I r e is increasing, i.e. Vt E B(t ~ r then
[r preserves completeness o f t , i.e. i f t is complete then t[r is also complete.

2. I] r is such that (Vll, i2 E I3 t l A l~ = 0 implies ~b(ll)A r = O) then
[r presewes determinism o f t , i.e. i f t is deterministic then t[r is also deterministic.

3. I r e maps atoms to atoms, i.e. r : atoms(B) ~ atoms(B), then
[r preserves canonicity o f t , i.e. i f t is canonical then t[r is also canonical.

Notice that the condition of (3) implies the condition of (2).

463

C(/Y, I/2,1)

aYt~I 1

• x ~ / ~ ~/~

~ - J gY0

C(~, ~o, ~)

Figure 4: Cs, a modulo 8 counter

xyl

Figure 5: The reduced BTS of Cs[~b~][r

An Example: modulo 8 counter (see [Magl])

In this example, we illustrate the use of renaming functions to obtain abstractions. Consider again
a modulo 8 counter, defined in a slightly different manner than in Section 3. Cs is defined as the
parallel composition Cs = C(19, Y2,1) x C(a, Yl, ;3) x C(x, 1/0, a) where the subterms C(vl , v2, vs), defined
in Figure 4, represent modulo 2 counters changing their state on input signal vl with state variable
v2 and output variable va, representing the overflow bit. The observable variables of the modulo 8
counter are the global input z and the state variables Y~,Yl,Yo whereas -, and 19 are only used for
synchronization. The renaming function ~bl defined by

r = 3 ~ t (~ ,y2 ,y l , y0 ,~ ,~) =
t (~ ,y~ ,~ l ,y0 ,o ,o) v t(~,~2,yl ,~0, 0,1) v t (~ ,y~ ,y l , ~0, t, 0) v t (~ ,y2 ,y , , y0,1, l)

allows to make abstraction from the overflow variables a and ~.
The BTS corresponding to Cs[~bl] has 8 states and cannot be reduced modulo symbolic bisimulation,
but its boolean expressions axe simpler than that of the BTS of Cs.

464

Consider the renaming function ~b2
~2(~(x, Y2, Yl, Y0)) : ~Y2 ~(a~, Y2, Yl, Y0) -~ ~(X, 0, Yl, Y0) V ~(;g, i, Yl, Yo)

which applied to Cs[~bl] allows to abstract from y2.
The boolean transition system corresponding to the process Cs[r can be reduced to the one

presented in Figure 5 and corresponds clearly to a counter modulo 4.

5 Simulation preorders and equivalences on BSCCS

Bisimulation is a strong equivalence, and if we are interested in verifying safety properties much
weaker equivalences are interesting [BGFRSg0]. In this section, we study simulation preorders and the
equivalences they introduce on Boolean SCCS.

D e f i n i t i o n 5.1 (simulation preorder C_ ~)
Vtl,t2 EBSCCS taEat2

l i tl----~t I implies 3I.((s ~ Vie/ll) and Vi E 13t2i.(t2--~t21 and t'xE*tzi))
The simulation equivalence induced by E_* is denoted by "~

Remark : As in the case of bisimulation, it can be shown that the above defined simulation preorder
coincides on canonical BTS with the usual simulation preorder.

Proposition 5.2 (characterization of E ~)
Vt 6 BSCCS {t' e BSCCS If'E't} = {t'[3t" ~ BSCCS.t'~_'t"xt}

I. All axioms of Table i, where each equation tl = t2 stands

for two equations tl _< t2 and t2 _ tl

2. |

3. tl <_ tz[tl/z] implies 11 ~_ recz.t2 provided z guarded in t2

4. tz[tl/z] _< tl implies reez.t2 _< tx provided z guarded in t2

5. l l =~ t2 implies glt ~_ 12t

Table 2: Axiomatisation of ~_* on Boolean SCCS

Propos i t i on 5.3 (Aziomatization of E")
The aziomatization given in Table 2 is sound and complete for C" on Boolean SCCS.

P r o o f : The soundness of this axiomatisation is easy to check. The completeness proof is very similar
to the one of Theorem 4.13. As before, each term can be transformed into one in canonical form.
In [BGFRSg0] it has been shown for a term algebra isomorphic to the subalgebra of canonical terms
that the above axiomatization (without rule (5) and based on the axioms of SCCS only) characterizes
completely the usual simulation preorder. []

465

6 C o n c l u s i o n

This work establishes a connection between the S/R model and process algebras. For this, we introduce
boolean transition systems, an extension of ordinary transition systems.

We believe that the Boolean Process Algebra and its underlying model deserve a further study
as such, independently of the S/R model. In fact, they seem to be fairly appropriate formalisms to
describe hardware and in general finite systems where data are coded by boolean variables.

Furthermore, symbolic bisimulation allows compare descriptions given by state transition models
where labels represent sets of actions. The two given semantics show that boolean processes are more
abstract.

It would be interesting to introduce weaker equivalences, such as stuttering equivalence on these
models. Another interesting question would be to characterize the renaming functions introducing
interesting abstraction criteria.

R e f e r e n c e s

[ABM86a] S. Aggarwal, D. Barbara, K. Z. Meth. "SPANNER - A Tool for the Specification, Analysis,
and Evaluation of Protocols," IEEE ~I~ans. on Software Engineering (to appear).

[AC85] S. Aggarwal, C. Courcoubetis. "Distributed Implementation of a Model of Commtmication
and Computation," Proceedings of the Int. Conf. on System Sciences, January, 1985.

[AKS83a] S. Aggarwal, R. P. Kurshan, K. K. Sabnani. "A Calculus for Protocol Specification and
Validation," in Protocol Specification, Testing and Verification III, North-Holland, 1983.

[Kug0] R. Kurshan, "Analysis of Discrete Event Coordination". LNCS 430 (1990).

[ACWg0] S. Aggarwal, C. Courcoubetis, P. Wolper. "Adding Liveness Properties to Coupled Finite-
State Machines", ACM TOPLAS, Vol. 12, No 2, April 1990.

[GKSO] B. Gopinath, B. Kurshan. "The Selection/Resolution Model for Coordinating Concurrent
Processes", AT&T Bell Laboratories Technical Report.

[KK86] J. Katzenelson, B. Kurshan, "S/R: A Language for Specifying Protocols and other Coordinat-
ing Processes", Proc. 5th Ann. Int ' l Phoenix Conf. Comput. Commun., IEEE, 1986.

[BGFRS90] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez, J. Sifakis. Safety for Branching
Semantics, ICALP 91, Madrid, LNCS Vol. 510, 1991.

[Ma91]

[MiS0]

[Mi831

[Mi841

[Mi89]

F. Maraninchi. Argos: a graphical synchronous language for the description of reactive systems,
Report Spectre C-29, Grenoble, March 91, submitted to SCP

R. Milner. A Calculus for Communicating Systems, LNCS 92, 1980

R. Milner. Calculi for Synchrony and Asynchrony, Theoret. Comp. Sci. 25, 1983.

R. Milner. A Complete Inference System for a Class of Regular Behaviours, Journal of Comp.
and Syst. Sci. Vol. 28, 1984

R. Milner. Communication and Concurrency, Prentice Hall, 1989

