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Abs t rac t  Firstly, we show how to deal with bounded uncertain delays of (speed-dependent) 
asynchronous circuits for symbolic model checking based on temporal logic. We adopt 
discrete-time model. In the modeling of uncertain delays, we consider two models, i.e. 
static delay and dynamic delay. These models are interpreted as paraxneterized sequential 
machines and nondeterministic sequential machines respecitively. 

Secondly, we show a symbolic model checking algorithm for the above sequential ma- 
chines. As a specification description language, a temporal logic named Branching Time 
Regular Temporal Logic (BRTL) is employed. 

A prototype of verification system based on the proposed method has been imple- 
mented and some experimental results axe reported. 

1 Introduct ion  

Asynchronous parts in a logic system tend to be small, because of its difficulty in design. 
Their timing verification, however, has to be strict and rigorous, because subtle timing 
errors cause wrong behavior of the whole system. 

As one of rigorous verification methods, model checking approach based on temporal 
logics has been widely studied and applied to verify finite state machines such as pro- 
tocols or sequential circuits[I, 2]. Relating to asynchronous circuits, formal verification 
techniques of speed-independent/dependent circuits have been researched[3, 4]. 

Recently, for the purpose of verifying real-time systems, various timing models have 
been researched and model checking methods based on the models have been esta.blished[5, 
7, 8]. The models can treat uncertain delay rigorously. In [7, 6], model checking algorithms 
based on continuous-time model have been proposed and its complexity has also been 
shown. Although continuous-time model is the most general, its model checking is hard 
to execute because of its high complexity. 

ITlds research is partially supported by Japan-USA cooperative research sponsored by JSPS and NSF. 
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In this report, we adopt discrete-time model and introduce uncertainty of delays to the 
framework of model checking. Indeed, discrete-time model is not as rigorous as continuous 
one, but it will help circuit designers find many errors. 

We deal with two types of delay models, i.e, (uncertain} static delay and dynamic 
delay. In the static delay model, the delay of a gate is an uncertain integer between a 
bounded interval, but the delay does not fluctuate at each time unit. The key idea to 
treat this type of delay is to regard each gate as a parameterized sequential machiuc. For 
example, a sequential machine M[d] parameterized by a variable d over {2, 3, 4} is used 
to model a gate with a delay value d = 2, 3 or 4, where M[i] (i = 1, 2, 3) corresponds to 
the gate with the delay value i. A parameterized sequential machine corresponding to a 
whole circuit can be constructed from a set of sequential machines associated with gates 
in the circuit. 

In the other model, i.e., dynamic delay model, the delay for each gate can fluctuate 
at each time unit. Each gate of this type is regarded as a nondeterministic sequential 
machine. Assume that a delay fluctuates in the range of {3,4,5}. Then the gate is 
represented by a consecutive five one-bit registers. The next value for a register is chosen 
nondeterministically, depending on which delay value is chosen at the time unit. 

The size of the sequential machine representing the whole circuits increases exponen- 
tially in the number of elements. Symbolic model checking using BDD (Binary Decision 
Diagram) is a recently developed model checking method and has succeeded in verifying 
large sequential circuits[2, .9]. In this report, a symbolic model checking algoritlim for 
Branching Time Regular Temporal Logic (BRTL) [10] is shown. 

BRTL has, as its temporal operators, deterministic finite automata whose edges are 
labeled by BRTL formulas. Its expressive power has been proved stronger than CTL. 

When we apply model checking to parameterized sequential machines, what is obtained 
as a result is all value assignments to parameters such that the given specification is 
satisfied. This means that, in the static delay model we handle here, we can obtain all 
the possible combinations of delay values such that the specification is satisfied. 

Furthermore, BRTL is also extended to express ambiguity of temporal properties by 
parameterizing its temporal operators. This extension means that we can describe a 
specification with some ambiguity. 

In the following, Section 2 explains modeling of static delay and dynamic delay, and 
overviews formal verification of asynchronous circuits. Section 3 shows definitions of 
BRTL and symbolic model checking for BRTL. Section 4 ~eports some experimental re- 
sults. 

2 Verification of Asynchronous Circuits: Overview 

2.1 Model ing of Stat ic Delays 

A pasameterized sequential machine is regarded as a function M : I ---, .A4, where I is 
a finite interval of integers and .M is a set of all sequential machines, i.e. M[c] (c E 1) 
represents a sequential machine. Parametedzed sequential machines with two or more 
parameters are defined similarly. 

Since symbolic model checking based on manipulation of logic functions is introduced 
in Section 3, we describe parameterized sequential machines by transition relation func- 
tions, which represent sets of its transition edges, where a distinguished Boolean vector 
is assigned to each of c E I. 

In the following, Boolean variables sl, s2,.. ,  and s~, s~,.., are used to express initial 
nodes and terminal nodes of transition edges respectively, i is an input variable. 
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d[1, 4] 

Figure 1: Delay Element 

Static delay model is used in [11] 2 and it has been shown that the model achieves 
higher accuracy in logic simulation, comparing with ambiguous delay model [12]. Let us 
consider a delay element shown in Figure I. d[1,4] means that its delay value is either of 
1,2,3 or 4. In this model, it is assumed that the delay value does not change at each time 
unit, that is, the delay value of a gate is uncertain in its domain but it does not fluctuate. 

The transition relation function of the dement in Figure I is the conjunction of the 
following logic functions (1) - (4) . By introducing Boolean variables dt and do, we 
associate d = 1, 2, 3 and 4 with "~dt ̂  ~do, -~dt ^ do, dt ^ -,do and dt ^ do respectively, 

(i) (-~dl A~doA(s~ ---- i))V('-dt AdoA(s~ -- sl) )V(dt A-~doA(s~ =-- s2)) V(dt AdoA(s~ - -  

s~)), 
(2)  s~ = s2, (3)  s t = s t ,  (4)  s i = i. 
If d = 2, i.e. dt -- 0 and do = 1, then the above function represents an dement  with 

delay value 2. 
The output function of the element is s4 for d = 1,2, 3 or 4. 

2.2 M o d e l i n g  o f  D y n a m i c  De lays  

Dynamic delay model is another modeling of delays bounded by minimum and maximum 
values. In this model, d[1, 3] means that the delay value can fluctuate over {1, 2, 3}. 
This model contains a complicated problem observed in rise/fall delay model[12] as well. 
Assume that a pulse 0 --* 1 --, 0 of width 2 arrives at the input of the delay element. If 
delay value 3 is chosen at the first transition of the signals and delay value I is chosen at 
the second transition, a signal change at the output which is caused by the first transition 
has to be suppressed. 

d[1, 3] is modeled by the following function. 

((s~ = i) ^ (s t =- i) A (s~ = i)) V 
( ( 4  = s2) ^ ( ( 4  --  i) ^ (s l  = i)) V 
( ( 4  -- s2) ^ ( 4  -= s~) ^ ( 4  - i))  

The first term ((s~ = i) ^ (s t = i) A (s t = i)) corresponds to the case that the delay 
value is chosen to be 1. (s~ - i) A (s t -- i) means that  the values stored previously in s t 
and s t are suppressed by i. 

2.3 Spec i f i ca t ion  in B R T L  

BRTL is a branching time temporal logic which has deterministic w finite automata as 
its temporal operators. Its formal definitions are described in the next ~ection. In thi.- 
section, an example of BRTL description is shown. 

2h [11], this type of delay is referred to as uncertain delay. 
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Figure 2: JK flip-flop 

Figure 2 shows a design of JK flip-flop. A partial specification for the circuit is shown 
in Figure 3 (a). Spec is a BRTL formula which contains deterministic w finite automata 
shown in Figure 3 (b), which are called automata connectives in the next section. 

The.automata accept infinite sequences composed from assignments of true or .[alse to 
atomic propositions. Single circles and double circles mean rejecting states and accepting 
states respectively. (In BRTL, distribution of accepting or rejecting states are restricted 
as shown in Section 3.) If an input sequence hits some accepting states infinitely often, 
the sequence is accepted. Otherwise, it is rejected. 

In the specification shown here, signal names in the circuit are also used as atomic 
propositions of BRTL. "Signal j = 1" corresponds to "j is true". Pulse(x) of Figure 3 
expresses that x is true during the first four time units and z stays false after the fifth 
time unit. Always(x) expresses that x is always true and Fall(x) expresses that after the 
interval of length greater than or equal to 0 where x is true, x stays false permanently. 
Intuitively, Spec expresses the timing chart shown in Figure 4. 

2.4 Verification 

In this section, an overview of verification procedure for a logic circuit is shown. 
Firstly a parameterized Kripke structure is constructed from the circuit. Kripke struc- 

ture is defined formally in Section 3. We can perform this step symbolically, i.e. through 
manipulation of logic functions. More precisely, the conjunction of transition relation 
functions corresponding to gates in the circuit comes to represent the Kripke structure 
reflecting the behavior of the circuit. 

Secondly model checking is performed for the Kripke structure and a given BRTL 
formula. If some parameters are used in the model, we can obtain all of the assignments 
of integers to the parameters such that the given specification is satisfied. That is, we 
can obtain all combinations of delay values such that the circuit works properly. If no 
variable is introduced for para~neterization, then the result of model checking is yes/no. 

A symbolic model checking algorithm for this step is shown in Section 3. 
BRTL of this paper can also express ambiguity in specification by parameterizing 

automata in its formulas with wriables. For example, Pulse[~(x) in Figure 5 means that 
d is the length of the first interval where x is true. The domain of d is a bounded interval 
of integers {3, 4, 5, 6}. The result of model checking for this specification contains the 
information about d such that the specification is satisfied. 
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Spec = V((Pulse(c) A Always(",j A k)) =~ Fall(q) 

(a) Specification 

Pulse(x) Fall(x) 
Always(x: t x 

"~X 

true 

- n  x 

" n X  

k.) true 
x 

(~ accepting 
O rejecting 

(b) Automata connectives 

Figure 3: Specification for JK flip-fiop (1) 
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Figure 4: Timing Chart for JK flip-flop 

Spec -- V((Pulse[~(c) A Always(-~j A k)) =~ Fall(q) 

(a) Specification 

~ A(d= 4,) 

x A (d = 6) ~ ) u e  

P~e[d](x) 
(b) Autgmaton connective 

Figure 5: Specification for JK flip-flop (2) 
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3 B r a n c h i n g  T i m e  R e g u l a r  T e m p o r a l  L o g i c  a n d  I t s  S y m b o l i c  

M o d e l  C h e c k i n g  

3.1 B r a n c h i n g  T i m e  R e g u l a r  T e m p o r a l  Logic  

The definition of BRTL in this report is different from that of [10]. Firstly, it is parame- 
terized and, secondly, Boolean operations of automata connectives in the scope of a path 
quantifier are allowed. 

I~ = {all, a~2,. �9 a~m} (i = 1, 2 , . . . ,  w) is called a finite interval, where a~j are integers 
and alj+t = alj + 1. D = ( d r , . . . ,  do) is called a variable list, where dl (i = 1, 2 , . . . ,  w) 
is a variable over / / .  D is fixed in the following section. I ~ /1 • I9. • . . .  • I~, is the 
domain of D. c �9 I is called an environment. Vr represents tautology. 
Def in i t i on  1 A deterministic w finite automaton type 1 (dfa-1) 

A[D] = (Q, P, Br, qo, F) is defined as follows. 
Q is a set of finite number of states and P = { p t , " '  ,p,,} is a set of propositional 

variables, q0 is the initial state. F is a set of accepting states and the elements of Q - F 
are called rejecting states. Let B F  be a set of all propositional formulas constructed from 
the elements of P. Br  : Q • Q • I ~ B F  is a partial function which satisfies the following 
three conditions. 

Consider Br(q, Q, c) = {fl3q'.Br(q, q', c) = f} ,  for q �9 Q and c �9 I. 
(i) f~ ̂  f2 = V~, for any ft, fu �9 Br(q, Q, c). 
(2) Vj~,.(,,,,~,=) f = VT �9 

A[D] accepts or rejects infinite sequences composed from the elements of A = 2 e 
under a given environment c. The transition function of A[D] under c is defined to be 
6c: Q • A --* Q such that  6r v) = q' r Br(q, q', c)(v) = T, where v �9 A 

A[D] under an environment c is described as A[c]. In A[c], the third argument of Br  
is fixed to c. 

For a �9 2 ~ Inf(a) is defined to be the set of the states through which A[c] goes 
infinitely often. Then the set of words accepted by A[c] is {alInf(a) N F is not empty } 
and is described by (A)~. 

(3) Under any environment c, there exists no path from a rejecting state q, to q, itself 
via some accepting state q~. [:3 

L e n u n a  1 For a dfa-1 A[D] = (Q,P, Br, qo, F), a dfa-1 A[D] which accepts Z~" - (A)~ 
for each environment c is obtained by exchanging accepting states and rejecting states of 
A[D]. 
L e m m a  2 For dfa-l 's Ai[D] = ( Q . ~ , P ,  Bri, 6i,qlo, Fi) (i = 1,2), a df~-I At[D]IA2[D ] 
which accepts (At)= U (A2)c for each c is obtained as follows: 

Q = Q,t x Q2 = {(qt,q2)lql �9 Q t ,  q2 �9 Q~}, qo = (qto, q20) and F = {(qt,q2)lqt �9 Ft 
or q2 �9 Q • Q BF is defined by Br((qt ,q2),(q~,q~),c)  = Br t (q t ,q [ , c )  A 
Brl(q2, q~,c), where ql, q[ �9 Qi (i = 1,2) and c = c(D), and both of Brt(ql,q~,c) and 
Brt (q2, q~, c) are defined. El 

D e f i n i t i o n  2 S[D] = (E, As, R, E0) is called a Kripke structure, where E is a set of 
nodes, As : E ~ 2 ~p is an assignment function, R C_ ~ x E x I is a total relation for each 
c E I, i.e, there exists s' E ~. such (s, s', c) E R for any s E E. ~0 C r. is a set of iaitiM 
states. 

S[D] under an environment c, denoted by S[c], is a Kripke structure such that R is 
fixed by c. O 
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Definition 3 Syntax and Semantics 
The syntax of BRTL is as follows: 

BRTL formulas: 
Let p be an atomic proposition in AP, r and r be BRTL formulas, and B be an 

automaton connective. Then p, --r and r V r and 3B are BRTL formulas. 
Automata connectives 

Let A[D] be a dfa-1 and B, BI, B2 be automata connectives. Then A[D](r r �9 �9 �9 ~,), 
--B and BI V B2 are also automata connectives. 

A[D](r r  r  is obtained by replacing each atomic proposition p~ E P (1 < i < 
n) with r C_ B F  corresponding to pl simultaneously. 

The semantics of BRTL is defined on a Kripke structure S[D] = (E, I, R, Eo) under a 
given environment c. S[D], s ~ f means that  the BRTL formula f holds at the state s 
on S[D] under c. In the following, p E AP, r and ~b are BRTL formulas and A[D] is a 
dfa-1 and B is aJa automaton connective. Trans(B) represents an automaton connective 
obtained by applying Lemma 1 and 2 to B until all of ~ and v in B are deleted. 

�9 S[D], s ~ p if[ p e As(s) 

�9 S[D], s ~r  r V !b iff S[D], s ~r  r or S[D], s ~,  ~p 
�9 S[D], s ~r -~r iff S[O], s ~ ,  r 
�9 S[O], s ~r BA[D](r r  r iff there exists an infinite sequence a = sos,s2. . .  

starting from s on S[c] and a run (a sequence of states) qoqtq2"" in Q such that, 
S[D], si ~r Br(qi, q~+~, c) holds and at least one state q E Q which appears infinitely 
in the run is in F. 

�9 S[D], s iff S[D],  s 3(Trans(B))  
If Ys E P.0.S[D], s f ,  then we describe S[D] f. 0 

The Boolean operators A, -- and =~ are also used. Besides we define VB d,=f "-3",B 

and V-~B ~ ~3B. 

3.2 Symbol i c  M o d e l  Check ing  of  B R T L  

The symbolic model checking technique shown in this section is an extension of the meth- 
ods found in [2]. The difference is that  parameters have to be handled. 

Def in i t ion  4 Model checking problem 
Given a Kripke structure S[D] and a BRTL formula r model checking problem is to 

obtain a set of environments c under which S[D] ~c r holds. [] 

In the following, a unique code composed from B = {0, 1} is assigned to each node on 
the Kripke structure. For a node s, cd(s) represents the code ass ign~ to s. Assume that 
n bit of vector is required to represent s E ~. ~'= sl, s2,-. , 8, and s' s~, s.~,...,  a,, are 
defined to be variable vectors over B". 

Each c E I is also encoded by B. For each cl E h,  cd(cl) represents the code assigned 
to c~ and cd(c) is the concatenation from cd(Cl) to cd(cw). If nl bit is required to encode 
Ch then ~ is a variable vector over/3"'  and Fis a variable vector over B s~'i. 

The Kripke structure is represented by logic functions: 

1. Transition relation: fs(cd(s), cd(s'), cd(c)) = 1 iff (s, s', c) fi R. 
2. Assignment of atomic propositions: fp(cd(s)) = 1 iff p e As(s). 
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3. Initial states: f~,,u(cd(s)) = 1 iff s E E0 

Besides the above vector variables, q~ and ~ are used for each dfa.1 Aj[D] in the 
BRTL formula r The code for a state qj in Aj[D] is represented by cd(qj). 
A l g o r i t h m  1 model checking algorithm 

�9 Input: BRTL formula r and the above fs, fp and fin,. 

�9 Output: The logic function f,,,~(c-) such that f~,,,(cd(c)) = 1 iff S[D] ~ ~,. 
�9 Method: Shown below. 

1. For each dfa-1 Ai[D ] in r the following logic functions are constructed: 

�9 For each (qj, qj,c) E Qj x Qi x I, fgi(C,D(cd(qi),cd(qj),cd(c)) = 1 
r Br(qj, qj, c) =- ek. 

�9 qj is an accepting state of Aj ~ fF~(cd(qj)) = 1 

2. For each subformula r of r a logic function f~,(g, c') which represents S[D], s ~c ~bi 
is constructed in bottom up manner. Let 0, 01,02 are BRTL formulas. 

(a) If r is an atomic proposition, f~, is returned. 
(b) If r is 01 v 02 or --,0, then fa~ v02 = foi V f01 and f~s = -'f0 are returned. 
(c) If r is 3B, then the following i.- vi. are performed. 

i. For each Aj[D](r r162  (J -- 1 ,2 , . . . ,  m), vectors of variables 

representing the states of Aj, q~ and ~ are introduced. Let ~'= q ~ : q ~ . .  �9 

~q~,, and ~ = ~ # - . .  ~q~,  where ~ means concatenation of vectors. 
Let Q be defined as QI x Q~ x . . .  Q~. t7 d,__.f g ~ .  and ~ dej 8~:ff::. 

it. A logic function fB(6, ~, c~ is constructed, which represents a set of edges 
of the graph G consisted of the nodes ~ x Q. 

= A.iffii,2,...,,,,{V,fi,2,...,,,,(fg,(%,)(q.i, q), c-")AA,, (.r r ~I, c") 
iii. A logic function fF~ (q-') is constructed, which represents the set of accepting 

states of Ttans(B). It is calculated recursively as follows: 

�9 If B = Ai[D](42jx, ~bj2,... , r then f . . (q ' )  d~ f,,(~). 
�9 If B -- -~Bi, then f,B(q3 de_~f _.ifFB ! (3. 
�9 I f B  = B1VBi ,  then fx'B(q'~ de.~f f~a , (~  V f l ~ ( ~ .  

iv. Let V' be aset of nodes {(s, q)lf~Acd(q)) --  ~} ~ d  G' be a restriction of G 
to V'. A logic function fc,(G, ~ is constructed, which represents the set of 
nodes which axe in strongly connected components of G' or axe i:eachable 
to the strongly connected components. 

fg,(17, ~, c-'J a,,__f fFB(!13 A/h"B(q;) A fg(G, V";, C") 
Set f~ ~ dd= f~,(~, ~ .  fb' ,  """ Sg, are calculated until , v  ~ - f$0' holds. 

i + l  "* d e f  " i "* 
f~, (,,, ~ = (3::.(fv(~, ::, ~ ̂  fb,(::, ~)) ^ fb,(~,, 

fc,(~, ~ ~ I~,(~, 
v. A logic function fR is constructed, which represents the set of nodes which 

are in G and reachable to Vo,. Set fo(v, ~ d.___, fc,(G, c-). fA, f~,"" f~ are 
calculated until f~+i = f~ holds. 
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~g 

Figure 6: Automaton connective: Change(x) 

(d) 

v 

vi. f~,(g, ~ ~ 3(.(f~t(g, (, ~ ^ fx(q-~), where f/(q-~ represents the initial state 
of B. 

(Vcel f~(c)) A V~'.(fi,,i,(s") ::r f,(g, ~) is returned, where fez(c) represents a 
logic formula (minterm) representing cd(e). 

4 Experimental  Results  

A prototype verifier based on the above methods was implemented. The verifier is written 
in language C and runs on a SPARC 1+ workstation. This prograzn utilize~ tile Boolean 
function manipulator developed by Minato et.al. [13], which uses SBDD (Shared Binary 
Decision Diagram) representation as its internal representation. SBDD is an improvement 
of the binary decision diagram[14], which shares all possible subgraphs among multiple 
functions. There are many advantages besides those of the BDD. For example, equivalence 
of two functions can be checked only by comparing the pointers. 

For the purpose of efficient manipulation of SBDD, the whole transition relation func- 
tions axe not generated. Each of logic functions corresponding to the gates in the circuits 
is handled separately as shown in [15]. 

Each element in the circuit is initialized to an arbitrary stable value, that is, the set of 
all stable states of the circuits is used as the set of initial states for the verifier. The verified 
conditions are fl for sjk4, sjk5, mjkl, mjk2 and mjk3, and f2 for the others. (Change(,r) 
is shown in Figure 6.) The length of the consecutive x in Pulse(C) is adjusted for each 
example. For all the examples, SBDD size is limited to 500,000. 

fl = V ( ( P u l s e ( C )  A Always(-',J A K)) :=~ (Fall(Q))) (1) 
A = V((Pulse(C) A Always(--,: A K)) =~ (Fall(Q) A Fall(',q'))) A 

V((Pulse(C) A Always( g A K)) =~ (Change(Q) A Change(Q')) (2) 

The verification results for the circuits in Figure5 are shown in Table 1. Several 
combinations of the delay values were checked. 

Static delay model was used for sjk's and dynamic delay model for djk's, mjk's mean 
that, for example, the delays [4, 12] for D1 and D2 were divided into eight dynaafic delay~ 
[4, 5], [5, 6] , . . . ,  [11, 12], and each of the delays was associated with a Boolean vector. By 
introducing Boolean variables for them, the verifier checked which fluctuation among 
[4, 5], [5, 6], .- . ,  [11,12] satisfies the given condition. 

The meaning of each column is also shown in Table 1. For example, the row sjkl 
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Table h Experimental Results 
# O P  time #vax dll d12 v/i 

sjkl 34 62 21 [1,51 [1,11 o 
sjkl* 36 64 21 [1,5] [1,1] o 
sjk2 42 828 33 [7,8] [2,2] o 
sjk3 34 1784 27 [0,0] [1,3] x 
sjk4 15 2118 33 [1,7] [1,2] o 
sjk5 23 - -  43 [1,8] [1,3] - -  
djkl 34 34 19 [1,5] [1,1] x 
djkl + 38 179 24 [9,10] [1,1] o 
djk2 42 907 43 [11,12] [1,2] o 
djk3 58 5658 59 [15,16] [2,3] x 
mjkl 17 '584 43 (4, 12) [1,2] o 
mjk2 22 8777 59 (8,16} [2,3] x 
mjk3 26 - -  67 (17,20) [2,3]- - -  

~ O P :  Number of states in BRTL automata connectives 

t i m e  CPU time (seconds) 
~:var: Number of input and internal Boolean variables 
dl l :  Delays for D1 and D2 
d12: Delays for the rest of gates 

v/i :  o (resp., • means that the verifier found a (resp., no) com- 
bination such that the given condition is satisfied. If there is no 
parameters, o (resp., •  means yes (resp., no). 

means that static delays dl[1,5] and d2[1,5] were assigned to the delay elements D1 and 
D2. The delays of the rest of the gates were fixed to 1. ' - - '  in the column means that  
the verifier failed to finish verification under the limit of SBDD size. 

In sjkl*, the length of the consecutive x in Pulse(x) was parameterized. The result 
shows that at least four l 's is necessary for the required behavior. 

The results for djkl  and djkl + show that, under dynamic delay model, the delays of 
D1 and D2 have to be longer than under static delay model. 

The experimental results show that the cost of verification is very sensitive to the 
increase of the delay values. Especially for static delay model, it is hard to handle a large 
amount of uncertainty, though in sjk4, 72 x 28 possible combinations were checked. 

5 Conc lus ion  

In this report, we have considered formal verification method of speed-dependent asyn- 
chronous circuits which have, in particular, gates with uncertain delays. We have shown 
how to represent delays of gates by parameterized sequential machines or by nondetermin- 
istic sequential machines. When we use parameters, we can obtain all the assignments to 
parameters such that a given specification is satisfied.By using symbolic model checking 
method, some experimental results were shown. 

One of interesting future works is to extend the timing model to treat continuous 
quality. In [7, 6], it has been shown that the model checking for TCTL on continuous- 
time model can be solved decidably and the problem can be reduced to a certain problem 
over finite graphs. This suggests that it would be possible to handle the continuous-time 
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model by symbolic model checking. When we try to use BDD for the verification based 
on continuous-time model, however, much more efficient methods will be required. 
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