
Formal Verification of Speed-Dependent
Asynchronous Circuits

Using Symbolic Model Checking
of Branching Time Regular Temporal Logic

Kiyoha~u HAMAGUCHI t, Hiromi HIRAISHI ~ and Shuzo YAJIMA t
t Department of Information Science, Faculty of Engineering,

Kyoto University, Kyoto, 606, JAPAN.
(F_~mail: hama@kuis.kyoto-u.ac.jp)

Department of Information & Communication Sciences,
Kyoto Sangyo University, Kita-ku, Kyoto, 603, JAPAN.

Abs t rac t Firstly, we show how to deal with bounded uncertain delays of (speed-dependent)
asynchronous circuits for symbolic model checking based on temporal logic. We adopt
discrete-time model. In the modeling of uncertain delays, we consider two models, i.e.
static delay and dynamic delay. These models are interpreted as paraxneterized sequential
machines and nondeterministic sequential machines respecitively.

Secondly, we show a symbolic model checking algorithm for the above sequential ma-
chines. As a specification description language, a temporal logic named Branching Time
Regular Temporal Logic (BRTL) is employed.

A prototype of verification system based on the proposed method has been imple-
mented and some experimental results axe reported.

1 Introduct ion

Asynchronous parts in a logic system tend to be small, because of its difficulty in design.
Their timing verification, however, has to be strict and rigorous, because subtle timing
errors cause wrong behavior of the whole system.

As one of rigorous verification methods, model checking approach based on temporal
logics has been widely studied and applied to verify finite state machines such as pro-
tocols or sequential circuits[I, 2]. Relating to asynchronous circuits, formal verification
techniques of speed-independent/dependent circuits have been researched[3, 4].

Recently, for the purpose of verifying real-time systems, various timing models have
been researched and model checking methods based on the models have been esta.blished[5,
7, 8]. The models can treat uncertain delay rigorously. In [7, 6], model checking algorithms
based on continuous-time model have been proposed and its complexity has also been
shown. Although continuous-time model is the most general, its model checking is hard
to execute because of its high complexity.

ITlds research is partially supported by Japan-USA cooperative research sponsored by JSPS and NSF.

411

In this report, we adopt discrete-time model and introduce uncertainty of delays to the
framework of model checking. Indeed, discrete-time model is not as rigorous as continuous
one, but it will help circuit designers find many errors.

We deal with two types of delay models, i.e, (uncertain} static delay and dynamic
delay. In the static delay model, the delay of a gate is an uncertain integer between a
bounded interval, but the delay does not fluctuate at each time unit. The key idea to
treat this type of delay is to regard each gate as a parameterized sequential machiuc. For
example, a sequential machine M[d] parameterized by a variable d over {2, 3, 4} is used
to model a gate with a delay value d = 2, 3 or 4, where M[i] (i = 1, 2, 3) corresponds to
the gate with the delay value i. A parameterized sequential machine corresponding to a
whole circuit can be constructed from a set of sequential machines associated with gates
in the circuit.

In the other model, i.e., dynamic delay model, the delay for each gate can fluctuate
at each time unit. Each gate of this type is regarded as a nondeterministic sequential
machine. Assume that a delay fluctuates in the range of {3,4,5}. Then the gate is
represented by a consecutive five one-bit registers. The next value for a register is chosen
nondeterministically, depending on which delay value is chosen at the time unit.

The size of the sequential machine representing the whole circuits increases exponen-
tially in the number of elements. Symbolic model checking using BDD (Binary Decision
Diagram) is a recently developed model checking method and has succeeded in verifying
large sequential circuits[2, .9]. In this report, a symbolic model checking algoritlim for
Branching Time Regular Temporal Logic (BRTL) [10] is shown.

BRTL has, as its temporal operators, deterministic finite automata whose edges are
labeled by BRTL formulas. Its expressive power has been proved stronger than CTL.

When we apply model checking to parameterized sequential machines, what is obtained
as a result is all value assignments to parameters such that the given specification is
satisfied. This means that, in the static delay model we handle here, we can obtain all
the possible combinations of delay values such that the specification is satisfied.

Furthermore, BRTL is also extended to express ambiguity of temporal properties by
parameterizing its temporal operators. This extension means that we can describe a
specification with some ambiguity.

In the following, Section 2 explains modeling of static delay and dynamic delay, and
overviews formal verification of asynchronous circuits. Section 3 shows definitions of
BRTL and symbolic model checking for BRTL. Section 4 ~eports some experimental re-
sults.

2 Verification of Asynchronous Circuits: Overview

2.1 Model ing of Stat ic Delays

A pasameterized sequential machine is regarded as a function M : I ---, .A4, where I is
a finite interval of integers and .M is a set of all sequential machines, i.e. M[c] (c E 1)
represents a sequential machine. Parametedzed sequential machines with two or more
parameters are defined similarly.

Since symbolic model checking based on manipulation of logic functions is introduced
in Section 3, we describe parameterized sequential machines by transition relation func-
tions, which represent sets of its transition edges, where a distinguished Boolean vector
is assigned to each of c E I.

In the following, Boolean variables sl, s2,.. , and s~, s~,.., are used to express initial
nodes and terminal nodes of transition edges respectively, i is an input variable.

412

d[1, 4]

Figure 1: Delay Element

Static delay model is used in [11] 2 and it has been shown that the model achieves
higher accuracy in logic simulation, comparing with ambiguous delay model [12]. Let us
consider a delay element shown in Figure I. d[1,4] means that its delay value is either of
1,2,3 or 4. In this model, it is assumed that the delay value does not change at each time
unit, that is, the delay value of a gate is uncertain in its domain but it does not fluctuate.

The transition relation function of the dement in Figure I is the conjunction of the
following logic functions (1) - (4) . By introducing Boolean variables dt and do, we
associate d = 1, 2, 3 and 4 with "~dt ̂ ~do, -~dt ^ do, dt ^ -,do and dt ^ do respectively,

(i) (-~dl A~doA(s~ ---- i))V('-dt AdoA(s~ -- sl))V(dt A-~doA(s~ =-- s2)) V(dt AdoA(s~ - -

s~)),
(2) s~ = s2, (3) s t = s t , (4) s i = i.
If d = 2, i.e. dt -- 0 and do = 1, then the above function represents an dement with

delay value 2.
The output function of the element is s4 for d = 1,2, 3 or 4.

2.2 M o d e l i n g o f D y n a m i c De lays

Dynamic delay model is another modeling of delays bounded by minimum and maximum
values. In this model, d[1, 3] means that the delay value can fluctuate over {1, 2, 3}.
This model contains a complicated problem observed in rise/fall delay model[12] as well.
Assume that a pulse 0 --* 1 --, 0 of width 2 arrives at the input of the delay element. If
delay value 3 is chosen at the first transition of the signals and delay value I is chosen at
the second transition, a signal change at the output which is caused by the first transition
has to be suppressed.

d[1, 3] is modeled by the following function.

((s~ = i) ^ (s t =- i) A (s~ = i)) V
((4 = s2) ^ ((4 -- i) ^ (s l = i)) V
((4 -- s2) ^ (4 -= s~) ^ (4 - i))

The first term ((s~ = i) ^ (s t = i) A (s t = i)) corresponds to the case that the delay
value is chosen to be 1. (s~ - i) A (s t -- i) means that the values stored previously in s t
and s t are suppressed by i.

2.3 Spec i f i ca t ion in B R T L

BRTL is a branching time temporal logic which has deterministic w finite automata as
its temporal operators. Its formal definitions are described in the next ~ection. In thi.-
section, an example of BRTL description is shown.

2h [11], this type of delay is referred to as uncertain delay.

413

Figure 2: JK flip-flop

Figure 2 shows a design of JK flip-flop. A partial specification for the circuit is shown
in Figure 3 (a). Spec is a BRTL formula which contains deterministic w finite automata
shown in Figure 3 (b), which are called automata connectives in the next section.

The.automata accept infinite sequences composed from assignments of true or .[alse to
atomic propositions. Single circles and double circles mean rejecting states and accepting
states respectively. (In BRTL, distribution of accepting or rejecting states are restricted
as shown in Section 3.) If an input sequence hits some accepting states infinitely often,
the sequence is accepted. Otherwise, it is rejected.

In the specification shown here, signal names in the circuit are also used as atomic
propositions of BRTL. "Signal j = 1" corresponds to "j is true". Pulse(x) of Figure 3
expresses that x is true during the first four time units and z stays false after the fifth
time unit. Always(x) expresses that x is always true and Fall(x) expresses that after the
interval of length greater than or equal to 0 where x is true, x stays false permanently.
Intuitively, Spec expresses the timing chart shown in Figure 4.

2.4 Verification

In this section, an overview of verification procedure for a logic circuit is shown.
Firstly a parameterized Kripke structure is constructed from the circuit. Kripke struc-

ture is defined formally in Section 3. We can perform this step symbolically, i.e. through
manipulation of logic functions. More precisely, the conjunction of transition relation
functions corresponding to gates in the circuit comes to represent the Kripke structure
reflecting the behavior of the circuit.

Secondly model checking is performed for the Kripke structure and a given BRTL
formula. If some parameters are used in the model, we can obtain all of the assignments
of integers to the parameters such that the given specification is satisfied. That is, we
can obtain all combinations of delay values such that the circuit works properly. If no
variable is introduced for para~neterization, then the result of model checking is yes/no.

A symbolic model checking algorithm for this step is shown in Section 3.
BRTL of this paper can also express ambiguity in specification by parameterizing

automata in its formulas with wriables. For example, Pulse[~(x) in Figure 5 means that
d is the length of the first interval where x is true. The domain of d is a bounded interval
of integers {3, 4, 5, 6}. The result of model checking for this specification contains the
information about d such that the specification is satisfied.

414

Spec = V((Pulse(c) A Always(",j A k)) =~ Fall(q)

(a) Specification

Pulse(x) Fall(x)
Always(x: t x

"~X

true

- n x

" n X

k.) true
x

(~ accepting
O rejecting

(b) Automata connectives

Figure 3: Specification for JK flip-fiop (1)

1
c77. 0
j 1

0
1

q I 0

Figure 4: Timing Chart for JK flip-flop

Spec -- V((Pulse[~(c) A Always(-~j A k)) =~ Fall(q)

(a) Specification

~ A(d= 4,)

x A (d = 6) ~) u e

P~e[d](x)
(b) Autgmaton connective

Figure 5: Specification for JK flip-flop (2)

415

3 B r a n c h i n g T i m e R e g u l a r T e m p o r a l L o g i c a n d I t s S y m b o l i c

M o d e l C h e c k i n g

3.1 B r a n c h i n g T i m e R e g u l a r T e m p o r a l Logic

The definition of BRTL in this report is different from that of [10]. Firstly, it is parame-
terized and, secondly, Boolean operations of automata connectives in the scope of a path
quantifier are allowed.

I~ = {all, a~2,. �9 a~m} (i = 1, 2 , . . . , w) is called a finite interval, where a~j are integers
and alj+t = alj + 1. D = (d r , . . . , do) is called a variable list, where dl (i = 1, 2 , . . . , w)
is a variable over / / . D is fixed in the following section. I ~ /1 • I9. • . . . • I~, is the
domain of D. c �9 I is called an environment. Vr represents tautology.
Def in i t i on 1 A deterministic w finite automaton type 1 (dfa-1)

A[D] = (Q, P, Br, qo, F) is defined as follows.
Q is a set of finite number of states and P = { p t , " ' ,p,,} is a set of propositional

variables, q0 is the initial state. F is a set of accepting states and the elements of Q - F
are called rejecting states. Let B F be a set of all propositional formulas constructed from
the elements of P. Br : Q • Q • I ~ B F is a partial function which satisfies the following
three conditions.

Consider Br(q, Q, c) = {fl3q'.Br(q, q', c) = f} , for q �9 Q and c �9 I.
(i) f~ ̂ f2 = V~, for any ft, fu �9 Br(q, Q, c).
(2) Vj~,.(,,,,~,=) f = VT �9

A[D] accepts or rejects infinite sequences composed from the elements of A = 2 e
under a given environment c. The transition function of A[D] under c is defined to be
6c: Q • A --* Q such that 6r v) = q' r Br(q, q', c)(v) = T, where v �9 A

A[D] under an environment c is described as A[c]. In A[c], the third argument of Br
is fixed to c.

For a �9 2 ~ Inf(a) is defined to be the set of the states through which A[c] goes
infinitely often. Then the set of words accepted by A[c] is {alInf(a) N F is not empty }
and is described by (A)~.

(3) Under any environment c, there exists no path from a rejecting state q, to q, itself
via some accepting state q~. [:3

L e n u n a 1 For a dfa-1 A[D] = (Q,P, Br, qo, F), a dfa-1 A[D] which accepts Z~" - (A)~
for each environment c is obtained by exchanging accepting states and rejecting states of
A[D].
L e m m a 2 For dfa-l 's Ai[D] = (Q . ~ , P , Bri, 6i,qlo, Fi) (i = 1,2), a df~-I At[D]IA2[D]
which accepts (At)= U (A2)c for each c is obtained as follows:

Q = Q,t x Q2 = {(qt,q2)lql �9 Q t , q2 �9 Q~}, qo = (qto, q20) and F = {(qt,q2)lqt �9 Ft
or q2 �9 Q • Q BF is defined by Br((qt ,q2),(q~,q~),c) = Br t (q t ,q [, c) A
Brl(q2, q~,c), where ql, q[�9 Qi (i = 1,2) and c = c(D), and both of Brt(ql,q~,c) and
Brt (q2, q~, c) are defined. El

D e f i n i t i o n 2 S[D] = (E, As, R, E0) is called a Kripke structure, where E is a set of
nodes, As : E ~ 2 ~p is an assignment function, R C_ ~ x E x I is a total relation for each
c E I, i.e, there exists s' E ~. such (s, s', c) E R for any s E E. ~0 C r. is a set of iaitiM
states.

S[D] under an environment c, denoted by S[c], is a Kripke structure such that R is
fixed by c. O

416

Definition 3 Syntax and Semantics
The syntax of BRTL is as follows:

BRTL formulas:
Let p be an atomic proposition in AP, r and r be BRTL formulas, and B be an

automaton connective. Then p, --r and r V r and 3B are BRTL formulas.
Automata connectives

Let A[D] be a dfa-1 and B, BI, B2 be automata connectives. Then A[D](r r �9 �9 �9 ~,),
--B and BI V B2 are also automata connectives.

A[D](r r r is obtained by replacing each atomic proposition p~ E P (1 < i <
n) with r C_ B F corresponding to pl simultaneously.

The semantics of BRTL is defined on a Kripke structure S[D] = (E, I, R, Eo) under a
given environment c. S[D], s ~ f means that the BRTL formula f holds at the state s
on S[D] under c. In the following, p E AP, r and ~b are BRTL formulas and A[D] is a
dfa-1 and B is aJa automaton connective. Trans(B) represents an automaton connective
obtained by applying Lemma 1 and 2 to B until all of ~ and v in B are deleted.

�9 S[D], s ~ p if[p e As(s)

�9 S[D], s ~r r V !b iff S[D], s ~r r or S[D], s ~, ~p
�9 S[D], s ~r -~r iff S[O], s ~ , r
�9 S[O], s ~r BA[D](r r r iff there exists an infinite sequence a = sos,s2. . .

starting from s on S[c] and a run (a sequence of states) qoqtq2"" in Q such that,
S[D], si ~r Br(qi, q~+~, c) holds and at least one state q E Q which appears infinitely
in the run is in F.

�9 S[D], s iff S[D], s 3(Trans(B))
If Ys E P.0.S[D], s f , then we describe S[D] f. 0

The Boolean operators A, -- and =~ are also used. Besides we define VB d,=f "-3",B

and V-~B ~ ~3B.

3.2 Symbol i c M o d e l Check ing of B R T L

The symbolic model checking technique shown in this section is an extension of the meth-
ods found in [2]. The difference is that parameters have to be handled.

Def in i t ion 4 Model checking problem
Given a Kripke structure S[D] and a BRTL formula r model checking problem is to

obtain a set of environments c under which S[D] ~c r holds. []

In the following, a unique code composed from B = {0, 1} is assigned to each node on
the Kripke structure. For a node s, cd(s) represents the code ass ign~ to s. Assume that
n bit of vector is required to represent s E ~. ~'= sl, s2,-. , 8, and s' s~, s.~,..., a,, are
defined to be variable vectors over B".

Each c E I is also encoded by B. For each cl E h, cd(cl) represents the code assigned
to c~ and cd(c) is the concatenation from cd(Cl) to cd(cw). If nl bit is required to encode
Ch then ~ is a variable vector over/3"' and Fis a variable vector over B s~'i.

The Kripke structure is represented by logic functions:

1. Transition relation: fs(cd(s), cd(s'), cd(c)) = 1 iff (s, s', c) fi R.
2. Assignment of atomic propositions: fp(cd(s)) = 1 iff p e As(s).

417

3. Initial states: f~,,u(cd(s)) = 1 iff s E E0

Besides the above vector variables, q~ and ~ are used for each dfa.1 Aj[D] in the
BRTL formula r The code for a state qj in Aj[D] is represented by cd(qj).
A l g o r i t h m 1 model checking algorithm

�9 Input: BRTL formula r and the above fs, fp and fin,.

�9 Output: The logic function f,,,~(c-) such that f~,,,(cd(c)) = 1 iff S[D] ~ ~,.
�9 Method: Shown below.

1. For each dfa-1 Ai[D] in r the following logic functions are constructed:

�9 For each (qj, qj,c) E Qj x Qi x I, fgi(C,D(cd(qi),cd(qj),cd(c)) = 1
r Br(qj, qj, c) =- ek.

�9 qj is an accepting state of Aj ~ fF~(cd(qj)) = 1

2. For each subformula r of r a logic function f~,(g, c') which represents S[D], s ~c ~bi
is constructed in bottom up manner. Let 0, 01,02 are BRTL formulas.

(a) If r is an atomic proposition, f~, is returned.
(b) If r is 01 v 02 or --,0, then fa~ v02 = foi V f01 and f~s = -'f0 are returned.
(c) If r is 3B, then the following i.- vi. are performed.

i. For each Aj[D](r r162 (J -- 1 ,2 , . . . , m), vectors of variables

representing the states of Aj, q~ and ~ are introduced. Let ~'= q ~ : q ~ . . �9

~q~,, and ~ = ~ # - . . ~q~, where ~ means concatenation of vectors.
Let Q be defined as QI x Q~ x . . . Q~. t7 d,__.f g ~ . and ~ dej 8~:ff::.

it. A logic function fB(6, ~, c~ is constructed, which represents a set of edges
of the graph G consisted of the nodes ~ x Q.

= A.iffii,2,...,,,,{V,fi,2,...,,,,(fg,(%,)(q.i, q), c-")AA,, (.r r ~I, c")
iii. A logic function fF~ (q-') is constructed, which represents the set of accepting

states of Ttans(B). It is calculated recursively as follows:

�9 If B = Ai[D](42jx, ~bj2,... , r then f . . (q ') d~ f,,(~).
�9 If B -- -~Bi, then f,B(q3 de_~f _.ifFB ! (3.
�9 I f B = B1VBi , then fx'B(q'~ de.~f f~a , (~ V f l ~ (~ .

iv. Let V' be aset of nodes {(s, q)lf~Acd(q)) -- ~} ~ d G' be a restriction of G
to V'. A logic function fc,(G, ~ is constructed, which represents the set of
nodes which axe in strongly connected components of G' or axe i:eachable
to the strongly connected components.

fg,(17, ~, c-'J a,,__f fFB(!13 A/h"B(q;) A fg(G, V";, C")
Set f~ ~ dd= f~,(~, ~ . fb' , """ Sg, are calculated until , v ~ - f$0' holds.

i + l "* d e f " i "*
f~, (,,, ~ = (3::.(fv(~, ::, ~ ̂ fb,(::, ~)) ^ fb,(~,,

fc,(~, ~ ~ I~,(~,
v. A logic function fR is constructed, which represents the set of nodes which

are in G and reachable to Vo,. Set fo(v, ~ d.___, fc,(G, c-). fA, f~,"" f~ are
calculated until f~+i = f~ holds.

418

~g

Figure 6: Automaton connective: Change(x)

(d)

v

vi. f~,(g, ~ ~ 3(.(f~t(g, (, ~ ^ fx(q-~), where f/(q-~ represents the initial state
of B.

(Vcel f~(c)) A V~'.(fi,,i,(s") ::r f,(g, ~) is returned, where fez(c) represents a
logic formula (minterm) representing cd(e).

4 Experimental Results

A prototype verifier based on the above methods was implemented. The verifier is written
in language C and runs on a SPARC 1+ workstation. This prograzn utilize~ tile Boolean
function manipulator developed by Minato et.al. [13], which uses SBDD (Shared Binary
Decision Diagram) representation as its internal representation. SBDD is an improvement
of the binary decision diagram[14], which shares all possible subgraphs among multiple
functions. There are many advantages besides those of the BDD. For example, equivalence
of two functions can be checked only by comparing the pointers.

For the purpose of efficient manipulation of SBDD, the whole transition relation func-
tions axe not generated. Each of logic functions corresponding to the gates in the circuits
is handled separately as shown in [15].

Each element in the circuit is initialized to an arbitrary stable value, that is, the set of
all stable states of the circuits is used as the set of initial states for the verifier. The verified
conditions are fl for sjk4, sjk5, mjkl, mjk2 and mjk3, and f2 for the others. (Change(,r)
is shown in Figure 6.) The length of the consecutive x in Pulse(C) is adjusted for each
example. For all the examples, SBDD size is limited to 500,000.

fl = V ((P u l s e (C) A Always(-',J A K)) :=~ (Fall(Q))) (1)
A = V((Pulse(C) A Always(--,: A K)) =~ (Fall(Q) A Fall(',q'))) A

V((Pulse(C) A Always(g A K)) =~ (Change(Q) A Change(Q')) (2)

The verification results for the circuits in Figure5 are shown in Table 1. Several
combinations of the delay values were checked.

Static delay model was used for sjk's and dynamic delay model for djk's, mjk's mean
that, for example, the delays [4, 12] for D1 and D2 were divided into eight dynaafic delay~
[4, 5], [5, 6] , . . . , [11, 12], and each of the delays was associated with a Boolean vector. By
introducing Boolean variables for them, the verifier checked which fluctuation among
[4, 5], [5, 6], .- . , [11,12] satisfies the given condition.

The meaning of each column is also shown in Table 1. For example, the row sjkl

419

Table h Experimental Results
O P time #vax dll d12 v/i

sjkl 34 62 21 [1,51 [1,11 o
sjkl* 36 64 21 [1,5] [1,1] o
sjk2 42 828 33 [7,8] [2,2] o
sjk3 34 1784 27 [0,0] [1,3] x
sjk4 15 2118 33 [1,7] [1,2] o
sjk5 23 - - 43 [1,8] [1,3] - -
djkl 34 34 19 [1,5] [1,1] x
djkl + 38 179 24 [9,10] [1,1] o
djk2 42 907 43 [11,12] [1,2] o
djk3 58 5658 59 [15,16] [2,3] x
mjkl 17 '584 43 (4, 12) [1,2] o
mjk2 22 8777 59 (8,16} [2,3] x
mjk3 26 - - 67 (17,20) [2,3]- - -

~ O P : Number of states in BRTL automata connectives

t i m e CPU time (seconds)
~:var: Number of input and internal Boolean variables
dl l : Delays for D1 and D2
d12: Delays for the rest of gates

v/i : o (resp., • means that the verifier found a (resp., no) com-
bination such that the given condition is satisfied. If there is no
parameters, o (resp., • means yes (resp., no).

means that static delays dl[1,5] and d2[1,5] were assigned to the delay elements D1 and
D2. The delays of the rest of the gates were fixed to 1. ' - - ' in the column means that
the verifier failed to finish verification under the limit of SBDD size.

In sjkl*, the length of the consecutive x in Pulse(x) was parameterized. The result
shows that at least four l 's is necessary for the required behavior.

The results for djkl and djkl + show that, under dynamic delay model, the delays of
D1 and D2 have to be longer than under static delay model.

The experimental results show that the cost of verification is very sensitive to the
increase of the delay values. Especially for static delay model, it is hard to handle a large
amount of uncertainty, though in sjk4, 72 x 28 possible combinations were checked.

5 Conc lus ion

In this report, we have considered formal verification method of speed-dependent asyn-
chronous circuits which have, in particular, gates with uncertain delays. We have shown
how to represent delays of gates by parameterized sequential machines or by nondetermin-
istic sequential machines. When we use parameters, we can obtain all the assignments to
parameters such that a given specification is satisfied.By using symbolic model checking
method, some experimental results were shown.

One of interesting future works is to extend the timing model to treat continuous
quality. In [7, 6], it has been shown that the model checking for TCTL on continuous-
time model can be solved decidably and the problem can be reduced to a certain problem
over finite graphs. This suggests that it would be possible to handle the continuous-time

420

model by symbolic model checking. When we try to use BDD for the verification based
on continuous-time model, however, much more efficient methods will be required.

Acknowledgements
The authors would like to thank anonymous referees for helpful comments.

References

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach. In
lOth ACM Symposium on Principles of Programming Languages, pages 117-126,
January 1983.

[2] J. R. Butch, E. M. Clarke, K. L. McMillaaa, D. L. Dill, and J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings of 5th 1EEE Symposium
on Logic in Computer Science, June 1990.

[3] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic Verification
of Sequential Circuits Using Temporal Logic. 1BEE Transactions on Computers,
C-35(12):1035-1044, December 1986.

[4] D. L. Dill and E. M. Clarke. Automatic Verification of Asynchronous Circuits Using
Temporal Logic. 1BE Proceedings, 133:276-282, September 1986.

[5] 1~. Alur and D. Dill. Automata for Modeling Real-Time Systems. In Proceedings of
ICALP 90" 1990.

[6] R. Alur, C. Courcoubetis, mad D. Dill. Model-Checking for Real-Time Systems. In
Proceedings of 5th IEEE Symposium on Logic in Computer Science, pages 414-425,
June 1990.

[7] H. R. Lewis. A Logic of Concrete Time Intervals. In Proceedings of 5th 1EBB
Symposium on Logic in Computer Science, pages 380-389, 1990.

[8] J.S. Ostroff. Automated Verification of Timed Transition Models. Automated Veri-
fication Methods for Finite State Systems, pages 247-256, 1989.

[9] O. Coudert, C. Berthet, and J-C. Madre. Verification of Sequential Machines Using
Functional Vectors. Proceedings of 1MBC-IFIP International Workshop on Applied
Formal Methods]or Correct VLS1 Design, pages 111-128, November 1989.

[10] K. Hamaguchi and H. Hiraishi and S. Yajima. Branching Time Regular Temporal
Logic for Model Checking with Linear Time Complexity. Workshop on Computer-
Aided Verification, June 1990.

[11] Nagisa Ishiura, Yutaka Deguchi, and Shuzo Yajima. Coded Time-Symbolic Simula-
tion Using Shared Binary Decision Diagram. Proceedings of 27th Design Automation
Conference, pages 130-135, 1990.

[12] M. Abramovici, M. A. Breuer, and A. D. Freidman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[13] Shin ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared Binary Decision Diagram
with Attributed Edges for Efficient Boolean Function Manipulation. Proceedings of
PTth Design Automation Conference, pages 52-57, 1990 �9

[14] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677--691, August 1986.

[15] J. R. Butch, E. M. Clarke, and D. E. Long. Representing Circuits More Efficiently
in Symbolic Model Checking. Proceedings of ~Sth Design Automation Conference,
June 1991.

