
C o m p l e x i t y R e s u l t s f o r P O M S E T L a n g u a g e s

Extended Abstract - CAV '91 proceedings 1

J o a n F e i g e n b a u m
AT&T Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974

J e r e m y A. K a h n
Math Department

University of California
Berkeley, CA 97420

C a r s t e n L u n d
AT&T Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974

Abs t r ac t

Pratt [13] introduced POMSETs (partially ordered multisets) in order to de-
scribe and analyze concurrent systems. A POMSET P gives a set of temporal
constraints that any correct execution of a given concurrent system must satisfy.
Let L(P) (the language o] P) denote the set of all system executions that satisfy
the constraints given by P. We show the following for finite POMSETs P, Q, and
system execution z.

�9 The POMSET Language Membership Problem (given x and P, is z E L(P)?)
is NP-complete.

�9 The POMSET Language Containment Problem (given P and Q, is L(P) C_
L(Q)?) is II~-complete.

�9 The POMSET Language Equality Problem (given P and Q, is L(P) = s
is at least as haxd as the graph-isomorphism problem.

�9 The POMSET Language Size Problem (given P, how many z are in L(P)?)
is span-P-complete.

1 I n t r o d u c t i o n

Verification of concurrent systems has been studied as a formal language-containment

problem for a number of years [1, 15, 5]. In this formulation, one is given a model M

represented by a finite transition structure such as a finite state machine, au tomaton or

Petri net (sometimes termed an implementation), together with an abstraction A of the

model, represented by an automaton or logic formula (sometimes termed a specification,
defining a property to be proved about the model M). The verification problem consists

of testing whether L(M) C L(A), where L(X) is the formal language associated with X.

Typically, M is large and therefore defined implicitly in terms of components. An inherent

difficulty in this approach is the computational complexity of the language containment

test as a function of the size of the representation of M in terms of components. For

example, if M is defined in terms of coordinating state machines, then the size of M grows

geometrically with the number of components defining it, and the language containment

1 Becanse of space limitations, s o m e of the results in this extended abstract are stated without proof .
All proofs are given in the journal version of the paper, which is available in preprint form from the first
author.

344

problem is PSPACE-complete [6, AL6, page 266]. This computational complexity issue
has been addressed by a number of heuristics, notably homomorphic reduction [11, 10],
inductive methods [2, 12], binary decision diagrams [4, 3, 16], and partial orders [7, 14].

In this paper, we consider the language containment problem for POMSETs (partially

ordered multisets), which were introduced by Pratt [13]. Both the implementation and

the specification of a system can be represented by POMSETs as follows. Let ~ denote

a finite set of ac t ions that the system can perform. So actions are things like "send 0 to

processor p," "receive message m from processor q," and "wait." Each v e r t e x v in the

POMSET P corresponds to a distinct event . Intuitively, an event is a logical "step" taken

by the system. The label l (v) is an element of ~], and distinct vertices may have the same

label; this corresponds to the fact that a given action (say "send 0 to processor p") may

be performed several times by the system during any execution. Each arc (v, w) in P

represents a cons t ra in t of the form "event v must occur before event w in any execution

of the system." For example, if l (v) is "receive message m from processor p," and l (w)

is "if the value of register r is equal to m then signal processor ql, else signal processor

q2," then the arc (v, w) has the obvious interpretation. The language of P is simply the

set of all correct executions of the system.

The following example motivates the use of POMSETs. The language L = {abilbi=

�9 . . h i , a } , where i l i2 �9 . . in is a permutation of 12. . . n and all of the bi's are distinct, arises
often in the description of concurrent processes. Its meaning is "perform action a, then

perform each of the actions bl through bn in any order, then perform action a again."
An NFA that accepts L must have at least 2" states. POMSETs, however, offer a much
more compact representation: The (n + 2)-node POMSET of Figure 1 represents L.

Formally, the problem of interest is: Given POMSETs P and Q, is the language of P
a subset of the language of Q? We call this the PLC problem, for POMSET Language

Containment.

The POMSET P represents the implementation and Q the specification. We show that

the PLC problem is HE-complete.

Note that P and Q are both finite POMSETs. Thus the languages in question are

finite, and the strings in them are of finite length. If we were presenting an algorithm

for PLC, this finiteness restriction would render the algorithm impractical, because real

concurrent systems produce infinite sets of infinite sequences. However, we are giving a

lower bound on the complexity Qf PLC, and hence the finiteness restriction makes our

result all the more meaningful: Even in this restricted case, the problem appears to be

intractable.

We also give an NP-completeness result for the following simpler problem: Given a

345

POMSET P and a string z, is x in the language of P? This is called the PLM problem,

for POMSET Language Membership.

Once again, the finiteness restriction only strengthens our result, because we are providing

a lower bound rather than an algorithm.

In the journal version of this paper, we also consider the following two problems. The

POMSET Language Equality problem (PLE) is: Given two POMSETs P and Q, is the

language of P equal to the language of Q? The POMSET Language Size problem (PLS)

is: Give a POMSET P, what is the number of strings in the language of P? We show

that PLE is at least as hard as the graph isomorphism problem and that PLS is complete

for the complexity class span-P (cf. KSbler, SchSning, and Toran [91/.

2 D e f i n i t i o n s and N o t a t i o n

Throughout this paper, P and Q denote (finite) POMSETs, and x denotes a (finite.)

string. We now fix these ideas precisely.

Def ini t ion 2.1 A P O M S E T P is a triple (V, A, l). The ver tex set V (P) consists of

a finite number n of distinct elements { v l , . . . , vn}, called the events. The are set A (P)

consists of a set of ordered pairs (v, w), where v and w are distinct elements of V, called

the const ra in ts . The directed graph (V(P) , A (P)) is acyclic. The mapping l : V ---*

assigns an act ion to each event in V, and l(v) is called the label of vertex v.

Recall that a linear ordering on V = (v l , . . . , vn} extends a partial ordering of V if,

for all pairs vi, W of distinct elements in V, v/ < vj in the partial ordering implies that

vi < W in the linear ordering. Technically, a DAG (directed acyclic graph) may not be

a partial ordering, because it may not be transitively closed. When we say that a linear

ordering on V extends the DAG (V, A), we mean that it extends the transitive closure
of the DAG.

Def in i t ion 2.2 The l anguage L(P) of a P O M S E T P = (V, A, l) is a subset of E n,

where n = IV(P)l. The st ng is in L(P) if there is a tinear ordering . . . v i .

of the vertex set V that extends the DAG (V,A) and satisfies l(vi~) = ~rj, for 1 < j < n.

346

3 PLC is II -Complete
T h e o r e m 3.1 The PLC problem is II~-complete.

P r o o f : First note that it is obvious that PLC is in II~. Suppose that we wish to

know whether L(P) is contained in L(Q), where Y(P) = {vz , . . . , v , } and V(Q) -
{w z , . . . , w,}. The following is a II~ expression for L(P) C L(Q): For all linear orderings

vll . . .v i . , there exists a linear ordering wjl . . .wj~ such that if vi~ . . .v~. extends A(P),
then wj , . . .w j , extends A(Q) and l(vik) -- l(wjk) for 1 < /r < n. The hypothesis "if

v i , . . . v i , extends A(P)" is equivalent to "if l(vl,)...l(vi~) E L(P)," and the conclusion

"then wj, . - .wj~ extends A(Q) and l(vik) -- l(wjk) for 1 _< k < n" is equivalent to

" l (wi ,) . . . l (wi~) e L(Q) and is equal to l (v i ,) . . . l (v i .) . "

It is also obvious that PLC is NP-hard, because PLM is the special case of PLC in

which L(P) contains just one string, and PLM is NP-complete (see Section 4 below).

We show II~-completeness by reduction from the following II~-complete problem

(cf. [6, page 166]).

N o r m a l i z e d B~:

Input : Two sets {wz , . . . , w,~} and {Yl , . . . , Y,} of boolean variables and a set { c l , . . . , ek}

of clauses. Each clause is of the form a =~ b V c V d, where a is either wi or ~'~ for some i

and each of b, c, and d is yj or ~-~ for some j .

Question : Is it the case that , for every t ru th assignment to the wi's, there exists some

t ruth assignment to the yj 's such that every cz is satisfied?

Given an instance (W - {w l , . . . ,wm} ,Y = {Y l , . . . , y , } ,C - {cz,. . . ,ck}) of nor-

malized B~, we construct an instance (P, Q) of PLC as follows.

In V(P), there are three disjoint sets of vertices. The first group contains n vertices,

labeled yz through Yn. The second group in V(P) contains 2rn-t-k vertices. For 1 < i < m,

there are two vertices in this group labeled w~; we refer to them as "the positive wl vertex"

and "the negative wi vertex." For 1 < l < k, there is one vertex in the second group

labeled ct. The third group of vertices in V(P) is of size n + 3k. There is one vertex

in this group labeled yj, for 1 ~ j < n, and there are three vertices in the third group

labeled cz, for 1 < l < k. For every clause cz in which wi appears on the left side of

the implication, there is an arc in A(P) from the positive wi vertex to the second-group

vertex labeled ct; for every ca in which ~ appears on the left side of the implication,

there is an arc in A(P) from the negative wi vertex to the second-group vertex labeled

cz. Every w vertex in the second group is joined by an arc to every c vertex in the third

group. The rest of the arcs that make up A(P) can be seen in Figure 2, where an example

347

of this construction is given. The subscripts are omit ted f rom the labels of some clause

vertices in order to reduce clutter.

In V(Q), there are two vertices labeled yr for 1 < j < n, and two vertices labeled

wi, for 1 < i < m. These are referred to as "the positive yj (resp. wi) vertex" and "the

negative yj (resp. w~) vertex." V(Q) also contains four vertices labeled ct, for 1 < I < k.

One group of these c vertices is associated with the y vertices; each c vertex in this group

has in-degree 1. For each clause ct in which the literal yj appears on the right side of

the implication, there is an arc from the positive yj vertex to a ct vertex. Similarly, for

each clause cl in which the literal ~-~ appears on the right side of the implication, there is

an arc from the negative yj vertex to a ca vertex. Note tha t each label ct appears three

t imes in this group, once for each literal in the clause. The second group of c vertices is

associated with the w vertices; each c vertex in this group has in-degree 2. I f wi or ~'~

appears on the left side of the implication in clause ct, then there are arcs f rom both the

positive wi vertex and the negative wl vertex to the ct vertex in the second group. See

Figure 3 for an example of this construction. Once again, subscripts are omi t ted f rom

some clause vertices to reduce clutter.

Suppose tha t (P, Q) is a yes-instance of PLC; so L(P) is contained in L(Q). We must

show that (W, Y, C) is a yes-instance of B~. Choose an assignment of t ru th values to the

variables in W. We will construct an assignment of t ruth values to the variables in Y

that , together with the initial assignment to those in W, satisfies all the clauses in C.

Consider the string

X " - Y l " " " Y n I J J l " " " W r n C q l " " " C q ~ Y l �9 �9 " y n W l �9 �9 " r I �9 �9 " C d k

in L(P) tha t is formed as follows. The prefix Yl '"Vn comes f rom the first group of

vertices in V(P). In the first substring wl. . .wm, each wi represents a choice between

the positive wl vertex and the negative wi vertex within the second group in V(P). The

substring cq~ . . . cqt corresponds exactly to the clauses tha t are nontrivial to satisfy: I f a

clause vertex r in the second group in V(P) is adjacent to the positive wi vertex and wi

is T R U E in the initial assignment, then l(v) goes into the substring cq~ �9 �9 .cqt; similiarly,

if v is adjacent to the negative wi vertex and wl is FALSE in the initial assignment, then

l(v) goes into the substring cq~ �9 -. cqt. The rest of the string z is constructed in any way

that is consistent with the constraints in A(P) , subject to y's, then w's, then c's.

Note tha t z is always in L(P). Because (P, Q) is assumed to be a yes-instance of

PLC, z is also in L(Q). Consider the vertices v(cq~), . . . , v(cq~) in V(Q) tha t give rise

to the substring cql . . . cqt of z. These vertices must all be in the first group of c vertices

in Q - tha t is, they must be in the group whose incoming arcs s tar t with y's. This is

because none of cg~, . . . , cqt is preceded in z by two occurrences of wi, for any i. If v(cq~)

348

is connected to the positive (resp. negative) yj vertex, then assign the variable yj the

value TRUE (resp. FALSE). Assign arbitrary values to any remaining y variables. Note

that no conflicts arise in making this assignment - that is, each yj is assigned one value.

This is because each yj symbol appears once in the prefix of x, and hence only one of

the two yj vertices is used; if the yj vertex that 's used is adjacent to two vertices v(cqz I)

and v(cq~2), then either yj appears in both Cqz ~ and cqz 2 or Y-7 appears in both cg~ and

cq~ 2 . This assignment, together with the initial assignment to the w variables, satisfies

all of the clauses in C. Because the initial assignment to the w variables was arbitrary,

this shows that (W, Y, C) is a yes-instance.

Now suppose that (W, Y, C) is a yes-instance of normalized B~. Let x be an arbitrary

element of L(P) in the corresponding instance of PLC. We must show that x is also in

L(Q).

We construct a t ruth assignment that corresponds to x as follow. Each symbol in

x comes from a vertex in a linear ordering of V(P) that extends A(P). Take the first

occurrence of wl in x, and see whether it corresponds to the positive wl vertex or the

negative wi vertex. If positive, assign the variable wi the value TRU E and, if negative,

assign it FALSE. Because (W, Y, C) is a yes-instance, there must be an assignment of

t ru th values to the y variables that , together with the assignment to the w's, satisfies

every clause in C. This assignment to the y's corresponds to the prefix yl ""Y,~ of x in

a way that will become clear below. Denote by A the full assignment to y's and w's.

Call a y vertex or w vertex in V(Q) "active" if it corresponds to the t ru th assignment

A - e.g., the positive yj vertex is active if and only if the variable yj is TRUE in A.

Now Q is the disjoint union of subPOMSETs Q1 and Q2, where Qz contains exactly the

active y vertices and the c vertices that are connected by arcs from active y vertices, and

Q2 contains exactly the active W vertices aud the c vertices that are connected by arcs

from active w vertices.

The only nontrivial task involved in finding a linear ordering of V(Q) that extends

A(Q) and gives rise to x is this: Suppose that clause et contains the variable wl and

that the first occurrence of the symbol ct in x falls between the two occurrences of the

symbol wi; what is the vertex in V(Q) that gives rise to this first occurrence of cz? By

construction, this vertex can be found in V(Q1) - that is, the active y vertices correspond

to the prefix yl " " g n of x. Thus x is in the shuffle of L(Qz) and L(Q2), which is L(Q).

I

There are some special cases of PLC that are easily solved in polynomial time. For

example, if each element of ~ occurs at most once as a label in each POMSET, the~

there is at most one bijection r from V(Q) to V(P) , given by the labels. If no such

349

exists, L(P) ~= L(Q). Otherwise, let T(P) (resp. T(Q)) be the transitive closure of A(P)

(resp. A(Q)). It is easily seen that L(P) is contained in L(Q) if and only if, for every

arc (v, w) in T(Q), the arc (r r is in T(P) . We call this the unique-label case of

PLC.

Similarly, the no-autoconcurrence case of PLC is solvable in polynomial time. "No

autoconcurrence" means that, if v and w are in V(P) (resp. V(Q)), and l(v) = l(w),
then either (v, w) or (w, v) is in A(P) (resp. A(Q)). The no-autoconcurrence case can be

reduced to the unique-label case as follows: For each a E]C, let v l , . . . , Vm be all of the

vertices of POMSET P with label a. These vertices must be linearly ordered in A(P) , or

else there would be autoconcurrence. If the linear order is vii < . . . < vim, then relabel

these vertices l(vil) = hi1, . . . , / (v im) -- aim, where the aij's are not in ~. Do the same

for all of the vertices with label a in Q, once again using the labels hi1, . . . , aim.

4 P L M is N P - C o m p l e t e

T h e o r e m 4.1 The PLM problem is NP-complete.

Proof: Once again, it is obvious that PLM is in NP. To verify that z = 0"1 ""~ is in

P = (V, A), where V - { v l , . . . , vn}, simply guess a linear ordering vii . . . vi, of V, and

check that each arc in A joins a pair of vertices vi~,, vii2 with Jl < j~ and that l(vi) = ai
for each i.

We show completeness by reduction from the archetypal NP-complete problem 3SAT.

Recall the statement of this problem.

T h r e e Sa t i s f i ab i l i t y (3SAT) :

Input : Clauses ci, ..., ca on boolean variables Yl, ..., Ym. Each cj is of the form

cj~ V cj2 V cjs, where each cjk is either yi or ~'T for some/.

Question : Is there an assignment of truth values to the variables Yl, ..., Ym that satisfies

all of the clauses ci, ..., ca simultaneously?

Given an instance (C = {cl,...,cn},Y -- {Yl,.-.,Ym}) of 3SAT, we construct an

equivalent instance (z, P) of PLM as follows. The vertex set V of P contains two vertices,

say vil and vi2, for each variable yi and three vertices, say wjl, wj2 , and wj3 , for each

clause cj. Vertices vi~ and v/2 have label Yi, and vertices wjl , wj2 , and wj3 all have label
cj. For each clause cj, consider the variables (say Yr, Y~, and Yt) that occur in cj. Put in

exactly one of arcs (vr~, wjl) and (vr2, wj~) (resp. [(v,~, wj2) and (v,2, wj2)] and [(vt~, wj~)

350

and (v~2, wj3)]), by choosing the first if yr (resp. y8 and y~) occurs in cj and the second
if ~ (resp. y'-7 and ~) occurs in cj. The string in the PLM instance is

X : - Y l " " " y m C l �9 �9 �9 C n Y l �9 " " y r n C l e l C 2 C 2 �9 �9 �9 CnCn.

See Figure 4 for an example of this construction.

It is easily seen that (x, P) is a yes-instance of PLM if and only if (C, A) is a yes-
instance of 3SAT. The key point is that the choice of vertices that map to the prefix
Y l "" �9 Y m of x corresponds exactly to the choice of truth values in the satisfying assignment

and that this choice "covers" the first occurrence of each cj symbol in x. |

An alternative proof of Theorem 4.1, based on a reduction from the CLIQUE problem,

was subsequently given by Kilian [8].

In the journal version of this paper, we show that the special case of PLM in which

each label in ~ occurs at most twice is solvable in polynomial time.

5 R e s u l t s o n P L E a n d P L S

Proofs of the following two theorems are given in the journal version.

T h e o r e m 5.1 T h e PLE p r o b l e m i s a s h a r d a s g r a p h i s o m o r p h i s m .

T h e o r e m 5.2 T h e PLS p r o b l e m i s s p a n - P - c o m p l e t e .

6 D i s c u s s i o n

A natural next step to take is to identify interesting special cases of PLC and to develop
algorithms for these cases. For these algorithms to be practical, they would have to test

containment of infinite languages of infinite sequences. It is unclear how to represent

such languages by POMSETs so as to facilitate language-containment testing. Some
candidate representations are suggested in Pratt's original paper and in Probst-Li [14].

We propose the following notation. Each language is represented by a deterministic

Bfichi automaton A and a collection PI, . . . , Pk of POMSETs. Assume that each P i

exhibits no autoconcurrence. Each transition of A is labeled by a POMSET Pi. The

language given by (A, PI,..., Pk) consists of all sequences wil wi2"" ", where Pi~ Pi=""
is in L (A) a n d w ~ j is in L (P i ~) .

351

Suppose that (A, P1 , . . . , Pk) and (B, Q I , . . . , Qk) are two such representations. Note
that an implicit one-to-one correspondence between the two collections of POMSETs is

given by their subscripts. Form an automaton B ~ by starting with B and substituting for

each transition label Qi the corresponding label Pi. Then a sufficient, but not necessary,
condition for the language given by (A, P1 , . . . , Pk) to be contained in the language given

by (B, Q1,- . - , Qk) is: L(A) C L(B') and, for each i, L(P,) C L(Q,).

This test can be performed in polynomial time. We hope to investigate its applica-
bility in future work.

Finally, there is a large gap between the known upper and lower bounds for PLE: We
know that the problem is at least as hard as graph isomorphism and that it is in H~. It

would be interesting to determine its exact complexity.

References

[1] S. Aggaxwal, It. P. Kurshan, and K. K. Sabnani. Protocol Specification, Testing and Veri-
fication III (1983), 19-34.

[2] M. C. Brown, E. M. Clarke, and O. Grumber 8. Inf. and Comput. 81:13-31, 1989.

[3] J. It. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and 3. Hwan 8. LICS '90, 428-439.

[4] O. Coudert, C. Berthet, and J. C. MaAre. Springer Verlag LNCS 407, 1989, 365-373.

[5] D. L. Dill. Springer Verlag LNCS 407, 1989, 197-212.

[6] M. It. Gaxey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP- Completeness, Freeman, San Francisco, 1979.

[7] P. Godefroid. DIMACS Series, vol. 3, 1991, 321-340.

[8] J. Kilian. Private communication.

[9] J. K6bler, U. SchSning, and J. Toran. Acta Informatica 26:363-379, 1989.

[10] It. P. Kurshan. Springer Vedag LNCS 430, 1990, 414-453.

[11] It. P. Knrshan. Springer Vedag LNCIS 103, 1987, 19-39.

[12] 1t. P. Kurshan and K. L. McMillan. PODC '89, 239-247.

[13] V. Pratt. Intl. J. Parallel Programming 15(1):33-71, 1986.

[14] D. Probst and H. Li. DIMACS Series, vol. 3, 1991, 15-24.

[15] A. P. Sistla, M. Y. Vaxdi, and P. Wolper. Theor. Comput. Sci. 49:217-237, 1987.

[16] H. J. Touati, It. K. Brayton, and It. P. Kurshan. Testing Language Containment for w-
Automata using BDD's, Formal Methods in VLSI Design (1991), ACM, to appear.

[17] L. Valiant. Theor. Comput. "ScL 8:189-201, 1979.

352

a

b 1 ~ bn

a

Figure I

~ t ~ clauses
} implied
J by w 1

implied
by

'~ ~ \ \ ~/ indicates arcs from
~ each w vertex

, , , _ _ , . . _ , . , ~ c ~ =~c~ -cl
Yl Y2 Yn'h~_~,~,~,~,~,~,~,~

Ck Ck C k

Figure 2

353

yj _ �9 yj appears

YJ ~ c t clauses in which
c ~" appears

Yn

Yn
Wl~
Wl~

�9 c t W j ~ c clauses implied
wJ . ~ : ~ ~ c bY wl ~ ~

Wm~
Wm~

Figure 3

Cl = Yl " Y2 v Y3' C2 = Yl " Y2 v Y3

Yl �9 ~ "Cl

Yl ~ cl
Y2 Cl

Y2 C2

Y3 C2

X = ylY2Y3ClC2YlY2Y3ClClC2C2

Y3 : :- �9 C2

Figure 4

