
Using the HOL Prove Assistant
for proving the Correctness of Term Rewriting Rules

reducing Terms of Sequential Behavior

Matthias Mutz
Universit~t Passau, Fakult~ ftir Mathematik und Informatik,

Lehrstuhl flit Rechnerstntkm~n, Innstra~ 33, D-8390 Passau, Germany

Abstract

There are several approaches of using automated theorem provers and assistants in hardware
verification. It has been shown, that hardware behavior can be modelled and verified using
theorem proving tools. But the task of generating a proof remains difficult and often needs a big
amount of interaction. Therefore, the methods of our hardware verification system VERENA
are based on term rewriting. It is shown how we use the expressive power of type theory to
model circuit behavior. The crucial point in implementing a term rewriting system is to
guarantee that the term rewriting rules used have specific properties like correctness,
confluence, completeness, etc. It is demonstrated how we use the HOL prove assistant to prove
the correctness of term rewriting rules.

1. I n t r o d u c t i o n

There are several approaches of using computer assisted theorem proving in hardware verification. For
example, the Boyer-Moore prover [BoMo 79] establishes a partially automated theorem proving system.
VERITAS [HaDa 85] provides a specification languange and a computational implementation for theorem
proving. The HOL prove assistant [HOL 88] supports theorem proving with user-defined prove strategies.

Hardware verification by using theorem provers has been demonstrated successfully. For example, in
[Pie 89, BrCa 89] the Boyer-Moore prover is used to verify the Min-Max sequential benchmark circuit and
a pipeline, respectively. HOL is used in [RaC 89] to verify cascading properties of a parallel sorting circuit.
But fully automated theorem proving is very difficult to achieve. To automate the verification of hardware
as much as possible, algebraic simplification methods like rewriting techniques har been suggested, e.g.
lear 88].

We developed some proof strategies for hardware verification and implemented them in our verification
system VERENA [Gra 88]. We decided to use term rewriting methods to transform behavior descriptions
and implementation descriptions into canonical representations, which can easily he checked for
equivalence. The approach becomes practicable since the verification goals are partitioned into manageable
parts. The close relationship between term representations and specifications based on type theory let us
decide to use the HOL prove assistant to prove the correctness of the term rewriting rules. By this means
we have a strict seperation of two tasks: a manager of VERENA establishes term rewriting rules verified by
assistance of HOL while a user of VERENA is only concerned with defining algebraic specifications based
on the introduced functions.

Our tools for the verification of descriptions concerning sequential designs have to deal with specific
representations of temporal relationships. In similar approaches based on Temporal Logic, e.g. [BrCDM
85, FuKTM 86], also in approaches aiming at the verification of synchronous hardware, e.g. [Pal 87], the
advantages by abstracting from time are shown. These approaches use modal operators for hiding the time

278

parameter. In these approaches the user of the verification system is much concerned with theoretical
aspects of specification and verification. Tools with close relationships to mathematics may be hard to
handle by designers. We think, the VERENA user interface is much more oriented in hardware design.

In Paragraph 2, we motivate the use of term rewriting rules for the verification of sequential behavior
descriptions. Paragraph 3 shows how we model circuit behavior expressing time relations explicitly and

how we use HOL specifications to define the semantics of temporal expressions. We introduce time
dependant operators and give some examples for operators used. In Paragraph 4, we introduce operators

used in our hardware description language (VIOLA) based on HOL definitions hiding the time parameter.
We show how to prove the correctness of term rewriting rules given in terms of VIOLA using the HOL
prove assistant. As an example, a term rewriting rule is applied to a latch specification. Finally, we give

some results and conclusions.

2. Hardware verification with VERENA using term rewriting techniques

The structure of a logical system is given as a hierarchical netlist: a structural refinement of a logical system

has strucatral components (each defined as a logical system) with input, output, and bidirectional terminals
and nets connecting the terminals of the components and the terminals of the refined logical system. The

behavioral description of the logical system is derived from the composition of the behavioral descriptions
of the components.

The verification task is to show, that an implemented behavior satisfies the restrictions established by the
specification of the expected behavior. The implementation terms are derived from the implementation
description defined by a neflist using our hardware description language VIOLA. The expected sequential
behavior is given in terms of an interval dependency graph (IDG). The term representations derived from
the implementation description are valid for all time instants. The IDG defmes time intervals, in which input
functions and expected output functions are valid in the specific interval. By this way, the verification task
is partitioned into several verification goals, where for each verification goal two term representations are to
be compared. A detailed description of the derivation of subgoals is behind the scope of the paper and it
will be given elsewhere [Mut 91].

To make the strategy more clear we consider two extreme IDGs. An IDG consisting of two nodes tl and t2
has assigned the complete behavior of the considered system. Additional assertions may define relations
between the set of input and output signals of the implemented and specified behavior. Another extreme

IDG has time intervals corresponding to clock cycles and establishes different behavior and relations for
each clock cycle. The first approach establishes difficult specification and verification tasks while the

second approach needs to much details about the implementation for specifying the behavior. Our approach
intends that the user selects a description between the two extremes.

As a subgoal, we have to prove that two terms, one derived from the implemented behavior description and
one derived from the specified behavior description, are equivalent. Fig. 2.1 a) shows the transformation
steps used in hardware verification with VERENA.

The crucial point in implementing a term rewriting system is the guarantee that the term rewriting rules used

have specific properties like correctness, confluence, completeness. Fig. 2.1 b) shows how we prove the

correctness of term rewriting rules using the HOL prove assistant. At first, the left side of an equation
defining the rewriting rule and the right side are transformed into two HOL terms depending on the

279

interpretation given for the used operators. Then time is introduced to build a HOL theorem. I f we can

show that the theorem holds we have proved, that the term rewriting rule is correct with respect to the

HOL-interpretafion.

implementation implemented specified
description behavior behavior

VIOLA-I-IDL

_ _ ~ L _ P _ ~ _ ~ _ ~ _ ~ _ _
" [verification goals

I

verification goal ,
(compare terms)

[term rewritin~

compare ~ - t e n n s

normal forms proof

a) verification of hardware descriptions Fig 2.1 b) verification of term rewriting noes

3 . F o r m a l b e h a v i o r d e s c r i p t i o n : e x p l i c i t t i m e

For the definition of sequential behavior, one has to use formalisms in which to represent temporal

precedence and other temporal relationships. The ad hoe way is to use an explicit time parameter t denoting

an instant of time taken from a set that is isomorphic to the reals, the integers, or the natural numbers

depending on the systems to be described and the manipulations of descriptions required. In our approach

time is isomorphic to the integers.

In the next section we introduce operators that model sequential behavior with explicit time. All axioms,

definitions, theorems, and proofs are specified or generated using the HOL prove assistant. Together they

form a new theory. The reader should be familiar with standard type theory and predicate calculus notation.

We will use formalisms according to [Got 85].

3.1 Time base

The discrete time base is represented by the type time. The set of instants of type time is isomorphic to the

integers. We employ the properties of integers according to [Zei 76]. The constant "-**:time" denotes the

fictitious lower bound. The operators "~:time-~time" and "o:time-~time" are introduced to denote the

instant (g t) directly preceeding t and the instant (o t) directly following t. The constant _oo and the two

operators are set into relation by the following axioms:

II- Vt t'. (t' = g t) = (o" t' = t) 1 [no_axl]
II-/r [~_.oo]

term rewriting role

VIOLA-terms

I interpreting operators 1

aOL-tem~

[Vt.(hol T1)t=(hol T2)t [

1 We use IF to denote an axiom or a definition. I- is used to denote a theorem, derived from axioms, definitions, and
previously derived theorems.

280

The time functions " tp red :num-- , t i rne~ t ime" and " tsucc:num-, t ime-- , t ime" determining the order of

instants are given as definitions satisfying the Primitive Recursion theorem [Gor 85]:

IF (Vt. t p r ed 0 t = t) ^ (Vn t. tpred (suc n) t = ~ (tpred n t)) 2 [tpred_def]

I I - (Vt. tsuec 0 t = t) ^ (Vn t. tsucc (suc n) t = c (tsucc n t)) [tsucc_def]

For example, the following theorems are derived:

I- (Vn. tsucc) [tsucc_-oo]

t- (Vn t. tsnce n (tpred n t) = t) ^ (Vn t. t p r ed n (tsuce n t) = t) [tsucc_tpred]

Due to the discrete time-base, the t p r e d operator may be compared with the P operator in [BoPP 88]

describing a past occurence of a synchronizing event. We do not use the t p r e d operator to dist inguish

between two synchronization points. Instead, we interpret the "distance" between two instants as the

smallest t ime between two dist inguishable instants. We use explicit event functions to figure out

synchronization points. Therefore, the P operator is better compared with the l last operator introduced

later.

3.2 Signals and event functions

Signals are modelled by functions of type signal = t ime- ,hUm list. A signal therefore represents a time-

dependant logical vector function.

Functions assigning each instant a boolean value are called event functions. Event functions are used to

determine the instants of synchroniz ing events . The type of event funct ions is abbrevia ted as

event = time--,bool. An event function e defines the occurrences of an event E: an event E o c ~ s at instant

t, i f f e(t)=T holds.

3.3 Sequential behavior

Besides t p r e d and tsucc, the basic operators for describing sequential behavior are l last , l las tn , and

stable:

llast : event --, time --* time

Ilastn : num --, event --, time --, time

stable : num - , signal --, t ime --, bool

The introduction of the Iiast operator is inspired by [AmCH 86] where a t ime base isomorphic to the reals

is used. It is also closely related to the use of the del ta function introduced by [Eve 86] where a t ime base

isomorphic to the natural numbers is used.

The Ilast operator is def'med as [llast_def]:

Ilast e t = (--,-qn. e (tpred n t)) ~ -,o I t p r ed (en.e (tpred n t) ^ Vm. m<n D --,(e (tpred mt))) t 3 4

2 suc is the successor function defined for natural numbers (sac n = n+l)
3 s denotes the choice operator, sx.P(x) denotes some value of type r a say, such that P(a) is tree. If there is no a of type a

such that P(a) is true, ex.P(x) denotes a fixed but unspecified value of type ~ [Got 85]. It holds (3x.P(x)) --- P(~x.P(x)).

281

I f e is the event function of an event E, e.g. a synchronization event like the edge of a trigger signal, the

term "Hast e t" associates with each instant t the instant of the last occurence of E loosely preceeding t. If no

such event exists, we define the term to represent the fictitious lower bound of time. Fig 3.1 gives typical

examples for the use of the i last function in the description of memory elements. The logical values are

denoted by H (high), L (low) and Z (tristate). The range of the signals is {L,H} except out which has range

{L,H,Z}.

d out

q(t) = d(Ilast up(ck) 0
~(t) = not(q(t))

up(ck,0 = (ck(0=H) ^ (ek(tpred 1 0=L)

a) positive edge triggered D-tlipflop

out(t) = (en(t)=L) ~ Z I in01ast and(en,ck) 0

Fig 3.1 b) latch with enable

While Hast determines the last occurence of an event E, we may be interested in the instant of the last

occurrence strictly before "l last e t" or the nth occurence of E before t. For this sake, we introduce the

l lastn operator. The llastn operator is defined by Primitive Recursion :

II- (Ve t.llastn 0 e t = Iiast e t) A (Vn e t.ilastn (n+l) e t = Ilastn n e (tpred 1 (llast e t))) [llastn_def]

The boolean term "stable n s t" is true at an instant t, iff the value of the signal s at t is equal to the value of

s at t - l , t-2, ..., t-n. The definition of the s table operator is:

II-- (Vs t.stable 0 s t = T) ^

(Vn s t .stable (suc n) s t = (s t -- s (tpred 1 t)) A (stable n s (tp red 1 t)))
[stable_deft

The stable operator is used in combinations defining event functions.

4 . H a r d w a r e d e s c r i p t i o n l a n g u a g e : a b s t r a c t i n g f r o m t i m e

We aim at behavioral descriptions abstracting from time, i.e. there is no explicit use of the time parameter t.

Time-dependency is introduced by the usage of modal operators, i.e. operators with implicite consideration

of the time parameter. The time parameter t is explicitly used in the definitions of modal operators.

In our approach of hardware verification, we have to reduce terms only containing signal variables,

combinational or modal operators. For the reduction process, we use sets of term rewriting rules depending

on the nature of the verification goal. The correctness of these rules is imperative for the correctness of the

verification results.

We introduce a HOL definition for each operator defined in VIOLA. It is not the actual syntax of VIOLA

terms, but it is the corresponding HOL term notation.

4 The conditional operator ~ is defined by (b--~tllt2) = et.((b=T)D(t=tl))A((b=Fb(t=t2)).

282

4.1 Operators

We introduce operators combining natural numbers and signals to obtain new signals:

TPRED : num ~ signal ~ signal

TSUCC : num ~ signal ~ signal

LLASTN : num ~ signal ~ signal --* signal

STABLE : num ~ signal ~ signal

The HOL-defmitions are given as k-terms:

(TPRED n s) = ~t. s (tpred n t) [TPRED_def]

(TSUCC n s) = kt. s (tsucr n t) [TSUCC_def]

(LLASTN n es s) = ~t. s (llastn n (~t'. es t' = [H]) t) [LLASTN_def]

(STABLE n s) = kt. (stable n s t) ~ [I-I] I [L] [STABLE_clef]

[H] denotes a single digit logical vector. Single digit signals may represent event functions. We use H=2

(high) to represent T (tree) and L=I (low) to represent F (false).

4.2 Verification by theorem proving

The HOL interpretation of a term rewriting rule TI = T2 is obtained by transforming the rule according to

the given ~-term definitions of the used operators:

T l = T 2 [v l , v2] ~) V V l V 2 . . . t . (T 1) t = (T 2) t

[vl, v2, ...] denotes the set of free variables occuring in T1 and T2.

We say, that the rewriting rule is correct with respect to the HOL-interpretation (or simply correct), iff the

HOL-term obtained is a theorem of our theory that is based on the predef'med theories (like theories on

natural numbers, lists, booleans). To prove the correctness of a term rewriting rule, we enter the HOL

representation of the rule containing the combinational and modal operators as a goal for theorem proving.

Then we use the definitions of the modal operators to get an equation with an explicit time parameter t.

Unlike other theorem provers like Boyer-Moore, there are no automated proof generation strategies in the

HOL system. To generate the theorems that follow the user has to tell the system how to do the proofs.

There is much support to do this job. The next examples illustrate some tools typically used in the

verification of our term rewriting rules supporting the construction of a proof.

4.3 Verification examples

One way to prove a term to be a theorem of a given theory is to derive T (true) using the inference rules,

def'mition, axioms, and pre-proved theorems given by the HOL proof assistant. This kind of theorem

proving is called goal directed. In our examples, we illustrate the use of some tactics defining how to use

previously derived theorems and inference rules.

As an example, we give the first steps of a goal-oriented proof of the following HOL-representation of a

term rewriting nile. The goal is defined by

283

[g " Vn m s t. (TPRED n (STABLE m s)) t = (STABLE m (TPRED n s)) t " [

The first step in verifying a rule is to get the term representation containing time functions. The actual

command in HOL-88 is:

e (REWRI'rE_TAC["I'PRED_def;STABLE_def] THEN BETA TAC)

The new goal term is obtained by rewriting the goal term using the equations given as definitions of
TPRED and STABLE as left to right rewriting rules and by [3-conversion:

V n m s t. (s tab le m s (tpred n t)) =~ [HI I[L] = (s tab le m (~,t'. s (t p r e d n t')) t) =:' [HI I [L]

The proofs of theorems containing operators defined by Primitive Recursion are mostly done by induction
over natural numbers. The HOL-88 command

expand (INDUCT_TAC)

splits the goal into two subgoals

Vm s t.(stable m s (tpred 0 t)) =~ [HI I [L] -- (stable m (Xt'.s (tpred 0 t')) t) ~ [H] I[L]

and

V m s t . (s table m s (tpred (suc n) t)) -4, [I-I] I ILl = (s tab le m (Xt'.s (t p r e d (suc n) t')) t) ~ [HI I [L]

with the assumption

V m s t. (s table m s (tpred n t)) .-I, [H] I [L] = (s tab le m (~.t'. s (t p r e d n t')) t) =~ [HI I [L]

The first goal is solved by rewriting with the tpred definition and by H-conversion. The second goal is
solved by induction over m: for P(0) we rewrite with the stable definition. The proof for P(m):3P(suc m)
is a little bit more complicated to notate (but not very complicated to prove) and therefore behind the scope
of this paper.

As a second example we give a sketch of the proof for tbe following nile:

g " V n m es st . (TSUCC m (LLASTN n (TPRED m es) s)) t =
(LLASTN n es (TSUCC m s)) t "

The derived goal is obtained by the basic rewritings:

e (REWRITE_TAC[TPRED_def;TSUCC_def;LLASTN_def] THEN BETA_TAC)

that results in

V n m es s t. s (i las tn n (~,t'. es (tpred m t') = [H]) (t s a c e m t))

= s (t succ m (l las tn n (~,t'. es t ' = [H]) t))

284

We want to prove the following lemma:

Vn k e t. Uastn n (~t ' .e (tpred k t')) (t succ k t) = t s u c c k (l las tn n e t)

The lemma is formulated as a subgoal, and the subgoal term is used as a rewriting rule applied to the term
of the original goal. We first have to solve the subgoal to continue with the proof of the transformed

original goal:

e (SUBGOAL_THEN
"Vn k e t.llastn n (~t'.e(tpred k t')) (tsucc k t) = tsucc k (llastn n e t)"

(kth. REWRYI'E_TAC[th]))

The goal derived from the original goal with the assumption of the subgoal term is

w, Vn mes s t. s (tsucc m (llastn n (es t = [I-1])) = s (tsucc m (llastn n (~,t'. es t' = [HI) t))

We start with induction over m. For P(0) we rewrite with the defmitious of Ilastn and ilast to obtain

tsucc k (--~n. e(tpred n t)) ~ -oo I tpred (~n. e(tpred n t) A Vm. m<n D ---e(tpred mt)) t)

= (---2n. e(tpred n)) =~ -** I tpred (En. e(tpred n t) a Vm. m<n D ---e(tpred mt)) (tsucc k t)

This goal is solved by a boolean case decision

e (ASM_CASES_TAC "Bn. e(tpred n t)")

obtaining the two subgoals

tsnee k (tpred (en. e(tpred n t) A Vm. m<n D --~(tpred m t)) t)
= tpred (en. e(tpred n t) A Vm. m<n D --~(tpred m t)) (tsucc k t)

and

u . t s u c c k - ~ = -co

The two goals are easily proved using rewriting tactics.

4.4 A p p l i c a t i o n example

To show the use of term rewriting rules, we give the term representing the function of a latch (memory

element) with inputs in and ck and output out regarding setup, hold, and delay times:

out = (TPRED Ad (LLASTN I (OR ck$ ck) (IF error X (LLASTN 1 ck in))))
error = (AND (ck$ (NOT (TSUCC Ah (STABLE (AS+Ah) in))))
ck$ = (A N D (N O T ck) (TPRED 1 ck))

We fn~'t consider the times of possible changes of the output out. If ck is L (low) no change can occur. If ck

is H (high) the value of input in is observed at out delayed by Ad time units. At the falling edge (ck changes
from H to L) the setup and hold condition must be considered: the output becomes X (undefined) if the
input is not stable since As time units or if it is not stable for the next Ah time units. Because the input value

285

must not change at the falling edge, we formulate the error condition as follows: the input value was not

stable since As+Ah time units Ah time units after the falling edge of ck.

To illustrate the effect of term rewriting we give a structural representation of terms. Each subterm with an

operator op is represented by an one-output / mult i- input component marked with op. Fig 4.1 is the

structural representation of the latch term.

Fig. 4.1: structural representation of the latch term regarding setup, hold, and delay times

We use a confluent and noetherian set of term rewriting rules to "move" TSUCC occurences from the

inputs to the outputs of components. We use this set to remove the TSUCC component.

We have proved, that an occurence of a [TSUCC n] component at any input of a combinational component

can be moved to the output if we insert a [TPRED n] component at the other inputs. This property is used

to obtain the structure of Fig 4.2.

Fig. 4.2: structure obtained by moving the TSUCC component toward the outputs

The rule given as our second example in section 4.2 is applied to obtain the structure given in Fig. 4.3.

Fig. 4.3: s~'uctm'e al~er applying e~,~ple term rewriting rule

In a f'mal step we use the following role (assuming Ad~da) to remove the TSUCC component:

n < m ~ (TPRED m (T S U C C n *)) = (T P R E D (m - n) *) .

286

5. Results and conclusions

We developed and implemented (and are currently developing) tools for hardware verification based on

term rewriting techniques. Most of the methods concerning the verification of complex combinational
circuits are implemented in the VERENA system. Descriptions of synchronous sequential circuits with
corresponding state variables can be verified automatically too. We are currently implementing the
procedure to obtain verfication goals that can be handled by the term comparison methods already
implemented.

To prove the correctness of term rewriting rules we had to choose a formalism both covering the low level
description of hardware behavior based on time functions and the descriptions based on VIOLA providing
the term rewriting rules.

The HOL proof assistant was used to specify hardware behavior based on type theory. Term rewriting
rules are transformed into HOL-terms that are proved to be theorems of the theory defining the framework
for specifications of hardware behavior. The use of the HOL prove assistant was very helpful in the
detection of inaccuracies in hand-made proofs and it much fastens the development of new term rewriting
rules concerning sequential behavior.

Currently, we are thinking about additional applications of the HOL88 system related to the development of
our verification tools. For example, we want to use HOL to prove that the verification of the subgoals
obtained from a sequential description is sufficient to solve the whole verification goal. The proofs are up to

now done by hand.

Acknowledgements

I would like to thank Phil Windley and Sara Kalvala who sent me addresses of FTP sites to get a version of
the HOL88 proof assistant for Sun 3.

References

[AmCH 86] P.Amblard, P.Caspi, N.Halbwachs: "Use of time functions to describe and explain circuit
behavior," lEE Proceedings, Vo1.133, Pt.E, No.5, 1986, pp. 271-275

[BoMo 79] R.Boyer, J.Moore: "A Computational Logic," Academic Press, New York, 1979

[BoPP 88] D.Borrione, J.-L.PaiUet, L.Pierre: "Formal Verification of CASCADE descriptions," The
Fusion of Hardware Design and Verification, G.J.Milne (ed.), Elsevier Science Publishers
B.V. (North-Holland), 1988, pp. 185-210

[BrCa 89] A.Bronstein, C.L.Talcott: "Formal Verification of Pipelines based on String-Functional
Semantics," Proc. of the IMEC-IFIP International Workshop on Applied Formal Methods
for Correct VLS1 Design, L.J.M.Claesen (ed.), Houlthalen Belgium, Nov., 1989, pp. 347-
364

['BrCDM 85] M.Browne, E.Clarke, D.DiI1, B.Mishra: "Automatic Verification of Sequential Circuits
using Temporal Logic," CHDLs and their Applications, C.J.Koomen and T.Moto-oka
(eds.), North-Holland, 1985, S.98-113

287

[Eve 86]

[FuKTM 86]

[Gor 85]

[Gra 88]

[HaDa 85]

[HOL 88]

[tar 88]

[Mut 91]

[Pal 87]

[Pie 89]

0~aC 89]

A.Eveking: "Formal Verification of Synchronous Systems," Formal Aspects of VLSI
Design, G.J.Milne and P.A.Subrahmanyam (eds.), Elsevier Science Publishers B.V.
(North-Holland), 1986, pp. 137-151

M.Fujita, S.Kono, H.Tanaka, T.Moto-oka: "Aid to hierarchical and structural logic design
using temporal logic and Prolog," lEE PROCEEDINGS, Vo1.133, Pt.E, No.5, Sept.
1986, $283-294

M.Gordon: "HOL - A Machine Oriented Formulation of Higher Order Logic," University of
Cambridge, Computer Laboratory, Technical Report no. 68, 1985

W.Grass: "VERENA - A CAD tool for designing guaranteed correct logic circuits,"
Proceedings of the 2nd ABAKUS workshop, Innsbmck-Igls, Austria, Sept. 1988, pp. 41-56

F.K.Hanna, N.Daeche: "Specification and Verification using Higher-Order Logic," Proc.
CHDL, Kommen and Moto-oka (eds.), North Holland, 1985

M.Gordon: "The HOL Reference Manual," "The HOL Description," and "The HOL
Tutorial," Documentation of the HOL88 System, Cambridge, 1988

T.Larsson: "Hardware Verification based on Algebraic Manipulation and Partial Evolution,"
The Fusion of Hardware Design and Verification, G.J.Milne (ed.), Elsevier Science
Publishers B.V. (North-Holland), 1988, pp. 231-252

M.Mutz: "Formal verification of sequential circuits with VERENA: a case study," Proc. of
the Advanced Research Workshop on Correct Hardware Design Methodologies, Turin,
Italy, June 1991, P.Prinetto and P.Camurati (eds.), Elsevier Science Publishers B.V.
(North-Holland)

J.-L.Paillet: "Descriptions and Specifications of Digital Devices," From HDL to
Guaranteed Correct Designs, IFIP, pp. 21-42,

L.Pierre: "The Formal Proof of the Min-Max sequential benchmark described in CASCADE
using the Boyer-Moore Theorem Prover," Proc. of the IMEC-IFIP International Workshop
on Applied Formal Methods for Correct VLSI Design, L.J.M.Claesen (ed.), Houlthalen
Belgium, Nov., 1989, pp. 129-148

S.R.Ramirez Chavez: "Formal proof of the cascading properties of a parallel sorting circuit,"
Proc. of the IMEC-1FIP International Workshop on Applied Formal Methods for Correct
VLSI Design, L.J.M.Claesen (ed.), Houlthalen Belgium, Nov, 1989, 338-346

[Zei 76] B.Zeigler: "Theory of Modelling and Simulation", John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, 1976

