
A Proof Assistant for PSF

S. Mauw & G.J. Veltink

Programming Research Group
University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam

The Netherlands

Abstract
A description of a tool to support computer-aided construction of proofs for parallel systems is
given. In contrast to the conventional approach based on state space exploration, we use an
axiomatic approach. The axioms we use for the construction of proofs, are based on ACP. Besides
these standard axioms we also consider tactics for shortening proofs. We use PSF (Process
Specification Formalism), an extension of ACP with abstract data types, to describe the processes
subject to the verification.

1. INTRODUCTION

One of the advantages of the use of formal techniques for the specification of parallel
systems is that it enables formal verification of the correctness of such a specification.
There are several approaches towards verification. One can verify certain properties of a
specification, such as deadlock-freedom, fairness or starvation-freedom. A more general
approach is to verify the truth of logic propositions about the execution traces of a
specified system, see for example [HM85,TT91]. We will focus on a third approach,
namely verifications of equality of two specifications, as developed in [Baeg0]. Equality in
this context can be interpreted in many ways, depending on the desired semantics.
A common way of proving that two processes are equal is by interpreting (or defining)
the processes in some model, typically a graph model, followed by testing whether the
interpretations are equal with respect to some congruence relation, such as observational
equivalence or weak bisimulation. For finite process graphs several more or less efficient
algorithms have been developed for determining these congruences [Fer91,GVg0]. All of
these algorithms suffer from the so-called state explosion problem. This problem comes
from the fact that the number of states in a complex system is proportional to the
product of the number of states of its parallel components.
An alternative is the algebraic or axiomatic approach, where a process expression is
manipulated and proven equal to another process expression at a syntactic level, using
an effectively given set of axioms. The advantage of this method over exploring the state
space is that one can reason about the components or subsystems at a higher level of
abstraction. Subsystems can be replaced by simpler ones and this way of pruning in the
state graph results in simpler proofs. Another advantage is that an algebraic approach
gives more insight into the reasons why a proof works or fails. This might give dues as
to how faulty specifications can be repaired, and how correct specifications can be
optimized. The axiomatic approach is also used in the PAM project [Lin91].
The restriction to finite state machines, or the class of regular processes, that is implied
by the state exploration methods does not apply to the axiomatic approach. This way
more complex processes, such as an unbounded queue, can be considered. The main

Note: This work was partially supported by ESPRIT Project no. 3006, CONCUIL

159

drawback of an axiomatic approach is that an equality guaranteed by some state space
exploration algorithm need not be effectively constructable in the axiomatic system.
Computer tools supporting the axiomatic approach can be divided into two classes:
theorem provers and proof assistants. The distinction is based on the level of
mechanization of the process of proving. A simple proof assistant will have the form of
an "electronic notebook" with accompanying software, which helps in rewriting the
formulas that constitute the proof and will depend heavily on the interaction between
people and machines. A more sophisticated theorem prover would make use of a
number of heuristics to decide automatically what axioms to apply in what order.
ACP (Algebra of Communicating Processes) [BW90] is a process theory, which has been
developed from an axiomatic viewpoint. Verifications of systems specified in ACP can be
found in [Bae90] for example. The process specification language PSF [MV90] is an
extension of ACP with abstract data types. It has a computer readable format and several
computer tools have been developed to support specification in PSF, such as a syntax
checker and a simulator.
In this paper we will describe how a proof assistant for PSF can be designed and the status
of current preliminary investigation. This tool will be an aid in editing process
expressions, selecting axioms that are applicable and applying these axioms. Preferably,
sequences of applications of axioms which are commonly used in proofs must be offered
using some shorthand. We will call these sequences: tactics.
This article is organised in the following way. We start off with a description of the
toolkit for PSF which is under development followed with a short introduction to ACP.
After that we will explain what we consider a proof within the proof assistant, give the
axioms that are used to construct proofs and discuss the tactics that have been
implemented. We conclude with a description of the implementation and an example to
demonstrate the current status of the proof assistant.

2. THE PSF PROJECT
The PAT (Process Algebra Tools) project aims at constructing an environment of
computer tools for studying concurrent systems, especially in the settin8 of the formal
concurrency theory ACP (Algebra of Communicating Processes) [BWg0]. Several tools
had been written before the PAT project started, but because of the lack of a unified
guiding framework there were many inconsistencies between the tools. The first step
towards the construction of an integrated system in PAT has been the development of a
language for specifying ACP-like processes in general. The resulting language PSF
(Process Specification Language) is a formal specification language suitable for specifying
concurrent systems. An introduction to the subject including examples is [MV89a], and
the formal definition of PSF is given in [MVg0].

PSF
ImodulartzaUon

ASF 1

ASF ACP

Figure 1.

PSF has been designed as the high-level specification language in the PAT project. It
combines ACP with abstract data types. On the one hand PSF is based on AC.P, that is for
the part that is used to describe processes. The syntax of this part is kept as close as
possible to the more informal syntax of ACP. On the other hand PSF is based on ASF

160

(Algebraic Specification Formalism) [BHK89]. This formalism is used to describe the data
types with which processes can be parameterized. PSF also inherits its modularization
concepts and its support of generics from ASF. Figure 1 gives a graphical representation
of the constituting parts of PSF.
In contrast to PSF, a low-level language called TIL (Tool Interface Language) [MV89b] has
been designed. TIL serves as a common kernel language for all the tools to be supported
by the environment, including: a simulator; a proof assistant; a term rewriter and a
bisimulation verifier. Although TIL was primarily intended as a dedicated interface
language for the tools in the PAT project, it was designed so that it could be used on its
own. From a semantical point of view TIL has the same expressive power as the
combination of ACP and ASF. The main advantage of using TIL is that many parts of the
toolkit can be reused. Because TIL is used mainly by tools, its readability for humans is of
secondary importance.

I ,,0r I

library manager I

I
] t,-~,,J.to,- J

[s i m u l ! t ~ tool s
I pro~ assistant k ~,'

[equ~,a~nce tester I

m

Figure 2.

At the centre of the toolkit, see figure 2, is the Tool Interface Language (TIL) through
which all tools can communicate. From the picture we see that the PSF specification at
the top is translated into TIL using two intermediate languages called M-TIL and I-TIL. In
the course of this translation the library manager is used which supports and controls
separate compilation of PSF modules.
Each PSF module is translated into exactly one M-TIL module. M-TIL is similar to TIL,
but it still contains information about the modular structure of the specification. Because
TIL supports no modular structure at all, a PSF specification has to flattened. This is done
in the normalizat ion phase in which the I-TIL language is used. The complete
description of the translation from PSF to TIL can be found in [Velg0].
At the bottom of the picture we see the several tools. At the moment a simulator, a term
rewriter and a proof assistant have been implemented. We are currently working on
interfacing the toolkit with an existing tool for equivalence testing. Future plans for
other tools include, for example, a compiler that compiles a PSF specification into a
traditional programming language.
This approach of implementing an environment by using clearly defined intermediate
languages, serves several purposes. The main reason is that it results in a layered design,

161

in which humans can inspect specifications on a high level through PSF and in which
the tools have access to the specifications through a low level representat ion tailored to
their needs. This means in particular that the process of parsing and type checking of PSF
is of no concern to the tools which will use a very simple parser to read the intermediate
language. The second reason for using TIL and its derivatives is that having a definition
of an intermediate language, construction of software can be started in parallel and so for
example the construction of the simulator had not to wait for the parser and normalizer
to be completed. The final reason for using ITL is that for new versions of PSF, or
formalisms with comparable functionality, the toolkit can be easily adapted. Writing a
new front-end for the specific language will be sufficient. In this way reusability of large
parts of software, present in the tools, is guaranteed.

3. ACP
In this section we will give a brief introduction to ACP. This introduction is by no means
intended to be complete. For more specific information on ACP we refer to [BW90]. The
notation used here will differ slightly f rom the one used in the aforementioned book,
because we have to deal with a computer readable syntax.
ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic actions are
the basic and indivisible elements of ACP. The (finite) set of constants is called A. On this
set A there is defined a fixed partial function ~, : A • A ---) A. Moreover we have two
special constants:

�9 delta or deadlock. (delta ~ A)
deadlock is the acknowledgement that there is no possibility to proceed.

�9 skip or silent action. (skip e A)
skip represents the process terminating after some time, wi thout performing any
observable action.

Processes are constructed by combining constants and processes by operators. In the
following introduction of the operators , a,b,c will s tand for constants and x,y,z for
processes.

�9 +, alternative composition or sum.
x + y is the process that first makes a choice between its summands x and y, and
then proceeds with the execution of the chosen command. In the presence of an
alternative, deadlock is never chosen.

� 9 sequential composition or product.
x.y is the process that executes x first and continues with y after termination of x.

�9 [1, parallel composition or merge.
x][y is the process that represents the simultaneous execution of x and y.

�9 [L, left merge.
x U. y is the process that represents the simultaneous execution of x and y in which
the first action to be performed must come from x.

�9 [, communication merge.
x [y is the process that represents the simultaneous execution of x and y in which
the first action to be performed must be a communication between an action f rom x
and an action from y.

�9 encaps(H,x), encapsulation.
encaps(H,x) is the process x without the possibility of performing f rom the set of
actions H (H~A).

�9 hide(I,x), abstraction.
hide(Ix) is the process x without the possibility of observing actions f rom the set of
atomic actions I fl_A). This is achieved by renaming ail atoms from I in x into skip.

162

4 . PROOFS

In this section we will shortly discuss what we consider a proof in the setting o~ the proof
assistant. A verification of a process expression consists of a stepwise transformation of
this process expression into another one. This transformation can be seen as a proof that
both expressions are equal in a certain process semantics. The semantics depends on the
axioms used within the p roof assistant. In the current implementation we use the weak
bisimulation semantics [BWg0].
In the next section we will give the axioms used by the proof assistant. If every step in a
proof can be motivated by one of the given axioms, it can be considered correct. Using
this technique, correctness of, say, a communication protocol is demonstra ted b y
constructing a proof that the protocol specification and the service specification denote
the same process. Computer support in construction of proofs can be applied in the
editing of an expression, the selection of suitable axioms, the application of trivial
transformation sequences, the report generation of the proof and to check manually
constructed proofs.

5. AX IOMS

The axioms for ACP, describing the operators presented in section 3, can be transformed
into a complete term rewriting system modulo commutativity and associativity [ABg0].
The axioms given here should also be read as a TRS in which the expressions on the
lefthand-side are rewritten into the expressions on the righthand-side. Some rules are
added that are not present in the standard axiomatization, but they serve to optimize the
rewriting within the proof assistant. See LMRG_SEQMRG for an example of an equality
that, although it can be derived from the basic axioms, is a useful property to shorten
proofs.

x + y = y + x A L T _ C O M M
x + (y + z) = (x + y) + z ALT_ASOC
x ,+ x = x ALT_IDENT

x + de l ta = x DLK_ALT

In the axioms we choose the left-associative form of an expression. See for example
axiom ALT_ASOC. An exception to the this rule is SEQ_ASOC where the right-
associative form is chosen because one is mostly interested in the first atom (head) of the
sequential composition.

(x + y) . z = x . z + y . z

(x . y) �9 z = x . (y . z)
d e l t a , x = del ta

x II y = y U x
x II (y II z) = (x II y) II z
x l l y = (x l l y + y l l x) + x I y

a ~ . x = a . x
a �9 x II y = a �9 (x II y)
(x + y) II z = x II z + y II z

x II del ta = x . del ta

del ta II x = del ta

a l b = ~ (a , b)

a I b = delta

x I del ta = del ta

x l y = y l x
(a . x) l b = (a I b) . x

i f 3' is d e f i n e d

i f y is unde f ined

SEQ_ALT

SEQ_ASOC
DLK_SEO.

M R G _ C O M M
MRG_ASOC
MRG_LMRG

LMRG_SEQ
LMRG_SEQMRG
LMRG_ALT

LMRG_DLKSEQ
DLK_LMRG

CMM_DEF

C M M _ U N D E F
D L K _ C M M

C M M _ C O M M
C M M S E Q

163

(a . x) I (b . y) = (a i b) - (x II y)
(x+y) l z = x l z + y l z
encaps(H, a) = a if a E H
encaps(H, a) = delta if a ~ H
encaps(H, skip) = skip
encaps(H, x + y) = encaps(H, x) + encaps(H, y)
encaps(H, x �9 y) = encaps(H, x) �9 encaps(H, y)
hide(I, a) = a if a e~ I
hide(I, a) = skip if a E I
hide(I, skip) = skip
hide(I, x + y) = hide(I, x) + hide(I, y)
hide(I, x . y) = hide(I, x) �9 hide(I, y)
x �9 skip = x
skip . x + x = s k i p . x
a . (s k i p . x + y) = a . (s k i p . x + y) + a . x
x . (s k i p . y) = x . y

CMM_SEQMRG
CMM_ALT
E N CATM
ENC_DLKATM
ENC_SKP
ENC_ALT
ENC_SEQ
HID ATM
HID_DLKATM
HID_SKP
HID_ALT
HID_SEQ
SKPACP.T1
SKPACP T2
SKPACP_T3
SKPACP_T1 B

At the end of the table we have added some laws for skip which are known as Milner's.z-
laws. Technically speaking the last axiom is not necessary, because it is a consequence of
the first axiom. We have added it however because of the right-associative form used for
the sequential composition.

6. TACTICS
Trying to prove facts by using only the axioms provided can be a tiresome job and
therefore error-prone. As a typical example we found in one of our first experiments
with the initial implementation of the proof assistant, that a simple proof that takes
seven steps when done with pencil and paper takes more than sixty steps when applying
only one axiom at a time. It goes without saying that a successful proof assistant should
provide means to shorten such proofs. We have tried to cope with this problem by tryin, g
to mimic the reasoning used by human provers. In doing this, however, we remain
exact all the time, that is we do not want to rely on heuristics of any kind. In this section
we will discuss some of the tactics that we have found and that are implemented in the
proof assistant. These tactics were developed by analyzing a number of manual ACP
verifications from [Bae90].
In order to keep up with the state explosion problem it is crucial to be able to prune the
state space 'as soon as possible. One of the strategies to follow is to try to p r o d u c e and
remove dead.locks as early as possible. By applying the axiom delta �9 x = delta, we can
prevent unnecessary rewriting within x. Deadlocks are created within encapsulation
expressions when atomic actions are prohibited to occur because they are blocked. An
atomic action that is blocked could escape the blocking because it can engage in a
communication and get renamed. However , atomic actions that are blocked by an
encapsulation operator and are not able to communicate can be renamed into deadlocks
safely. We can get rid of the processes following a delta by applying the axiom: delta �9 x =
delta. This strategy is called find deadlocks in the proof assistant. A related strategy is
remove deadlocks. This strategy removes, possibly multiple, deadlocks in one step by
creating as much deadlocks as possible followed by applying: delta + x = x.
The next strategy is what we think one of the main Strategies humans apply in
constructing proofs in an ACP setting. In this strategy we try to separate a term X into a
head, the first atom that is possible to occur, and the rest of the term, its tail. In analogy
this strategy is called head-tail. In general the resulting term is not s imply a head
followed by a taft but it is of the form: hi.t1+ h2.t2 + ... + hn'tn. In trying to create the
head-tall expression each process variable that is encountered, is expanded. This means

164

that the lefthand-side of a process definition is replaced by the appropriate r ighthand-
side.
In fact this head-tail strategy is a combination of a number of axioms which relate closely
to the expansion theorem from [BW90]. For brevi ty we state this axiom in the case we
have a merge with two components X and Y, defined by
X = al �9 X l + ... + an �9 Xn
Y = b l �9 Y1 + ... + bn �9 Ym, then
X II Y = a l . (X l II Y) + ... + a , . (Xn II Y) +

51- (X U Y 0 + ... + bm" (X II Ym) +
(all b 0 . (X l II Y1) + (a~l b=). (X l II Y2) +... + (a , I bnO" (Xn II Ym)

In case the merge is surrounded by an encapsulation operator, we have the following:

e n c a p s (H , X II Y) = ,T_,j_" (Xi II Y) + ,~,b i �9 (X II Yj) + ~ (a i l~) �9 (Xi II Yj)
{ila,~aH} (jlbj e~ FI} {i,jl ailbj e~ H}

A l s o o ther combina t ions of operators are suppor ted .
As a corollary we have the recurs ive head-tai l strategy. Here we have to be careful not
just to try to apply head-tail on all sub-expressions otherwise we would be able to wind
up in an endless recursion when we consider the following process e.g.: X = a.X. Without
explicitly stating these, a number of rules are built in that determine when to stop
recursion.
Finally there are three strategies implemented that relate to the so-caged conditional
axioms [BBK87]. These axioms are very useful in breaking a complex specification down
into subsystems. They support a modular approach towards verification.

Before giving the axioms we first have to introduce the notion of the alphabet cz(x) of a
process x. This is the collection of all atomic actions that process x can per form (see
[BBK87] for a definition).
Since this notion is not decidable (see [BBK87]), the alphabet of process x will be
approximated by the collection of all actions used in the specification of x or one of its
sub-processes. This inexactness does not influence the validity of the axioms.
Another notation which will be used is the communicat ion set S I T of two sets of
atoms, S and T. This is defined by

S I T = { a l b I a ~ S, b E ' r } .
The first conditional axiom deals with pushing encapsulations through a merge.

encaps(H, X II Y) = encaps(H, X II encaps(H ' ,Y)) ,

where H' = H- { a ~ co(Y) I (({a}lr n H c) ~ 0 } - {a I a ~ (~e0}.
The set H ' is derived f rom H by first deleting all elements which can take par t in a
coanmunication of which the resulting action is not encapsulated. Secondly we delete
the actions from H that are superfluous because they do not occur in Y.
The second conditional axiom deals with pushing hiding through a merge.

hide(I , X II Y) = hide(I , X II h ide(l ' ,Y)) ,
w h e r e I' = I- { a E oc(Y) I ({a}lcc(X)) ~ 0 } - {a I a E o~(Y)}.

The third axiom is a combination of the first two.
hide(I , encaps(H, X II Y)) = h ide(I , encaps(H, X II h ide(l ' ,Y))) ,
w h e r e I' = I - H - { a E c~(Y) I ({a}lcc(X)) ~ E~} - {a I a ~ cz(Y)}.

These three axioms are easily proved correct for closed process expressions, using the
conditional axioms from [BBK87].
The following example will clarify the use of these axioms. We consider an array of n
components , serially connected to each other. Without giving a descript ion of the
behaviour of the components, we assume that each component has k states. Thus the
parallel composition (before encapsulation and abstraction) has k n states. Now assume

165

that after encapsulation and abstraction of the complete parallel composit ion a fairly
simple process with, say n.k states results, then we would have needed to visit these n.k
states in order to reduce the system to the smaller size.
N o w by applying the conditional axioms described above, we can focus on the subsystem
consisting of the first two components, which has k 2 states, and reduce it to a system with
2.k states. The following step would be to focus on the subsystem obtained by combining
this newly derived component and the third component, and so on. The result of this
operation is that by restricting oneself to only sub-systems, the number of states visited
decreases significantly. In this example the order of states visited would be nZ.k 2 instead
ofk n.

7. THE IMPLEMENTATION OF THE PROOF ASSISTANT

As mentioned earlier the proof assistant is part of the PAT project. It has been developed
on SUN workstations and is written in the programming language C [KR78] using the X-
Windows system. The proof assistant is an interactive tool and currently we restrict
ourselves to PSF specifications in which atomic actions can be parameter ized wi th
elements f rom finite data sets only.
The proof assistant uses TIL as input language so one has to translate a PSF specification
into TIL using the PSF-compiler. After reading the TIL specification, the proof assistant
interacts with the user through five windows which are described below.
PSF Window. This w i n d o w displays a PSF version of the specification which is
constructed by translating the input TIL back into PSF. The text can be scroUed using the
mouse. Verify Window. This window shows all the steps of the proof constructed so far.
In this w indow the user selects the subterms that are to be manipulated. Operation
Window. This window contains several buttons among which the buttons to activate
the tactics. The buttons are only active when there is a term selected in the Verify
Window. Rewrite Window. Whenever a subterm is selected in the Verify Window, this
w indow pops up and shows the rewrite actions possible according to the axioms. The
desired action can be selected using the mouse. Special Window. This w indow contains
some buttons for actions to: undo the last step, reset the complete verification, choose
another term from the specification to rewrite, generate troff output of the proof f rom
the Verify Window, quit the proof assistant.

8. VERIFICATION OF TWO ONE-BIT BUFFERSr AN EXAMPLE

Although an explanation of an interactive tool by means of a writ ten text is less adequate
than active hands-on experience, we will try to demonstrate the working of the proof
assistant with an example. We will use the tools to construct a proof that a system of two
one-bit buffers shows the same behaviour as one two-bit buffer. Facilities for handling
data will not be used, since the current status of the tools will not allow this.

output

Figure 3.

THE SPECIFICATION
The system that we will consider consists of a parallel composition of two one-bit buffers,
which are connected via an internal port. The left buffer (OBB-L) gets data f rom the
envi ronment via an input-port and sends it to the internal channel, while the right

166

buffer reads data from this internal channel and hands it over to the environment via
the output-port. The situation is as depicted in figure 3.
The shaded area is to indicate that we want to abstract from all actions at the internal
port. In PSF the specification of this system looks as follows. First we define the
behaviour of the two-bit buffer, which will be our target specification. The atomic actions
input and output are defined, the process TBB which represents the two-bit buffer, and
two auxiliary processes TBB" and TBB".
The behaviour of the buffer is straightforward. It starts with an input action and comes
in the state TBB' which indicates that there is one item in the buffer. TBB' can either do
another input action and continue in state TBB" with two buffered items, or it can do an
output action and restart with an empty buffer. Process TBB'" can only do an output
action and continue with TBB'.
For the system of two one-bit buffers, we define the processes OBB-L and OBB-R.
Communication via the internal channel takes place by means of the r and s action. If
both an r and an s action occur, this will result in a c action, which indicates successful
communicat ion.
The behaviour of the two one-bit buffers is defined straightforward. Now the System is
defined as the parallel composit ion of these two buffers, while encapsulat ing
unsuccessful communications (from the set H) and abstracting from communications
via the internal channel (see the set D.

process module TBB

begin

exports

begin

atoms

input, output

processes

TBB, TBB', TBB''

end

definitions

TBB = input . TBB'

TBB' = input . TBB'' + output . TBB

TBB'' = output . TBB'

end TBB

process module Buffers

begin

imports

TBB

at ores

s, r, c

processes

System, 0BB-L, OBB-R

sets of atoms

H - { r, s }

" r = { c)

communications

S ~ r = c

definitions

OBB-L = input . S . OBB-L

OBB-R = r . output . OBB-R

System = hide (I,

encaps(H, OBB-L I~ OBB-R))

end Buffers

VERIFICATION
The aim is to verify that the processes TBB and System define the same process, by which
one may conclude for example that a composition of two one-bit buffers can be used as
an implementation for a two-bit buffer. Figure 4 contains the output of the tool.
After starting the tool one can select the process to be manipulated. This will be the
System process, for which the definition is displayed. After clicking on the hide operator
to select the entire expression, applying the head-taft operation yields expression A1. The
skip action comes out when doing this again (A2). After selecting the first dot, an axiom

167

can be chosen which removes internal skip actions in this context (A3). The last step is to
attach a new name, S' for example, to the expression after the input action (A4).
Next we focus on the newly defined process S'. After three steps we have been able to
prove it equal to an expression which contains a new process name S " and the already
defined process System. Note that the order of the left and the right buffer in the
definition of System is opposite to the order in B2. However these two subexpressions
are recognized by the proof assistant as being equal.
The third step is to repeat the process for the new process name S" . This yields an
expression in which the definition for S' is recognized automatically (C3).

System = hide(I, encaps(H, OBB-L I] 0BB-R))

(A1) = input . hide(I, encaps(H, s . OBB-L II OBB-R))

(A2) = input . skip . hide(I, encaps(H, 0BB-L II output . OBB-R))

(A3) = input . hide(I, encaps(H, OBB-L ~I output . OBB-R))

(A4) = input . S'

S' = hide(I, encaps(H, OBB-L II output . OBB-R))

(B1) = input . hide(I, encaps(H, s . 0BB-L I] output . OBB-R)) +

output . hide(I, encaps(H, 0BB-R]I OBB-L))

(B2) = input . S'' + output . hide(I, encaps(H, OBB-R II OBB-L))

(B3) ~ input . S'' + output . System

S'' = hide(I, encaps(H, ~ . 0BB-L I I output . 0~-R))

(CI) = output . hlde(I, enoaps (H, 0BB-R If s . OBB-L))

(C2) = output . skip . hide(It encaps(H, output . OBB-R I[0BB-L))

(C3) = output . hide(I, encaps(H, output . 0BB-R I] OBB-L))

(C4) = output . S'

Figure 4.

The result of this manipulat ion is that we have given a derivat ion that the process
System is the solution of the following set of equations.

System = input . S'

S' = input . S'' + output . System

S' ' - output . S'

Figure 5.

N o w using the Recursive Specification Principle (see [BWg0]) we can conclude that
System and TBB in fact define the same process: This last step of reasoning has not yet
been implemented in the proof assistant.

9. CONCLUSIONS
In this article we have given the description of a system that can be used to assist in the
process of proving properties of process specifications. We think of the proof assistant as
it is now, more as a somewhat smart electronic notebook than a full-fledged proof
construct ing system. It never has been our a im to be able to genera te p roofs
automatically.
Even so we think there are still a large number of subjects on which, the proof assistant
can be improved. In the current version the axioms are 'hard-wired into the code. The
system would be more flexible if the user is allowed to enter a set of axioms of his own.
In this way the user would also be able to select a different process semantics than the
weak bisimulation that we have implemented. To be able to achieve this, a language for
representing axioms has to be developed. Moreover one can think of an extension of the
PSF language that al lows to express proofs, which can be checked au tomat ica l ly
afterwards.
We think that the conventional method of state space explorat ion and axiomat ic
approach should go hand in hand. In this way the axiomatic approach can be used to cut
down the state space into several components which can then be checked by state space
exploration. Although the implementat ion of the proof assistant has not been finished

168

yet, we are encouraged by the fact that the tool is already used by people that are not
involved in the PAT project. Experiences show that even for the relatively small
examples, which it has been applied to, the tool is an important aid in constructing and
analyzing specifications. Several suggestions for other tactics for special classes of
specification domains are under consideration.
The authors would like to thank Bob Diertens for his practical work on the proof
assistant and Ben Thompson for proofreading this paper and suggesting several
improvements.

10. REFERENCES

[ABg0]

[Baeg0]

[BBK87]

[BHK89]

[BW90]

[Fer91]

[GVg0]

[HM~

[XR78]

[Lin91]
[MV89a]

[MV89b]

[MVg0]

[Tr91]

Wetg0]

G.J. Akkerman & J.C.M. Baeten, Term rewriting analysis in process algebra,
Report P9006, Programming Research Group, University of Amsterdam, 1990.
J.C.M. Baeten (ed.), Applications of Process Algebra, Cambridge Tracts in
Theoretical Computer Science 17, Cambridge University Press, 1990.
J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Conditional axioms and a/b-calculus
in process algebra, in: Proceedings IFIP Conference on Formal Description of
Programming Concepts HI, Ebberup, (M. Wirsing, ed.) pp. 77-103, North-
Holland, 1987.
J.A. Bergstra, J. Heering & P. Klint, The algebraic specification formalism ASF,
in: Algebraic specification, J.A. Bergstra, J. Heering & P. Klint (eds.), pp. 1-66,
ACM Press Frontier Series, Addison-Wesley 1989.
J.C.M. Baeten & W.P. Weijland, Process Algebra, Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.
J.C. Fernandez, Alddbaran, A tool set for deciding bisimulation equivalences,
in: Proceedings CONCUR '91, Amsterdam, (J.C.M. Beaten & J.A. Bergstra, eds.),
1991. (to appear in LNCS series).
J.F. Groote & F.W. Vaandrager, An efficient algorithm for branching
bisimulation and stuttering equivalence, in: Proceedings 17th ICALP,
Warwick, (M.S. Paterson, ed.) LNCS 443, pp. 626-638, Springer Verlag, 1990.
M. Hennessy & R. Miiner, Algebraic Laws for Nondeterminism and
Concurrency, Journal of the Association for Computing Machinery, vol. 32, nr.
1, pp. 137-161, 1985.
B.W. Kernighan & D.M. Ritchie, The C programming language, Prentice-Hall,
1978.
H. Lin, PAM: A Process Algebra Manipulator, this volume.
S. Mauw & G.J. Veltink, An introduction to PSFd, in: Proc. International Joint
Conference on Theory and Practice of Software Development, TAPSOFT '89,
(J. Diaz, F. Orejas, eds.) LNCS 352, pp. 272-285, Springer Verlag, 1989.
S. Mauw & G.J. Veltink, A Tool Interface Language for PSF, Report P8912,
Programming Research Group, University of AmSterdam, 1989.
S. Mauw & G.J. Veltink, A process specification formalism, Fundamenta
Informaticae XUI (1990), pp. 85-139, IOS Press, 1990.
B.C. Thompson & J.V. Tucker, Equational specification of Synchronous
Concurrent Algorithms & Architectures, University College of Swansea,
Technical Report, 1991. (in preparation)
G.J. Veltink, From PSI= to TIL, Report P9009, Programming Research Group,
University of Amsterdam, 1990.

