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Abstract 

PAM is a general proof tool for process algebras. It allows users to define their 
own calculi and then perform algebraic style proofs in these calculi by directly ma- 
nipulating process terms. The logic that PAM implements is equational logic plus 
recursion, with some features tailored to the particular requirements of process al- 
gebras. Equational reasoning is implemented by rewriting, while recursion is dealt 
with by induction. Proofs are constructed interactively, giving users the freedom to 
control the proof processes. 

1 I n t r o d u c t i o n  

It has been gradually recognized that computer assistance is essential for the analysis 
of concurrent systems. There are already a number of proof tools, among them are the 
Concurrency Workbench [CPS 89], TAV [GLZ 89], and Auto [BRSV 89]. Most of these 
tools are behaviourally based and perform proofs automatically. They interpret processes 
as labelled transition systems and proofs are established by automatically searching the 
resulting spaces. 

More recently, efforts have been devoted to implementing algebraic proof systems 
for process calculi. One such system is being developed in Pisa for CCS [NIN 89], and 
another one is in Amsterdam for ACP [MV 91]. But building a proof system takes 
considerable efforts as one has to implement the parser, user interface, proof strategy, 
proof environment management, and so on. Since there are quite a few process calculi 
around and each is evolving (new operators are emerging, with new axioms characterizing 
them), it is desirable to have a general system which allows users to define their own 
calculi, so that much of the implementation efforts can be expended once and for all. 

A weU-developed technique for general theorem proving in equational logic is term- 
rewriting [DJ 89]. But there are some difficulties involved in applying existing term 
rewriting systems to process algebras: 

�9 With pure equational logic one can only reason about finite processes. Infinite pro- 
cesses are defined recursively, and there is no way to handle recursion by rewriting. 
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�9 Some "equations" in process algebras, such as the expansion/aws[Mil 89], are not 
simple equations but rather equation schemes, i.e. they are common patterns of 
infinitely many equations. This is beyond the power of existing rewriting systems 
which can only handle finite set of equations. 

�9 Some calculi have "indexed operators", such as the parallel operators indexed by 
a set of actions in LOTOS and CSP. They represent classes of infinitely many 
operators and as such cann't be handled by existing rewriting systems which only 
allow finite signatures. 

PAM (Process Algebra Manipulator) is a general proof tool for process algebras using 
rewriting techniques. The logic it implements is essentially equational logic plus recursion, 
with some features tailored to the particular requirements of process algebras. At the core 
of PAM is a rewrite machine which is capable of handling associative and commutative 
operators. A pattern is provided for defining interleaving (or expansion) laws in various 
calculi, and applications of these laws are treated as special forms of rewriting. Infinite 
processes can be defined by mutual recursion, and some forms of induction, such as Scott 
Induction and Unique Fixpoint Induction, have been built into the system to cope with 
such recursively defined processes. The syntax for signature definitions is powerful enough 
to allow "indexed operators". 

It is possible in PAM to designate as theorems proved conjectures and then use them 
in subsequent proofs. This allows users to decompose a big problem into subproblems, 
prove these separately, and then combine all the small proofs together to establish a proof 
of the original problem. This is an important feature for any proof tool to be practically 
useful. 

One disadvantage of interactive theorem proving is that proofs can get quite tedious, 
and it is desirable to interface PAM with other automatic proof tools for process algebras 
so that some parts of proofs can be "submitted" to such tools for automatic verifica- 
tion. An experimental interface from PAM to the Concurrency Workbench has been 
implemented which allows calls to the Workbench from within PAM for checking various 
congruence/eqnivalence relations between CCS agents. 

The process algebras which have been successfully defined in PAM include CCS 
[Mil 89], CSP [Hoa 85], ACP [BK 89] and EPL [Hen 88]. We have been experiment- 
ing with some small examples such as the Scheduling problem [Mil 89] and Alternating 
Bit Protocol [BK 89] in different calculi. 

The rest of the paper is organized as follows: Section 2 shows how to use the system 
by giving examples; The meta language for calculus definition is explained in Section 3; 
Section 4 presents the implementation of unique fixpoint induction. Section 5 describes 
the problem definition format and proof commands available at the present; Finally, 
future work is outlined in Section 6. 
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2 H o w  to Use  T h e  Sys tem:  A n  E x a m p l e  

PAM accepts a process calculus definition file, yielding a proof manipulator for the cal- 
culus. The meta-language for defining calculi is explained in Section 3 . Here we only 
take CCS as an example to show how to use the system. 

2 .1  D e f i n i n g  A C a l c u l u s  

A calculus definition consists of two sections: signature and axiom. The signature section 
starts with type declarations: 

signature 

type Label Action Process 

with Label < Action 

Here three types Label, Action and Process are introduced, with Label declared as a 

subtype of Action. 

After type declarations come operator descriptions: 

operator 

_ + _ :: Process Process -> Process 120 AC LEFT -- choice 

_ . _ :: Action Process -> Process 200 RIGHT -- prefixing 

NIL : : -> Process 

_ \ _ :: Process Action set -> Process 300 -- restriction 

" _ :: Label -> Label -- inverse 

%au : : -> Action 

_ i _ :: Process Process -> Process 150 AC LEFT -- parallel 

_ [ _ / _ ] :: Process Label Label -> Process 300 -- renaming 

Here we have 8 operators defined. As an example, the choice operator + is infix, has 
priority 120, is associative and commutative (AC), and associates to the left. Note that  
_ is used as place holder to indicate where the actual arguments should go, and s e t  is a 
built-in postfixing type constructor. Anything after - -  in a line is a comment. 

In the axiom section we first list basic axioms of the calculus: 

axiom 

A1 x+x=x 

A2 x + NIL = x 

PN x I NIL = x 

RO (x + y)\A = x\A + ykA 

R1 (a.x)\A = a.(x\A) 

R2 (a.x)\A = NIL 

R3 NIL\A = NIL 

R4 (x[y)\A = (x\A)[y 

N1 (x + y)[a/b] = x[alb] + y[alb] 

N2 (c.x) [a/b] = c. (x [a/b] ) 

if not(a in A or "a in A) 

if a in A or "a in A 

if Sort(y) inter (A union (map A)) eq {} 

if not(c eq b) and not(c eq "b) 
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N3 ( c . x ) [ a / b ]  = a . ( x [ a / b ] )  i f  c eq b 
N4 (c.x)[a/b] = "a.(x[a/b]) if c eq "b 

N5 NIL[a/b] = NIL 

T1 a.tau.x = a.x 

T2 x + tau.x = tau.x 

T3 a.(x + tau.y) + a.y = a.(x + tau.y) 

Each axiom consists of a name, an equation, and possibly a side condition. 
A subset of axioms can be designated as an action a~ebra which defines the structural  

behaviour of actions: 

action algebra 
- ( ' a )  = a 

The expaas ionlawissepara ted  ~ o m t h e  ordinary axiomsandis  wri t tenin  a particular 
format since they are treated d i f fe ren t ly~omnormM equations: 

expansion law 

let x = al.xl + ... + an.xn y = bl.yl + ... § bm.ym 

then 

(x]y)\A = NIL if sync_move(x,y) eq nil and async_move(x,y) eq nil 

(x[y)\A = Sum(+,async_move(x,y)) if sync_move(x,y) eq nil 

(x[y)\A = Sum(+,sync_move(x,y)) if async_move(x,y) eq nil 

(xly)\A ffi Sum(+,async_move(x,y)) + Sum(+,sync_move(x,y)) 

otherwise 

with communication function 

sync(a, b) = tau if a eq ('b) or b eq ('a) 

async(a) = true if not(a in A or "a in A) 

where sync, async, sync_move, async_move and Sum are buUt-in primitives and are 
explained in Section 3.4. 

The rules for computing syntactic sort[Mil 89] can be placed after the keywords sort 
compuCation: 

sort computation 

Sort(NIL) = {} 

Sort(tau.P) = Sort(P) 

Sort(a.P) = {a} union Sort(P) 

Sort(P + Q) = Sort(P) union Sort(Q) 

Sort(P I Q) = Sort(P) union Sort(Q) 

Sort(P \ A) = Sort(P) diff (A union (map " A ) )  

2.2 P r o v i n g  A C o n j e c t u r e  

Having defined a calculus, one can prove theorems in it. The problems one wants to prove 
are given in problem definition files. The following is a definition file of the two bit buffer 
problem in CCS: 
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[] P r o o f  oF tbb in CCS 

~ [  outline ] ~  

F~l outline* II zoom* I 

F~q~F~RF~R 
step.auto leFt.right 

F~q FO Fq Pq Fq 

Fq Fq ~ 0~0 Fq 
F~ GO Fq F~ F~q 
Pl I 

Conjecture TBB : SY5 

SYS 
(OBBL IOBBR)\{s} 
(i.s. OBBLI ~s.o. OBBR)\{s} 
i.tau. (OBBL Io. OBBR)\s 
i. (OBBL i o.OBBR)\{s} 
i.P 

P 
(OBBLIo.OBBR)\{s} 
(i.s.OBBLIo.OBBR)\{s} 
o.(OBBRIi.s.OBBL)\{s}+i.o.(s.OBBLIOBBR)\{s 
o.(OBBRIOBBL)\{s}+i.o.(s.OBBLIOBBR)\{s} 
o. SYS+i.o.(s. OBBLIOBBR)\{s} 
o.SYS+i.o.(s. OBBLI ~s.o. OBBR)\s 
o.5YS+i.o.tau.(o. OBBRiOBBL)k{s} 
o.5YS+i.o.tau.P 
o.SYS+~ 

Proved bg UFI wlth TBB=SYS TBBI=P TBB2=o.P 

Axiom T1 is a~ = a.x 

Figure 1: A Proof Window 

conjecture 

TBB = SYS 

where 

TBB = i.TBBI 

TBBI = i.TBB2 + o.TBB 

TBB2 = o.TBBI 

SYS = (OBBLIOBBR)\{s} 

OBBL = i.s.OBBL 

OBBR = "s.o.OBBR 

end 

The system reads in the above problem definition file (assuming the calculus COS ha~ 
already been compiled), creating a proof window for it. Proofs are constructed by clicking 
suitable command buttons which correspond to proof steps. The available proof steps are 
explained in Section 5. Figure 1 shows a proof window with a complete proof for the two 
bit buffer problem. 
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3 The  M e t a  Language 

As can be seen in the example of the last section, a calculus definition in this proof system 
basically consists of signature and axiom descriptions, with optionaly sort computation 
rule specification. 

3.1 S i g n a t u r e  

3.1.1 Types  

Type names are listed after the keyword type, separated by blanks. The two types 
Action and Process must be present in every calculus. There is a pre-defined type Boo1 
and a pre-defined postfixing type constructor se t  (used to form action sets). 

It is possible to specify some types as subtypes of others. "T1 < T2" says T1 is a 
subtype of T2. A blank-separated list of such subtyping declarations can be placed after 
the keyword with following type declaration. 

3.1.2 Opera tors  

A typical operator declaration looks like 

_ + _ :: Process Process -> Process 120 AC LEFT 

The symbol _ is used as a place-holder to indicate where the actual arguments should go. 
So + is a binary infix operator, left-associative and commutative, with priority 120. 

It is possible to declare operator schemes, or indexed operators. At the present only 
associative and commutative operator schemes are allowed, i.e., all parameterized oper- 
ators must be of attribute At, and arguments other than the first and the last ones are 
regarded as indexes. For example, the family of parallel operators indexed by sets of 
actions may be declared as follows: 

_ [[ _ ]l _ :: Process Action set Process -> Process 

100 AC LEFT 

Here a scheme for a family of infix, left-associative and commutative operators is specified. 
For instance, I [(a,b:~] I and I [(c:~] I are two such operators. Each operator in this 
family will take two processes as arguments and return another process as result. 

3.2 A x i o m s  

An axiom is a named equation, or inequation, possibly with a side-condition. 
The language for side-conditions is simple, involving equality test eq between two 

actions or two action sets, boolean operations t rue ,  f a l s e ,  not,  and and or, and (finite) 
set operations, in (membership), union, d i f f  (difference) and i n t e r  (intersection). When 
the rules for sort computation are presented, the operator Sort  can also be used in side- 
conditions to compute the syntactic sorts of processes. 

A side condition is a boolean expression built up from action names and/or sets of 
action names using the above operators. It follows the keyword i f  after an equation. 
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3.3  A c t i o n  A l g e b r a  

A subset of axioms on terms of type Act ion may be grouped under the keywords acl : ion 
a lgebra .  These are the laws governing the structural behaviour of actions. 

The equations in the action algebra of a calculus, when it is present, are automatically 
applied as left-right oriented rewrite rules to evaluate the action expressions in the side- 
condition every time a conditional equation is used as a rewrite rule. Hence it is crucial 
to ensure that  the action algebra, when left-right oriented, constitutes a confluent and 
terminating rewrite system (modulo associativity and commutativity). 

S . 4  E x p a n s i o n  L a w  

The definition of an expansion law in this meta language consists of three clauses: the 
l e t  clause, t h e n  clause, and ~ i t h  clause, as shown in the example of Section 2. 

In the l e t  clause the form of the components of the parallel composition is specified. 
It must be the sum of a list of processes prefixed by actions. Ell ipsis. . .  is used to make 
it more comfortable to read. The summation (or choice) operator must be associative 
and commutative. 

The wi th  clause defines the synchronization mechanism. In this meta language such 
a mechanism is determined by three parameters: two functions (sync and async) a~d 
one communication style (handshake or b roadcas t ) .  

�9 async maps actions to the boolean constant t r ue ,  and may have a side condition 
attached. The actions satisfying the side condition can occur asynchronously, while 
the others can not. 

�9 aync is the synchronization function. It takes two actions as arguments and, if 
they satisfy the side condition, gives the action resulting from the communication 
between them. 

�9 communication style decides how the components of a parallel composition par- 
ticipate in communication. There are two communication styles: handshake and 
b roadcas t .  The default is handshake. 

The 1;hen clause consists of a list of (conditional) equations with identical left hand- 
sides which are parallel compositions, or restricted parallel compositions, of the process 
terms specified in the l e t  clause. The right handsides are the terms into which the left 
handsides will be expanded. The system provides three primitives that  can be used in 
the right handside terms. 

�9 sync_move takes two processes as specified in the l e t  clause, and returns a (possibly 
empty) list of processes resulting from all possible communications between them. 
The result of sync_move depends on sync and the communication style. 

�9 async_move takes two processes as specified in the l e t  clause, and returns a (pos- 
sibly empty) list of processes resulting from all possible asynchronous movement of 
these two processes. The result of async_move depends on asyac.  
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�9 Sum is a term constructor. It takes a summation operator (which must be associative 
and commutative) and a non-empty list of processes, and returns the sum of these 
processes. 

For some technical reasons, the cases that sync_move and/or async_move are empty 
must be specified separately. A constant n i l  is provided to test whether they are empty 
in side conditions. 

Usually there would be one expansion law for each parallel operator. 

3.5 S o r t  C o m p u t a t i o n  

The sort or alphabet information is useful in proofs involving infinite processes [BK 89, 
Mil 89]. Although the sort of an arbitrary process is uncomputable in general, it is not 
difficult to calculate the syntactic sorts of processes. In PAM the rules for compute 
syntactic sorts can be listed after the keywords so r t  computation. The top level symbol 
of the left handside of each rule must be the built-in operator Sort which has type P r o c e s s  

-> Action set .  When sort computation is enabled (see Section 5.1), an algorithm is 
invoked to calculate the least sorts determined by these rules. 

4 Unique Fixpoint Induction 

Unique fixpoint induction allows one to assert that two process terms are equal if they 
satisfy the same set of equations. Its practical application usually involves a pair of 
process terms, one of which is the specification defined by recursive equations, and the 
other one is the implementation which has been shown to satisfy a set of equations that 
are structurally the same as (or similar to) the definitional equations of the specification. 
Applying unique fixpoint induction to prove the equality of two such processes amounts 
to match two sets of equations. The algorithm for unique fixpoint induction is outlined 
in Figure 2 using pseudo-ml code. 

With unique fixpoint induction one can prove problems involving infinite state pro- 
cesses. Here is the counter problem (in CCS) which can be proved in PAM with only a 
few steps: 

conjecture 

where 

C = P 

C = up.(down.NIL I C) 

P = up.('s.P I B) \ ~s> 

B = s.down.NIL 

need sort computation 

end 
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fun ufi(spsc,impl,spec_defs,impl_eqs) = 

let fun matching(matched,to_match) = 

let val to_do = dill(to_match,matched) 

fun match_one(sp,im) = 

let val sd = lookup(spec_defs,sp) handle Lookup => sp 

valid = lookup(impl_eqs,im) handle Lookup => im 

in match_term(id, sd) 

end 

in if to_do = nil then (matched,[]) 

else let val m = map match_one to_do 

val new_to_match = fold union m [ 

val new_matched = union(matched,to_do) 

in mat ching (new_mat ched, new_to_mat ch) 

end handle Match_term => (matched,to_match) 

end 

matching( [ , [(spec, impl)] ) i n  

end 

Figure 2: The pseudo-ml code for unique fixpoint induction 

As is well-known unique fixpoint induction is unsound. However it is applicable when 
some condition, called guardedness, is satisfied [Hoa 85, Hen 88, Mil 89, BK 89]. At the 
present we leave to the users the responsibility of checking these conditions. 

5 P r o o f s  

5.1 P r o b l e m  D e f i n i t i o n  

To staxt a proof, one must present the conjecture to the system in a problem definition 
file. We have already seen an example in Section 2. 

The formula (equation or inequation) to prove follows the keyword conj ecturo. The 
recursive definitions of the process constants, if any, are listed after the keyword where. 
Macros may be defined after the keyword macro. They axe used to shorten inputs/outputs 
and have no computational effect. 

Sort computation can be enabled by the keywords need sor t  computation. It is 
disabled otherwise. 

5.2 P r o o f  Sec t i ons  

The proof system relies heavily on term rewriting techniques. A proof usually consists 
of several sections, each starts with a process term followed by some terms transformed 
from it by applying equational reasoning rules or folding/unfolding recursive definitions. 
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Such transformations are invoked by performing the corresponding proof steps explained 
in the following subsection. 

5.3 P r o o f  S t eps  

A proof proceeds when one performs proof steps. The proof steps already implemented 
so far can be classified into three groups: 

t r a n s f o r m a t i o n  steps The basic transformation steps are rewriting, applying expan- 
sion law, and folding/unfolding recursive definition. 

asser t ion steps Here we have proof commands such as unique fixpoint induction, prov- 
ing by transitivity, and proving by the concurrency workbench. The last one is only 
meaningful for CCS. These commands are needed to confirm that a conjecture has 
been proved so that it can be admitted as theorem by the proof system. 

auxi l ia ry  steps These include the commands for making auxiliary definitions, com- 
mands for opening new sections, and commands for making proved conjectures as 
theorems so that they can be used in subsequent proofs. 

Proof steps are invoked by clicking command buttons in the window interface. The 
behaviour of rewriting commands are controlled by two switches: The left-right switch 
determines in which direction an axiom is used as a rewrite rule, while the step-anto 
switch decides if rewriting should be performed for just one-step, or go as far as possible. 

6 C o n c l u s i o n s  and F u t u r e  W o r k  

We have described a general process algebra manipulation system which is based on 
equational axiomatization. It allows the users to define their own process algebras and 
carry out proofs for problems in the defined calculi. During the proofs terms can be 
simplified automatically by rewriting, and assertions about recursively defined processes 
can be verified by induction. 

Only the kernel part of PAM has been implemented. Much more efforts at both design 
level and implementation level are still needed to make it a practically useful system. 

Attempts have been made to integrate PAM with the Concurrency Workbench. At 
the moment we have only one direction of such linkage, i.e. to call the Workbench from 
within PAM, and the experiments gained are encouraging. More efforts are needed to 
investigate how to cooperate between these two kinds of proof tools so that each of them 
can take the advantages of the other: the indentities proved by algebraic manipulations 
can be exploited to reduce the state space of behavioural proof systems, while some 
parts of algebraic proofs can be checked automatically by behavioural tools to reduce the 
amount of tedious manipulations in algebraic proofs. 



146 

Acknowledgements 
Many thanks to Matthew Hennessy for initiating and overseeing this project and detailed 
comments on an early draft of this paper, to Luca Aceto for help in process algebra 
and particularly in formulating the expansion law, to Robin Milner for remarks on fair 
abstraction rule and on the integration with the Concurrency Workbench, to Faron Moller 
for detailed comments on the paper, to Simon Bainbridge for discussions on the proof 
system, to Astrid Kiehn and Anna Ing61fsd6ttir for their helps during the implementation 
of PAM. 

This project has been carried out with the financial support from the Science and 
Engineering Research Council of UK, and the ESPRIT II BItA project CONCUR. 

References 

[BK 89] Bergstra, J.A., Klop, J.W., "Process Theory Based on Bisimulation Seman- 
tics", in Linear Time, Branching Time and Partial Order in Logics and Models 
for Concurrency, LNCS 354, 1989. 

[BRSV 89] Bondol, G., Roy, V., de Simone, It., Vergamini, D., Process Calculi, From 
Theory to Practice: Verification Tools, INRIA Report No 1098, 1989. 

[CPS 89] Cleaveland, R., Parrow, J. and Steffen, B., "The Concurrency Workbench", 
Proc. of the Workshop on Automated Verification Methods for Finite State 
Systems, LNCS 407, 1989. 

[DJ 89] 

[c~z 89] 

[Hen 88] 

[MV 91] 

Dershowitz, N., Jouannand, J.-P., "Rewrite Systems", in Handbook of Theo- 
retical Computer Science North-Holland, 1989. 

Godskesen, J.C., Larsen, K.G., Zeeberg, M., TAV Users Manual, Internal 
Report, Aalborg University Centre, Denmark, 1989. 

Hennessy, M., Algebraic Theory of Processes, MIT Press, 1988. 

Manw, S., Veltink, G.J., A proof Asisteant for PSF. Programming Research 
Group, University of Amsterdam, 1991. In this Volume. 

[Hoa 85] 

[Mil 89] 

[NIN 89] 

Hoare, C.A.It., Communicating Sequential Processes, Prentice-Hall, 1985. 

Milner, R., Concurrency and Communication, Prentice-Hall, 1989. 

De Nicola, It., Inverardi, P., Nesi, M., "Using the Axiomatic Presentation of 
Behavioural Equivalences for Manipulating CCS Specifications", Proc. Work- 
shop on Automatic Verification Methods for finite State Systems, LNCS 407, 
1989. 


