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1 Introduction

EPOS?! offers Change-oriented versioning (COV) for software configuration management
(CM). The EPOSDB has long and nested transactions. EPOS also supports software
process management (PM) within a transaction and its workspace through task networks
and their project infrastructure.

The paper deals with EPOS extensions for inter-transaction coordination. This relies on
intentional configuration descriptions and ambitions to describe change propagation into
other versions. Raw (textual) merging comes for free in the COV model. Semantic merging
is facilitated by pre-commit propagation and negotiation among overlapping transactions,
according to agreed-upon protocols.

In the following, the problem area is first characterized with references to existing CM
systems and DBMSes. Then EPOS and specially COV are summarized. Lastly comes
a presentation of our transaction and cooperation model: background, design, technical
solutions, problems, and ideas on future work.

2 Background and Previous Work

CM assumes a shared and versioned repository to store software products, consisting of
general software components and their dependencies. Few tools operate directly on the
versioned repository. A software producer (a user or a team) must therefore work against
a file-based workspace. This contains a checked-out configuration, i.e. a specific version of
a chosen subproduct (Sec. 3.2).

Evaluation, check-out/in and commit of configurations must be planned, described, mon-
itored, and coordinated — both on a conceptual and technical level.

Traditional DBMSes have a strict consistency concept, coupled to serializible (short and
system-executed) transactions. For distributed and network-connected DBMSes, there is
a two-phase commit protocol.

CM involves many concurrent actors and long update times. Since updates may involve
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hard-to-predict and partly overlapping versions or subsystems, traditional locking proce-
dures will cause intolerable delays. CM therefore needs non-serializible (long and user-
executed) transactions. This may lead to update conflicts, which later must be reconciled
by version merging. But sometimes no merge is needed, because of independent develop-
ment paths.

Digression: When all transactions in an unversioned DBMS commit, there is one canon-
ical and consistent version of the database (DB). In contrast, CM maintains and control
permanently and mutually inconsistent (sub-)DBs!

Algorithms to ensure consistency in multi-layer storage systems (cache coherence, syn-
chrony between local and global databases) resemble those used for data exchange between
long transactions. Work on crowd control and groupware is also relevant.

There has been much interest in database triggers [Sto86]. That is, to have an active
DBMS, which automatically performs consistency checks and side-effect propagation ac-
cording to explicit event-condition-action rules. For CM we must also consider version
propagation incl. negotiation about propagation rules, and that side-effect propagation
can be very time-consuming and presume unobtainable access rights. Classic DBMS trig-
gers inside short transactions are therefore insufficient. A possible but not satisfactory
solution is to use notifiers to handle free-standing or delayed actions.

Simple CM systems, like SCCS [Roc75] and Make [Fel79)], offer no help for cooperating
transactions. Adele [BE87] has high-level configuration descriptions and some workspace
control, but only triggers to start rebuilds. PCMS [HM88] has document-flow templates,
and Mercury [MK88] uses attribute grammars to guide simple change propagation. IS-
TAR [Dow86] has subcontracts, but little formal cooperation. NSE [Sun88] is strong on
workspace control, and DSEE [LM85] has some support for handling change requests.
Few combined CM and PM system can adequately treat cooperating transactions, or can
handle configurations as conceptual entities both inside a database and in an external
workspace.

3 EPOS Background

We shall present EPOS and its versioning model, COV. COV is fundamental to understand
our transaction concept, and is therefore treated in some detail.

3.1 EPOSDB, Data and Task Model

The core of EPOS is a client-server based EPOSDB [OrMrGB90]. Its EPOS-OOER data
model can express application-specific product and task models, as sets of types in a DB
schema. Long attributes are represented as external files.

EPOSDB implements COV, and offers a version-transparent interface. Each transaction
is connected to a change job, a project task. Its configuration is evaluated (Sec. 3.2) inside
EPOSDB, and checked-out (i.e. converted) to a workspace. The workspace contains:
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1. Files and their dependencies: the Product Structure, PS.
2. A task network to support PM.

3. Some control information: the Project Knowledge Base, KB.

The Project KB can in principle be changed on-the-fly, and is customized using normal
COV. Many tasks communicate with developers through a screen window, mouse, and
keyboard.

The task network resembles a Petri net. It is managed by an Activity Manager written in
Prolog, doing planning, execution, and propagation control [COWL90]. Rules for change
propagation (busy, periodic, opportunistic, lazy etc.) are expressed by task types, which
contain PRE- and POST-conditions, a CODE program, and various constraints. Special
inheritance rules applies. A production rule like PRE-CODE can be compared to IF-
THEN clauses in conventional triggers.

The EPOS Activity Manager (AM) runs as an application on top of EPOSDB. The AM will
set up the basic transaction/project structure. Low-level synchronization and notification
is handled by the DB, and the AM application is expected to handle possible conflicting
situations on a sufficiently high-level.

PM in EPOS was initially limited to tasks (e.g. rebuilds) within a single-version? workspace.
We are now generalizing to multiple workspaces to control propagation/communication
(e.g. merges) between workspaces. A message passing facility was added for this.

Figure 1 shows Product Structures in two cooperating transactions, with internal and
external change propagation.

external
propagation

Transaction 2 Transaction 1

".“ulu..,."
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Figure 1: Internal vs. external change propagation after an update

3.2 Change-Oriented Versioning, COV

Change-oriented versioning [Hol88] [LCD*89] resembles and generalizes conditional com-
pilation. COV is orthogonal to data model, schema, instances (objects and relationships),

*Most published PM work share the same fate.
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and surrounding infrastructure. In COV, a completed functional change is described by
a boolean® global optiont, e.g. MachineSun or BugFixCommandA. There are version-rules
(constraints, preferences, defaults) to express legal or preferred option combinations.

A DB fragment or delta (a text line or relational tuple) is tagged by a wvisibility, a logical
expression. A visibility is evaluated to False or True under a given version-choice, being a
complete and legal set of option bindings. A version-choice corresponds to a “configuration
thread” in other CM systems. A version-choice with Unset option values is called an
ambition (Sec. 4).

A specific, bound version of the entire DB —~ a non-versioned sub-DB ~ consists of DB

fragments with True visibilities. If some visibilities still are Unset, the version is partially
bound.

A new option creates a “mirror” DB. This is initially equal to the existing DB, and is
invisible to versions that have not included the new option.

3.3 Configuration Description and Evaluation in EPOSDB

A configuration is described by a DB query or intentional config-description, CD = [VD,
PDJ. The VD or version-description is a partially bound version-choice. The PD or product-
description is a tuple of [Root objects, ER types].

A bound configuration, a Config, can be expressed as Config = Evaluate-config(CD, DB).
The evaluation goes in three mapping steps, see Figure 2:

e Cl) VC = Bind-version(VD, version-rules)’.
The more high-level and partially bound VD is evaluated to a low-level and fully bound
version-choice, VC, through stored version-rules [GKY90]. The mapping typically
incorporates more detailed “revision options” in the version-choice, and may change
as the version-rules evolve.

e C2) Sub-DB = Version-select(VC, DB).

This mapping facilitates “COV-propagation” or raw data merging between configura-
tions, if the changes have wide-enough visibilities. This is the main feature of COV,
since it eliminates the need for separate, parallel variants.

¢ C3) Config = Product-select(PD, Sub-DB).
This mapping selects a closed Product Structure, a configuration, by constraining
the bound sub-DB. The product closure is defined by a hierarchical product model,

with separate Family interfaces/bodies and general dependencies. The mapping may
change, due to structural changes in the product (really a C2 change).

A forth step will then generate a workspace, WS:
C4) WS = Check-out(Config, DB-WS map).

Note, that version-selection (C2) is done before product-selection (C3), being the inverse of

3The domain is really ternary: False, True, and Unset - or F, T and U.

4The options are separate from normal DB attributes. Indeed, an option is in itself an entity and does
in particular have attributes like CreateTime, IntendedImpact, Name, ResponsiblePerson etc.

5An ambition A is also evaluated. The VC is a point within the multi-version space indicated by A.
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common practice in most CM systems. Here, a back-bone system model must be generated
before the individual component versions can be selected via a configuration thread. The
latter ordering may create problems, if the system model can be re-structured, i.e. it is
versioned. Adele offers intermixed version/product selection to handle this.

..........................

local prop.

read/write

Applic.
tools

Figure 2: EPOSDB mappings

4 EPOS Transaction Model

EPOS supports long and possibly nested transactions. Short transactions may be needed
to atomize internal EPOSDB operations, and are simple to add.
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4.1 'Transaction, Ambition and Version-status

A transaction works on a configuration, described by and evaluated from a config-
description. There is also an ambition to specify the scope of updates on this configu-
ration. The ambition is an option binding with possible Unset option values. It identifies
a potentially large set of versions, or sub-DB slices of a versioned DB universe, where the
local changes from the current transaction will be visible after commit.

..........

A new fragment gets V' = A, an unchanged one V! =V, and a deleted one V! =V A -A.

Ex. Assume that a VC has options 0x and Oy set to True. This implies that its cor-
responding version (= visible fragments) may change, if another transaction introduces
fragments with visibilities Ox, Oy, or Ox A Oy (the latter represents merging). See next
subsection on overlapping transactions.

Lastly, a transaction is characterized by a version-status with values such as Stable, Rele
ased, Reviewed, Tested, Compiled, Designed, Raw, New etc. The version-status in-
dicates the proposed reliability of the committed version. And one new or changed DB
fragment, propagated from another transaction, is enough to make a configuration “dirty”
or Raw (Sec. 5.4 for merging). To stop such propagation we can declare a version(-choice)
Stable, i.e. immutable.

Ambition and version-status can be adjusted before commit, as a result of negotiation and
carried-out merging and testing. However, the version-choice must always constrain the
current ambition, and it can only be extended with new options after transaction start.

4.2 Cooperating Transactions with Partial Overlap

After commit of a transaction, the affected or overlapping configurations are candidates
for reevaluation. These configurations may either be ongoing, i.e. we need cooperating
transactions, or they may be released, i.e. we should notify their responsibles for possible
reevaluation. E.g. Adele will prepare a log of proposed revisions to an old configuration,
50 that these can be included in a future, reevaluated configuration.

There are two kinds of overlap, corresponding to the previous C1- and C3-mappings:

o Ambition-overlap: mutual version visibility.
Two ambitions Al and A2 are either disjoint: there exists at least one option with a
False value in one ambition and a True value in the other; or overlapping: no option
can be False in one ambition and True in another (but Unset is OK). Special cases
of overlaps are constrainment (useful in nested transactions) or identity (useful for
parallel work on disjoint subsystems).

No ambition-overlap corresponds to classical variants.
Example 1. Overlapping ambitions.

Assume that there are three old and two new options: 01-03, 0x, and Oy. Also as-
sume that transaction T1 introduces Ox with ambition Al=aaaTU and with version-
choice VC1=vvvTT. The three option values vvv have bound option values, possibly
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constraining the aaa values. Assume further that transaction T2 introduces Oy with
A2=aaaUT and with VC2=vvvTT. This implies that T1’s updates at least (depending
on aaa) will become visible to T2, and inversely.
¢ Product-overlap: shared subsystems.

A Product Structure constrains the sub-DB selected by a version-choice. Product-
overlap simply means non-empty intersection of actual PS components. A difference
tool will similarly identify the non-intersecting components, or possibly more fine-
grained fragments.

Note: Product-overlap assumes ambition-overlap. It does not “help” that two PS
versions are identical at transaction start, if there is no ambition-overlap to announce
intended merging.

Example 2a. Product-overlap in Figure 3.

T T2

Figure 3: Product Structures with shared subsystems

The degree of overlap can be used to assess the potential impact (side-effects) of the in-
tended changes of a new transaction. A consequence of such impact analysis can be that
the new transaction is either constrained, delayed (i.e. serialized!), or have to be delegated
to somebody else (see points 3 and 4 in Example 2b below).

Policies for handling conflicting updates in overlapping transactions can be:

e Not_do_anything: arbitration or anarchy!

e Priority: let the first, last (default in EPOSDB), or some arbitrary committing trans-
action win.

o Rollback: prevent any overlapping transaction from committing. This may waste
weeks of work!

o Locking: prevent multiple updates on shared components by access locks:

— Read/write locks:

Only one actor can write, while several others may read. RCS uses this mechanism.
Note that exclusive write locks may introduce deadlocks.

— Only read locks or no interference:
If none of the actors can or will write, there will be no problems.

— No locks or optimistic synchronization (default in EPOSDB):
A project administrator should assign well-defined jobs to ensure maximum paral-
lelization and minimum interference. However, inconsistent updates may occur, and
require subsequent merging (see below).

o Merging/integration: the most general solution, and being presented in this paper.
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It may happen that several versions may have to be merged — but when, in what
sequence, and by whom?

Note, that non-overlapping write access does not remove the need for general merging®,
due to (transitive) dependencies of a modified component, cf. trickle-down recompi-
lation. See Sec. 5.4 for merging details.

Example 2b. Two cooperating transactions T1 and T2, with the same ambition and
version-choice.

The T1 configuration contains the three modules from Figure 3: MA which uses L.h, which
again is implemented by L.c. Similarly, the T2 configuration has the three modules MB,
L.h and L.c. We can think of the following update situations:

1. Non-overlaps:
MB or MA can be updated without interference, except for local recompilations.

2. Overlaps, with local and later global propagation:
Local updating of L.h by T1 (if allowed) implies possible changes and recompilations
of the two clients MA and L.c inside T1. A change in L.c only implies a local
recompilation.

However, any change to shared L components must sooner or later be propagated
to transaction T2. This may be followed by subsequent textual merges, if T2 had
already made updates on these (and propagation of the merged version back again!).
But even if T2 has not updated these, we must perform normal change propagation
within T2’s workspace, to account for the “T1-imported” changes on these compo-
nents.

3. Constraining overlap:
An alternative is for T2 to delay, or even resist T1’s announced changes to L. The
latter case could lead to T1 being prevented from doing the announced changes.
Another solution is for T1 to constrain its ambition, or for T2 to add a new sub-
option to isolate itself.

4. Delegation of updates to somebody else:
It may also happen that neither T1 nor T2 has the access rights to change the L com-
ponents. Then, what if T1 still insists on having certain changes to these? A possible
solution is for T1 to send a change-request message to the responsible maintainer
of L, with information about requested functionality, ambition, and urgency(!). But
will T2 accept to be forced to comply with T1’s proposed change? Again, T1 or T2
may have to constrain their ambition-overlap.

We can conclude, that there is a strong demand for flexible communication and negotiation
policies, even for very simple systems.

®We can consider the entire software product as one text for simplicity.
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4.3 Nested Transactions

A nested, child transaction overlaps that of its parent, and possibly that of its siblings.
In addition, the child is constrained relative to its parent in the ambition and/or product
part. This implies write locks of version subspaces (sub-DBs) and access rights only to
product subspaces within these versions. However, we are not constraining access to whole
instances, only to versions of these instances.

After child commit, changes are propagated to the parent, which must handle possible
update conflicts. We should therefore prepare later merging by pre-commit negotiation
and propagation between parent and children. lLe. with whom should inter-transaction
cooperation be established, and how (manual or automatic) and when (lazy or busy) should
it be carried out?

A simple transaction tree is shown in Figure 4.

¢ busy propagation

: lazy propagation

Figure 4: Nested transactions, with alternative propagation patterns

Example 8. Two different changes X and Y on module M.

Assume that X and Y are independent, so that the corresponding update jobs, Tx and
Ty, will produce two variants, Mx and My. Tx and Ty can be carried out in parallel or in
arbitrary sequence. If there later is a need for merging, this can be done by a third update
job, Txy, producing Mxy. The start version for Mxy is either Mx or My.

Given our model of nested transactions, we will rather make a parent transaction Txy,
with two child transactions Tx and Ty. The parent may have to delegate the merges to
a third Tmerge child, because of its initial and irreversible version-choices — see Figure 5.
However, the parent can instruct Tx and Ty from the start to cooperate on producing a
common version before cornmit.

5 Supporting Cooperating Transactions: the Details

To define and execute cooperating transactions we need project-level information, such as
change requests, work procedures (= task types), config-descriptions, workspace layout
descriptions, and available resources (tools, users). Change propagation is supported by
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Figure 5: Sequential vs. parallel merging

message passing, communication and negotiation protocols, and local reconciliation with
merging and client propagation.

In the following we shall describe subtasks for cooperating transactions, workspace orga-
nization, communication protocols, and change reconciliation.

5.1 Subtask Infrastructure for a Transaction

Each transaction is controlled by a change job of type Project, a transaction task. It will
receive a change request, CR, and produce an updated configuration, NewC’.

A ROOT-PROJECT task describes the never-ending, most global transaction, while
PROJECT describes the current transaction. A transaction task is connected to a par-
ent and possible children and sibling transaction tasks. There is also a list of committed
transactions, FINISHED, whose config-descriptions are candidates for future reevaluation.

Figure 6 shows the PROJECT subtasks and simplified data flows to implement cooperating
transactions:

1. START-CHECKOUT: Initiate transaction, evaluate a NewC configuration from a
chosen CD, and transfer and convert NewC from EPOSDB to the workspace.

2. OVERLAP-NEGOTIATE? for control-level negotiation: Analyze ongoing sibling
transactions for possible ambition/product-overlap with NewC, and send out mes-
sages to negotiate a contract or protocol for future communication and propagation.

3. WORKING:

"The overlap analysis should technically be done before check-out.
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Figure 6: Tasks to support cooperating transactions

o COOPERATE: data-level exchange and negotiation.

— PROPAGATE-IN + possible MERGEs: Analyze and negotiate incoming change-

notifications. For instance, it could fork off a new MERGE subtask to reconcile an
incoming and a local module.

~ DETECT-UPDATES + PROPAGATE-OUT: Monitor the local workspace, filter
and analyze the changes, and possibly forward change-notifications to overlapping
transactions.

All these activities are guxded by the agreed-upon protocol, and interfere with the
CHANGE-PROCESSING subtask below.

¢ CHANGE-PROCESSING for normal, single-user PM: contains subtasks for work
decomposition, sequencing, and change propagation within the workspace. Thereby
the work according to CR will be carried out, and a NewC’ will be created and
validated to some degree. Subtransactions can be started via the HANDLE-
CHILDREN subtask,

¢ HANDLE-CHILDREN: starts and terminates children transactions.

4. CHECKIN-COMMIT: Transfer the updated workspace containing New(C' to
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EPOSDB, and propagate/negotiate changes to siblings. Then commit transaction
to parent via EPOSDB, and negotiate with the parent’s HANDLE-CHILDREN task.
Overlapping, released configurations will be notified through their responsible tasks,
having some suitable activation rules.

5.2 Workspace control

Check-out and check-in converts between the sub-DB and an external workspace® (files,
Prolog facts). Check-out is batch-wise, not demand-driven, and we should reuse workspace
data between transactions. The sub-DB objects must be kept structurally in synch with the
workspace files (C4 mapping). Locks and access rights can be appended on the checked-out
files, but this is p.t. not offered by EPOS.

Workspace layout is important, since tools must be properly fed and common subprod-
ucts effectively shared. For source programs we have chosen a close mapping between a
Family breakdown in the DB and a file directory in the workspace. Shared families will
be represented by symbolic links, and are usually set up by the parent transaction.

Only leaf transactions are supposed to do any real update work. Non-leaf transactions
possess workspaces which serve as a shared pool for their children. These workspaces will
not be regenerated upon child commits. We may also consider language-specific check-out
tools to control e.g. #include directives in source programs,

The organization and connectivity of workspaces strongly influences the mechanisms for
change propagation. E.g. use of global directories will make updates on these immediately
visible, ¢f. NSE’s symbolic links and Example 4 below.

Example 4. Partly shared workspaces.

A typical situation is a parent transaction T, with N children Ti. These may work on
disjoint parts of a product to achieve a common goal. T’s workspace is often a global pool
of shared program components. Each Ti will temporarily keep components undergoing
updates in local workspaces. When such components have been sufficiently tested, they
will gradually be “pre”-checked-in or promoted to the global pool. This may cause change
propagation into other local workspaces.

However, suppose that one of these Ti’s wants to delay the local effects of a changed and
promoted module M’. This is normally done by temporarily retaining a local copy of the
previous version of M, or by equivalent manipulation with symbolic links or search paths.
Such temporary changes in the local workspace should be properly recorded, for later
integration of the new M’. This illustrates the diffuse borderline between pre-check-in
propagation, check-in, and commit — see Figure 7. If commits were cheap and convenient,
they might offer a more uniform solution.

8Remember, that the project infrastructure (Project KB) around a transaction/workspace can be cus-
tomized using normal COV.
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Figure 7: Common vs. private workspaces

5.3 Inter-Transaction Protocols: What, When, How?

The OVERLAP-NEGOTIATE subtask will establish a ProtocolPolicy(Ti,Ti)® for each
directed {Ti,Tj) pair of overlapping transactions. Based on this information, a task network
is instantiated and instrumented to implement the protocol between the actual workspaces.
This is very close to the task network being automatically planned within a workspaces.

Within certain limits, the protocol can be re-negotiated, partly or in full. Changes in
ambition- or product-overlap may change the network of cooperating transactions. We
will initially assume stability here.

The expected work pattern is that such transactions have “shared” the Product Structure
reasonably between themselves wrt. updates. The main communication pattern should be
to incorporate the others’ updated components into one’s own environment in a controlled
way.

The protocol contains the following information:

¢ Granularity: what shall be propagated (before check-in), e.g.:

— Selected types: e.g. entire subproducts vs. single components.

— Selected attributes, specially files being long attributes.

e Timing!%, or when to receive and implicitly when to send:

— HARD coupling (Busy): All changes done by others are propagated immediately to
me.

— SOFT coupling (Semsi-Busy — recommended): Propagate or promote such changes
after manual confirmation by the other transaction.

— TIGHT coupling (Other-lazy — default): Propagate after the other’s check-in/
commit.

°If there were no external workspaces, i.e. only internal DB information, many of the below policies
become superfluous or even impossible to realize.
10 Adapted after Adele’s proposed design for workspace coordination.
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— LOOSE coupling {Self-Lazy): Propagate only after my own check-in/commit.
o How to accept:

— MANUAL-ACK: need explicit acknowledge after notification, followed by:
* REJECT with request to:
R1) DELAY: OK, but not-yet-ready,
R2) VETO: return protest message, possibly with proposed changes,
R3) REDUCE mutual version visibility.
* ACCEPT with request to: AUTO-COPY or MANUAL-COPY (sece below).
A difference tool can be used to assist decisions.
— AUTO-ACK: notification is always sent, but no answer expected. This is followed
by AUTO-COPY, except when there is directly conflicting textual updates — see
merging in Sec. 5.4.

After delivery of a new copy: Possibly first perform a textual merge and agree mutually
upon this (may take several iterations); then local change propagation as usual, see
next subsection.

Note: the protocol regulates multiple updates of shared subconfigurations, but it is
each user’s responsibility to ensure consistency and completeness of his work.

o How to receive or workspace connectivity:

— AUTO-COPY: shared file (only for NO-ACK), indirect file link, or manipulated
search path.
— MANUAL-COPY: e.g. to prepare for merging.

Some of the above policies are not independent, e.g. MANUAL-ACK excludes AUTO-
COPY.

5.4 Reconciliation of changes: Merging and local propagation

Once a changed component X’ from transaction T1 has been announced and accepted into
another transaction T2, there are two main cases:

1. Physical merging of two textual components, X’ and X”.

Assume that T2 also has made its own version X”. To assist the physical merge, a
multi-version text editor could be used to high-light different text fragments [SBK88].
For a start, we will use emacs with three windows: one containing X’, one containing
X”, and one containing the merged X’+X”, called X+. The initial X+ is the COV-
merged text fragments of X’ and X”, After testing in T2, the new X+ should be
propagated back to T1, and so on.

2. Change propagation to affected, local clients.

Assume that T2 depends on the most recent X, in order to update Y to Y. A typical
example is #include dependencies between an interface and its client components.
All clients must in due time be notified about relevant changes and re-processed
accordingly - and so on transitively. Such waves of change propagation may require
manual updating and retesting, and/or automatic re-building.
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Change propagation can be severely constrained by applying fine-grained knowledge
about the Product Structure [Tic86}, cf. changes in the interface vs. in the body of
an Ada package.

6 Open Areas

6.1 Handling of Aborts

If all the child transactions commit gracefully, there are no problems. But what happensifa
child transaction, TC, aborts before proper commit? If changes from this child transaction
already have been prematurely propagated to sibling transactions, we face some very
unpleasant choices!!:

¢ Rollback of the entire parent transaction.

¢ Rollback of the affected sibling transactions to a consistent state, assuming one of two
cases:

- Local check-points are available, e.g. by intermediate copies of changed compo-
nents. This implies resetting the time to a point before the first change received
from TC, i.e. physical check-points.

— We can create a subtransaction of the affected sibling transactions every time a
major change is imported from TC. Thus, we can rollback each wave of changes,
i.e. logical check-points.

Our intention with cooperating transactions is pre-commit interchange in a well-
structured way. With a mixture of local changes and imported changes from different
sources, we can get a very complex version graph during the transaction. In such inter-
twined cases, we should perhaps resort to traditional, more independent transactions,
and perform step-wise merging later.

Cf. also previous comments on the granularity of commits.

6.2 Decision making support

EPOS should act as an intelligent assistant to support software work and its coordination.
Task types express constraints and activation rules. This information is used to plan work
breakdown and sequencing within a transaction.

However, there is little explicit support for cooperating transactions and general job plan-
ning, e.g. to:
¢ Decide work/project structuring, based on incoming CRs and existing Product Struc-
tures.
o Assist in detailed impact analysis of announced changes.
o Structure and evolve the version space.

o Suggest suitable cooperation protocols for a given piece of work.

11Thie withdrawal situation can be found everywhere in software development.
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7 Conclusion and Future Work

EPOS runs on Unix-based workstations (Sun-3), and is implemented in 13,000 lines of C
and 3,500 lines of SWI-Prolog. EPOSDB is based on C-ISAM, with client-server protocols
using Sun RPCs. A simple graphical user interface is available.

EPOS PM has recently been extended from single-version to multi-version workspaces,
offering inter-transaction negotiation and propagation. This iz based on ambitions to
formalize the intent of proposed changes. Trial implementation started in mid-Nov. 1990,
and the first results are due in April 1991. The entire PM formalism can then be used
for medium-scale experiments on a multi-user EPOSDB, offering the COV paradigm for
versioning.

Many of the EPOS solutions can be applied to other CM systems and to fields like docu-
ment processing and crowd control.

Still, there are many issues to be pursued:

s Communication paradigm:
- Harmonization with DBMS triggers.
- Better handling of interactive, cooperating tasks.

¢ EPOS PM extensions:
- Type evolution and structuring.
- Multi-actor monitoring and planning.

e Transactions and workspaces:
- Introducing locks and access rights.
- Better control of workspace layout.
- Cheaper commits.
- Incremental evaluation of configurations.
- Less strict nesting of transactions.
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