
A Case Study Using the IMSE Experimentation Tool 

Jane  Hillston, Andreas  L. Opdah l  & Rob Pooley 

Depa r tmen t  of Compu te r  Science, Universi ty of Edinburgh,  Scot land 

and  S INTEF,  Universi ty of Trondheim,  Norway 

Abstract 

This paper presents a tool for creating and running experiments within a per- 

formance modelling environment, and a practical case study through which its key 

features are illustrated. The case study is concerned with optimising the load ar- 

rangement of a hospital information system. The paper describes the experiments 

created to support the case study in a textual and a graphical format. 

Both tool development and evaluation work are being carried out in parallel as 

part of the IMSE project 1. The paper presents this evaluation which resulted in 

the elicitation of further requirements on the tool. We also describe how many of 

these have been incorporated into the final tool design. The paper concludes with a 

description of the objectives for further work on the experimenter tool. 

1 Introduction 

The Experimenter, described in this paper, is an environmental tool at the core of the 

Integrated Modelling Support Environment (IMSE) [Hughes and Potier 1989]. The IMSE 

IThe Integrated Modelling Support Environment project (IMSE) is ESPRIT2 project 2143, funded by 

the CEC. IMSE reports can be requested from STC Technology Ltd., Copthall House, Newcastle-under- 

Lyme, Staffs, England. 



285 

project aims to exploit current workstation technology and build upon recent advances in 

the support of modelling activities, in order to produce an integrated set of tools to help 

performance modellers in their work. This represents the next step from the tools which 

have emerged in recent years offering increased support of modelling. Such tools usually 

require the user to be familiar with the modelling paradigm involved but not necessarily 

with the details of the underlying mathematics or programming language. There are 

many examples of such tools: RESQ, QNAP, COPE, HIT and GreatSPN. Further details 

of these and other tools can be found in [Potier 1985; Abu E1 Ata 1986; Puigjaner 1988]. 

The rSle of the Experimenter within IMSE is to allow the use of models to take place at a 

higher level of abstraction, hiding from the user the details of using various modelling tools 

and statistical packages. This gives even greater flexibility to the treatment of models 

and the analysis of systems. 

The main aim of the project is to address the performance evaluation of computer and 

information systems, Computer Integrated Manufacturing (CIM) applications and com- 

munication systems, looking closely at the possibilities for incorporating performance 

evaluation and validation naturally in the design process. In order to ensure the applica- 

bility of the toolset developed and to provide progressive feedback to the tool designers 

part of the effort of the project is devoted to the development of several reference applica- 

tions, using the tools of the environment. The case study described in this paper results 

from that work. 

2 IMSE and the Experimenter 

2.1 I M S E  

In recent years many people have recognised the desirability of emphasising and exploiting 

the similarities between system design and model construction [Pooley 1989; Zeigler 1984], 

and the advantages which would be gained if the two processes could be integrated to 

some extent. Such an integration would represent the first step towards incorporating 



288 

performance evaluation and validation naturally into the design process. 

Within IMSE the tools supported are designed to assist in all stages of the modelling 

aspect of performance evaluation, from model construction and generation of workloads, 

through experimentation, to the generation of final reports on findings. Wherever possible 

the environment has been designed to support users without in-depth knowledge of the 

tools and techniques employed. 

The tools are made available to the user through a graphical interface, known as the 

WorkBench, and by mouse and menu-driven operations on iconic objects. IMSE currently 

supports three alternative dynamic modelling paradigms and has been designed to be open 

to new tools and techniques in the future. The tools included at present support timed, 

stochastic Petri networks (PNT), queueing networks (QNET) and the process interaction 

view (PIT). Models are constructed by graphical editing tools, all based on a common 

data manipulation and graphical support system (GSS) [Uppal 1990]. In general, as all 

model execution will be invoked from the paradigm independent Experimenter, the user 

is unaware of the model solution tools. 

Tools for the static modelling of systems and for the analysis of workloads are also in- 

cluded in the environment. The static models provide a hierarchical description of the 

system in terms of subsystems and offered and used services. This structural description, 

constructed using the sp [Minkowitz 1990] tool, is then available for calculating workloads 

and performance specifications. The workload analysis tool (WAT) allows analyses to be 

performed on external data to provide input for dynamic or static models. Such analyses 

may also be performed on the output of models for validation purposes. 

A key feature of the environment is an object-oriented approach which is implemented by 

the Object Management System (OMS) [Titterington and Thomas 1990] at the core of 

IMSE. The OMS is similar to a database storing all the "objects" within the system and 

the links between them. Objects are derived from a common entity relationship model of 

the whole system and may, for example, be models, results, reports or collections of input 

parameter levels. The OMS provides functions that allow the tools, and therefore the 

user, to create and delete certain objects, group objects into directories, and to establish 

relational links between them. 



287 

W 
O 
R 
K 
B 
E 
N 
C 
H 

WAT 

sp 

~ T R -  
U C ~  

I 

EXPERIMENTAL 
PLAN EDITOR 

EXPERIMENTAL 
PLAN 

EXEOJr(~ 

REPORTER 

TOOLS 

v 

v 

I t= t 
--1 

O 
B 
J 
E 
C 
T 

S 
T 
0 
R 
E 

Figure 1: The IMSE Architecture 



288 

The final aspect of the IMSE environment is the tools provided to enable the user to make 

full use of the models created. The Experimenter, handling the models in a paradigm 

independent way, allows the user to concentrate on the desired conditions for model exe- 

cution and the treatment of results. There is also an Animator tool, driven by simulation 

traces which allows the user to visualise an execution, and a Reporter tool for the creation 

and collation of results and reports. The overall architecture of IMSE is shown in Figure 

1. 

2 .2  T h e  E x p e r i m e n t e r  

As performance modelling has become established the process of model construction has 

become less important relative to the use of models and the interpretation of their results. 

The Experimenter reflects this change in emphasis, allowing the user to express an exper- 

iment in terms of workloads in which he is interested and results he would like to obtain 

[Hillston et al 1990]. The model to be used must be specified but detailed knowledge of 

the paradigm and solution techniques involved is often not required. 

An experiment is deemed to be a series of related model solutions, using one or more 

models. The experimentation is based on clearly defined experimental plans similar to 

those in [Zeigler 1976], leading to an approach which is systematic and objective-driven. 

In other words, the set of model solutions within an experiment is designed to address a 

stated objective and the outcome of these solutions will be combined to form an integrated 

report. 

The Experimenter allows different modelling paradigms to be used for model specification 

but also enables the resulting models to be combined within a single well-defined exper- 

iment. Previous tools such as QNAP2 and HIT allowed the analyst a choice of solution 

techniques from a single model specification. The use of the Experimenter within IMSE 

takes this approach one step further by offering the user a choice of tools for model speci- 

fication as well as solution. This means that different aspects of the modelled system can 



289 

be represented, and solved, in the most suitable manner. An example of this approach 

can be seen in the case study presented below. 

The basis of this technique is the separation of the control of model execution, directed by 

the Experimenter, from the realisation of model execution, carried out by the individual 

modelling tools. At the level of experimentation a PNT model will look the same as 

a QNET model. This is particularly desirable for users, such as system designers, who 

do not wish to be concerned with the details of the modelling. In particular it opens 

the possiblity of non-expert users being able to take previously constructed models and 

exploit them without detailed knowledge of the underlying construction. 

2.3 E x p e r i m e n t a l  P l a n s  

The purpose of the Experimenter is to help the user to specify a "plan" of what model 

executions, and statistical analyses on outputs, are required, and to follow this plan 

automatically to produce results. Much of the work of the Experimenter in supporting 

multiple modelling paradigms and solution methods is new. However, some earlier work 

has been carried out in this field [()ren 1984; Beilner et al 1988; Umphress et al. 1989] in 

the support of specific tools. 

The notion of a.n "experimental plan" is not commonly supported by modelling systems. 

By plan we mean a series of model solutions related by a single objective, as described 

above. Support is usually provided as a set of facilities for expressing multiple runs (repli- 

cations, regeneration points etc.) and subsequent analysis of results. However, within 

IMSE an experimental plan is an object stored in the OMS in the same way as a model. 

Such plans can themselves be parameterised leading to the development of "generic" plans 

which are easily tailored to individual use. This emphasises the possibilities for the reuse 

of plans. 

The initial development of the Experimenter design concentrated on the definition of a 

language in which experimental plans could be expressed. This resulted in an early proto- 

type exploring the functionality of the tool but with only a limited textual interface. This 



290 

prototype is described in some detail in [Stevenson et al 1990]. The experimental language 

was the users' means of instantiating the structure of the experiment. Subsequent design 

work has addressed weaknesses identified by this prototype and, in particular, explored 

the user interface issues. As a result of this work a graphical editor for experimental 

plans has been developed based on the common IMSE graphics tool (GSS). Although the 

graphics can convey only the organisational, or schematic, information about the exper- 

iment, so that details must be entered as text, it is just such organisational information 

which it was found difficult to express textually. Also it is felt that the graphical approach 

provides the simplest interface to the Experimenter and greatest coherence with the rest 

of IMSE. 

3 The Hospital Case Study 

The case study presented below was started when only the textual language prototype was 

available. The lessons learnt formed an important input to the subsequent design and the 

same experimental plans were later expressed using the resulting graphical version of the 

Experimenter. The purpose of the study was to evaluate the whole of IMSE from practical 

experiences with information system engineering. Initially the evaluation was carried out 

with respect to the use of individual tools [Opdahl et al 1990]. As the development of 

IMSE progresses more of the environment will become integrated and the evaluation will 

be extended. 

3 .1 T h e  S y s t e m  S t u d i e d  

Two major criteria were identified as important in choosing the case study. Firstly, the 

case had to be realistic, i.e. involving a real performance problem on a real system. 

Secondly, the case had to be particular to information system engineering. 

The Regionsykehuset i Trcndelag, the regional hospital of Trcndelag, agreed to cooperate 

in providing such a case study, centred around the hospital Patient Administration System 



291 

(PAS). System managers at the hospital identified three problem areas: 

. 

. 

. 

Load arranging:  Interactive response times during periods of heavy-load (in the 

day-time) were unacceptable due to batch jobs running. Managers needed figures to 

convince user-departments that changing their work routines would lead to better 

systems response. 

Load balancing: There were balancing problems in the (5 CPU-) system. System 

managers wanted tools to help them find better/optimal allocations of processes to 

the CPU's and discs in the system. 

Software pe r fo rmance  evaluation:  The continuous development and instal- 

lation of new applications made capacity planning impossible. Managers and ap- 

plication developers needed a means of estimating the workload of a system to be 

installed, prior to production use. 

3 .2 T h e  I n i t i a l  O b j e c t i v e s  

The initial work, described here, concentrated on the first problem, leaving the others as 

reference problems for the later stages of the IMSE project. This first case study has built 

models of the computer system (dynamically) and existing applications (statically) and 

used the developing support tools to make use of these models. In particular prototype 

versions of the Experimenter have been used to design experiments in which the models 

a r e  t o  r u n .  

The problem addressed, "The Load Arranging Problem", can be stated as follows: 

The organisation imposes workload on the computer system throughout 

the day (24 hours). Workload consists of interactions and batches. The work- 

load of interactions and batches follows a regular pattern throughout each day. 

How can batches best be moved within the 24 hour day in order to improve 

the response times of interactions? 



292 

3.3 T h e  M o d e l l i n g  S t u d y  

It was decided that a three-level model was the most appropriate solution to this problem: 

• A top-level static component model of the organisation specifying the workload on 

the application. 

• A bottom-level static component model of the PAS application. 

• A dynamic model representing the computer system. 

Measurements taken from the PAS were used to validate a parameterised baseline model of 

the system against response times, utilisations and queue-lengths. In the top-level compo- 

nent of the static model a mapping could be specified to represent how work was devolved 

within the system to lower level components. This mapping corresponded to a particular 

organisation of batches throughout the day. Thus, selecting the static model component 

with the mapping which gave the best interactive response times for the working period 

would correspond to finding the best load arrangement for the hospital organisation. Once 

the model had been validated this reduced the problem to experimentation to find the 

optimal mapping in the top-level component. 

Clustering analysis was carried out using the WAT, identifying the number of classes 

of batch jobs needed in the models. Workload parameters, service centre descriptions, 

and service demands were calculated from the interpreted measurement data, and from 

knowledge of the system in question. Models were then developed to represent the system 

- several QNET models to represent the dynamic behaviour and an sp model representing 

the system statically. Experimental plans to run these models were constructed. This 

work is described in more detail in the following section. 

The case study is still in the process of being developed since a modification study is 

being made to investigate the consequences of moving the batch job load from peak-load 

intervals of the day, to low-load periods. When this work has been completed the results 

will be presented to the hospital's data processing managers with a recommendation for 

better load arranging. 



293 

4 Using the Experimenter 

An experiment is arranged as a series of experimental frames each of which consists of a 

model (or a set of measurements) together with the context in which the model is to be 

observed in this instance. A constructed model is stored in the object store with a free 

parameter list, defining which parameters must be assigned values before the model can 

be executed, and a list of the observable outputs of the model. The context provides the 

specification of parameters as fixed or varied, the solution technique to be used and the 

results to be collected or derived. 

Thus an experimental plan may be considered to be a specification of the model execu- 

tions required, or rather the specification of the model executions from which results are 

required. If results corresponding to the given context are found to exist already within 

the object store these results are retrieved and no model solution is invoked. However 

this is transparent to the user who need not be aware that an identical model execution 

has already been carrried out. 

The view of models supported within the Experimenter and by the underlying language 

is a functional one [Pooley 1989]. That is, the model is treated as a black box which 

responds to inputs producing outputs. Internal states of the model are only accessible via 

the defined output parameters. 

For each model, all the free input parameters must be assigned a value before model 

execution can be invoked. Within the experimental plan a number of values can be 

associated with a model input parameter, for example values may be taken from a bounded 

range, an enumerated set or a probability distribution. The Experimenter will invoke 

a model solution for each of these values. Search strategies may also be specified by 

expressing dependencies between a model input value and previous inputs and outputs. 

Although by default every possible combination will be used when there are several varying 

parameters, there are facilities for constraining the search space. This gives a great deal 

of flexibility to the experiments which can be carried out. 

The user also specifies, as appropriate, which of the possible outputs from the model are 



294 

required and the method for solving the model, and selects from the possible controls that 

can be applied to the model solution process. Finally the user specifies the details of how 

the outputs from the model executions are to be combined and interpreted to produce 

the results of the experiment. The format in which these results are to be displayed may 

also be specified, so that subsequently the results can appear on screen as a table, graph, 

etc., as desired. 

4 .1  E x p e r i e n c e  w i t h  t h e  T e x t u a l  P r o t o t y p e  

The text based prototype offered only a limited subset of the language facilities and, 

although this was extended for the later graphical prototype, the full functionality is only 

now being implemented. Some of the difficulties encountered by the case study would 

not have arisen if all the planned facilities had been available. Here the study served as 

confirmation that the features designed for the full system were appropriate. 

The language which was used in the first prototype is declarative, with each frame ex- 

pressed in a single block, centred around one model or set of measurements. The same 

model may appear in different frames - these are treated as different instances of the 

model, with separate assignments to the free parameters. Each frame (or block) contains 

the details necessary for the model's execution and observation. 

4.1.1 An Example 

The example shown in Figure 2 shows the ICPU_tdisc_QNET_experiment, carrying out 

the dynamic analysis at the computer system level of the Hospital Case Study. This is 

a simple plan consisting of a single frame. This example illustrates many key features of 

the Experimenter and the underlying language. 

Initially the OBJECTIVE of the experiment is stated textually. This objective is currently 

used only for information purposes and to underline the objective-driven approach to 

experimentation supported by the Experimenter. In the future it is hoped that it may be 

possible to attach more meaning to the objective, possibly using it to shape or check the 

experimental plan. 



295 

EXPERIMENT ICPU.ldisc_Q~/r_exporiment 

OBJECTIVE 
[The p u r p o s e  o f  t h i s  e x p e r i m e n t  i s  ~o find t h e  a v e r a g e  r e s p o n s e  
t i m e  f o r  i n t e r a c t i v e  PAS c u s t o m e r s  f o r  e a c h  o f  t h e  48 h a l f - h o u r  
i n t e r v a l s  o f  a 24 h o u r  p e r i o d .  B a t c h  ' r e s p o n s e  t i m e s '  a r e  a l s o  
r e c o r d e d  f o r  e a c h  i n t e r v a l  f o r  v a l i d a t i o n  p u r p o s e s . |  

MODELS 
\* Use the ICPU.ldisc_QNETmodel. ehicb has been constructed already */ 

compsys = MODEL ICPU.Idisc.QNET 

INPUTS 

\* Declaration of ~he inputs - She arrival rates of each of the four job 
* classes of the compsys model. These will be provided by auxiliary experiment 

*I 

lambda_int lambda_bal lambda_ba2 lambda_ba3 

OUTPUTS 

\* Outputs collected are the interactive and batch class response times for 

* each of the 48 half-hour intervals being run. For validation purposes. 

* the CPU and disc u~ilisation could also collected. 
*/ 

int_resp_time ON 
bal_resp_time ON 
ba2_resp_time ON 

ba3_resp_time ON 
cpu_util OFF 
disc_util OFF 

PLAN 

\* Assign an auxiliary experiment as the source of values for the free 

* input parameters. Call the auxiliary experiment 48 times, to get the sets 

* sets of job-class arrival rates ~hich are then fed into the compsys model. 
* Run the compsys model for each set of rates to obtain response times and 
* r e s o u r c e  u z i l i s a t i o a s .  
* /  

lambda_int lambda_bal lambda_ba2 lambda_ba3 = EXPERIMENT SP_APPLICATION.MODEL_EXPERIMF~T; 

SOLVE (compsys : lambda_int lambda_bal lambda_ba2 lambda.ba3) BY ANALYSIS EVERY 

CREATE TABLE of (int_resp.time. bal_resp_time, ba2_resp_time, ba3_resp_time) 

Figure 2: The 1CPU_idisc_QNET_experiment 



296 

Then all the MODELS to be used within this experiment are declared. In this case 

only a single model, 1CPU_ldisc_QNET, is to be used. Models within the object store 

together with their associated free parameter lists can be regarded as representing a class 

of potential models. A model used within an experiment is one instantiation of that class. 

To emphasise this, especially in the case when the same model "class" is used more than 

once within a plan, each model instantiation is given a local name within the plan - in 

this case comsys. 

Each model has INPUTS which may be fixed or varied within a frame, and these are 

now declared. In this case the model has four inputs representing the arrival rates for 

interactive jobs and for the three types of batch jobs. If any of these parameters were to 

be fixed within this frame they would be assigned a value here. 

The OUTPUTS of the model are then listed. In this experiment only response times for 

interactive and batch jobs are needed - these are marked as "ON'. The further parameters, 

CPU and disc utilisations are also available as output from the model, but as they are not 

needed in this case they are turned "OFF". This arrangement means that the plan can 

easily be amended and executed again to produce a different set of outputs if the objective 

should change. For example, once an optimal balance of interactive and batch jobs has 

been established the system managers may want to know the CPU and disc utilisations 

resulting from this new arrangement. 

The PLAN section details just how the experiment is to be carried out. There is a series 

of instructions for each frame within the plan: 

• how values are to be assigned to the input parameters: this defines the search space 

in which the model is to be considered. 

• the solution technique to be applied to the model: the model solution tool to be used 

is inherent in the model construction, for example QNET for a queueing network 

model. However this tool itself may offer a choice of model solution techniques. 



297 

EXPERIMEffrSP_application_model_experim~nt 

OBJECTIVE 
[The purpose of t h i s  eubexperiment i s  to  devolve  the s o r k l o a d p u t  on the  
computer e y e t ~  model by the h o s p i t a /  use of the Pie a p p l i c a t i o n  du r ing  
a h a l f - h o u r  i n t e r v a l . |  

MODELS 
\* Use the SP.application_model, ehich has been conetrucced a/ready - /  

appl * P, ODEL SP.application.model 

INPUTS 
~* There i s  one input  t o  t h i s  model - the number of h a l f - h o u r  pe r iods  */  

hh 

OUTPUTS 
\*  The outputs  are the  a r r i v a l  r a t e s  for  each of the i n t e r a t i v e  and ba tch  j o b s  
*/ 

lambda_int ON 
lambda_bal ON 
lambda_ba2 ON 
lambda_ba3 ON 
PLAN 
\* RanEe hh over the complete 24 hour period and for each half hour collect 

* the  a r r i v a l  r a t e s  of  each job  c l a s s .  
* /  

hhRANOE from 0 ~o 47 

SOLVE (appl : hh) BY ANALYSIS 

CREATE STREAM of (lambda.int lambda_bal lambda_ba2 lambda.ba3) 

Figure 3: The SP_appl icat ion.model_experiment 

• the results to be constructed from the model outputs. 

In this example the inputs are to be taken from another EXPERIMENT. This is termed 

an auxiliary experiment and is an experiment carried out in order to produce results 

which are then used as input to a model. In this case the static model representing 

the devolution of workload from the PAS application to the computer system is used 

to generate the interarrival rates of the jobs in the computer system. This auxiliary 

experiment is the experiment SP.application3nodel_experimen¢, shown in Figure 3. 

In the 1CPU_ldiscA~NET experiment the model comsys is to be solved by ANALYSIS. 

Similarly in SP_application.model_experiment the model appl,  an instantiation of 

SP.application.model, is also to be solved by ANALYSIS. 



298 

From the auxiliary experiment there is no requirement for a constructed results ob- 

ject, such as a table or graph, since outputs are collected to be used as input in the 

1CPU_idisc_QNET_experiment. However, in the 'parent' experiment a TABLE is to be 

constructed showing how all the response times vary. The values generated will in fact 

correspond to the different half hour periods throughout the day, since this was the basis 

for the adjustment of the input parameters. 

4.1.2 The  Evalua t ion  

Much of the early evaluation effort concentrated on the syntax and structure of the lan- 

guage. In the later graphical prototype many of these points were no longer directly 

applicable. However it was thought that, since the language was at the core of the Ex- 

perimenter, it would always have a strong influence on the interface and the "flavour" of 

the tool, even though it might not be explicitly visible to the user. Therefore subsequent 

design work paid careful attention to these criticisms. 

The facility for auxiliary experiments, using one experiment (the auxiliary) to provide 

input values for another (the main experiment), was found to be very useful. For example, 

in the hospital case study different models were used to capture different aspects of the 

system yet these could be combined within a single experiment. This is seen as one of the 

greatest strengths of the Experimenter, allowing different views of a system to be combined 

even though developed in separate models, and possibly using different paradigms. 

As explained earlier, the conceptual view taken of an experimental plan is that it is 

objective-driven and made up of one or more experimental frames. However the textual 

prototype revealed some indecision on the part of the designers as to how much of this 

conceptual structure should be apparent to the users. It was felt that the syntax used 

in the prototype represented a compromise which was confusing to the users. They 

were aware that some definite structure was being imposed on the model executions but 

uncertain about its nature. 

Use of the prototype pointed out that the handling of parameters was not always consis- 



299 

tent or appropriate. A strong distinction had been made between the declaration of the 

parameters involved in an experiment and how they were to vary during the experiment. 

This was found to be cumbersome. Also, experience of writing the experimental plans 

used in the case study suggested that it might be useful to have some means of grouping 

related parameters. For example, input parameters were declared, assigned values and 

possibly included in an analysis method, the same sequence of variable names occuring 

several times. It was felt that the amount of editing and the likelihood of errors would be 

reduced if some grouping construct was available. 

During the course of the case study it would have been useful to be able to use the 

Experimenter to compare different models of the same system under the same conditions. 

Although this was possible using the textual interface the users found it difficult to express. 

This type of comparison is dearly important, especially with respect to the validation of 

models. It was recognised that the facility needed to be made more accessible to the users. 

4 .2  E x p e r i e n c e  w i t h  t h e  G r a p h i c a l  V e r s i o n  

The graphical prototype was not merely a graphical representation of the experimental 

language. Based on the responses to the first prototype and a better understanding of 

the requirements on the Experimenter, the underlying language was modified and fur- 

ther developed. Thus the graphical prototype offered greater functionality and a slightly 

different view of experimental plans. 

4.2.1 The  Example  Revis i t ed  

The plan is now represented as a series of nodes, each of which has associated attributes 

representing the details of the plan. "Opening" a node produces a form which prompts 

the user to supply the information relevant to that aspect of the plan. The experiments 

described in the previous section are shown in the graphical representation in Figures 

4 and 5. In this representation the frame is represented as a collection of nodes. The 

central node represents the model or set of measurements under consideration. Opening 



300 

I 
Le#t ~tton - ~ object 

Hi~Ig button - ~Rte 11nk 

O o  

::i g-i 

Figure 4: The graphical representation of the main experiment 

this node the user is offered a form prompting for the name of the model (measurements), 

the solution technique to be used and any control parameters defining how the solution 

is to be reached. 

Linked to this node are input and output nodes listing the input and output parameters 

for the model concerned. As previously, the user is required to provide values to be 

assigned to each input parameters. This may be a single value making this parameter 

fixed within this frame or a definition of how the parameter is to vary. When an auxiliary 

experiment is to be used as a source of values it is denoted by a subnode as shown in 

Figure 4. 

The form associated with the output node lists the possible outputs of the model. The user 

selects which of these are required by means of a simple on/off toggle switch. Each frame is 

connected, via the output node, to one or more analysis node. This represents the results 

to be produced by the experiment, collected or derived from the model parameters. The 

form associated with this node offers the user a list of the input and output parameters 



301 

Toz 47.  
Step: I 

' III 

[i~ o o 

~a,,4t: ,Lrpl 

Figure 5: The graphical representation of the auxiliary experiment 

of the attached frame, and a variety of possible results objects. 

4.2.2 The  Re-evaluat ion 

The graphical prototype was very well received. It was much easier and much quicker 

to use: since the user has only to select and position nodes and enter values into forms 

an experimental plan can be built in a matter of minutes. Provided with a better user 

interface, it was easier for the users to concentrate on the functionality of the tool. In 

some cases it became much clearer how a plan can be constructed to meet a particular 

objective. For example, in the case of comparing two models of the same system, two 

frames (model, input and output nodes) can be built and linked into the same analysis 

method. 

This new style of interface immediately removed many of the problems which had been en- 

countered with the first prototype. The language was still at the core of the  Experimenter 

but became embedded in the forms used to enter information, and so far less obtrusive 



302 

for the user. It had been noted that the users had felt uncomfortable with the lack of 

organisational aspects of the language, such as delimiters and keywords. Hence care was 

taken to ensure that the forms were well annotated and clearly structured. Since the 

use of graphics left the user free to construct the plan in whatever order was convenient 

another previous problem was removed. 

As can be seen in Figures 4 and 5, in the graphical representation of an experimental 

plan the experimental frames are dearly recognisable as a collection of an input, output 

and model node but this structuring is not made explicit to the user. As this is a natural 

grouping of these pieces of information the user need not be aware of the underlying 

theoretical structure on which it is based. 

There were other usability issues which were not so simply addressed by the change of 

interface style. The manner of handling parameters was reconsidered in some detail. 

Since the separation of the declaration and assignment to parameters seemed unwieldy 

during the case study i~ was decided to incorporate the declaration implicitly within the 

specification of how the parameter is to vary. However problems still arose in the graphical 

prototype with respect to the handling of parameters. When the user entered values in 

the input forms these were automatically type-checked against the type specified for the 

parameter at the time of model construction. If the types did not match, the value was 

rejected. It was felt that it would be more helpful if the type expected was displayed to 

the user. In the current implementation the form associated with the input node displays 

not only the parameter's name but also a default value for the type and any annotating 

text which was supplied at the time of model construction. This is felt to be particularly 

useful when the person using the model is not the person who constructed the model 

originally. 

Although the grouping of parameters was considered, it was felt that this was no longer 

a necessary feature after the introduction of the graphical interface. The parameters in- 

volved are derived automatically from the model when it is constructed and are presented 

to the user in the experimental plan once the model to be used has been specified. In 

this way the user does not need to enter the names of parameters, merely to supply their 



303 

values. These values are automatically type-checked to reduce the likelihood of error. All 

input parameters and collected output parameters are available for selection by the user 

in the form associated with the analysis node. "Cut and paste" facilities are available 

in the graphical tool used to construct the interface so that parameter's assignments can 

easily be copied if necessary. 

In general, making experiments and the use of models more accessible to people other 

than modelling experts was considered in much more detail with the graphical prototype. 

The textual prototype had been unsuitable for naive users but the graphical version 

opened up this possibihty and it was felt that this direction of development should be 

accentuated. This resulted in an emphasis of simplicity and ease of use for the interface. 

It also emphasised the requirement for previously prepared plans to be used and tailored 

by a naive user. 

Another useful feature, the ability to parameterise experimental plans, was also consid- 

ered. Parameterisation of plans in terms of leaving undefined some of the input parameters 

to the models involved has been incorporated as part of the functionality of the Exper- 

imenter. This was originally seen as being particularly useful for auxiliary experiments 

where it might be necessary for the auxiliary and main experiments to share a parameter 

value. However there is now a requirement for leaving undefined more structural proper- 

ties of the experimental plan, such as the model to be used. The first development does 

not include this feature, but it should be implemented to some extent in later work. 

5 Further Developments and Future Work 

The case study found that the Experimenter was a useful tool with a strong impact on the 

modelling process. In a study involving hundreds of runs and several models, it would be 

very easy to lose track of what was being done and of how models related to one another. 

Expressing experimental plans in the formal framework of the Experimenter, and keeping 

these plans updated, made the study easier to organise and conceptually cleaner. 



304 

Particularly in the later stages, the evaluation was carried out from the point of view of 

users who want to be aware of as little as possible of the underlying tools. It was felt that 

the graphical prototype went some way towards addressing the needs of these users and 

showed the potential for much more work in this area. The continued interaction between 

the tool designers and the evaluators is expected to encourage this work. 

The production version of the Experimenter is currently being implemented and fully 

integrated within IMSE. It is hoped that its use with the fully developed modelling tools 

will highlight the potential it provides. Future work will be looking at the ways in which 

this functionality can be enhanced, both by making existing facilities more accessible, 

especially to non-expert users, and by adding new facilities. 

The Experimenter raises the use of models to a higher level of abstraction and therefore 

is ideal for the user who is unfamiliar with the details of model construction. Previously 

these users were restricted in what they could achieve with models by their own lack of 

knowledge of how the model was constructed. However, the view of a model as a black 

box with clearly defined interfaces switches the emphasis from the model itself and the 

details of its construction to the use of the model and the interpretation of its results. 

With such a model-independent interface much more flexibility can be made available to 

naive users. 

Enhancing the use of models in this abstract way emphasises the properties of the models 

independently of the paradigm in which they are expressed. Separating the use of models 

from the construction of models without restricting that use is an important step towards 

a close working relationship between system design and modelling. 

Acknowledgements 

The authors would like to thank Neil Stevenson of Edinburgh University and Vidar Vet- 

land and Arne S¢lvberg of SINTEF for their invaluable contributions to this work and all 

the other IMSE teams for their help. 



305 

References 

N. Abu E1 Ata (ed)., Modelling Techniques and Tools for Performance Analysis '85, North 
Holland, 1986. 

H. Beilner, J. M~ter, and N. WeiBenberg., "Towards a Performance Modelling Environ- 
ment: News on HIT", in Puigjaner 1988. 

J. Hillston, R. Pooley, and N. Stevenson., "An Experimentation Facility Within the In- 
tegrated Modelling Support Environment" in Proceeding of the UKSC Conference on 
Computer Simulation, Brighton, September 1990. 

P.H. Hughes and D. Potier., "The Integrated Modelling Support Environment" in Es- 
prit Information Processing Systems: Results and Progress of Esprit Projects 1989, CEC 
DGXIII, 1989. 

C. Minkowitz., "The Structure and Performance Specification Tool Design Document", 
IMSE Document D4.1-1. STC Technology Ltd, Newcastle-under-Lyme, England, 1990. 

A.L. Opda.ht, V. Vetland and A. S¢lvberg., "Information Systems Engineering: Evaluation 
of the IMSE", IMSE Document D6.6-1. SINTEF, University of Trondheim, Norway, 1990. 

T.I. Ore,., "Gest: A Modelling and Simulation Language Based on System Theoretic 
Concepts", in Simulation and Model-Based Methodologies: An Integrative View", T.I. 
()re,, B.P. Zeigler, and M.S. Elzas (Eds), Springer-Verlag 1984, pp 281-335. 

R.J. Pooley., "Hierarchical Simulation and System Description", in Proceedings of the 3rd 
European Simulation Congress 1989, Edinburgh, 1989. 

R.J. Pooley., "An Experimenter Tool for an Integrated Modelling Support Environment - 
its R61e and Design" in Software Engineering Journal, Vol 4 No 4, pp 163-170, May 1989. 

D. Potier (ed)., Modelling Techniques and Tools for Performance Analysis, North Holland, 
1985. 

R. Puigjaner (ed)., Proc. Fourth International Conference on Modelling Techniques and 
Tools for Computer Evaluation, Plenum Publishing, 1988. 

N. Stevenson, J. Hillston and R. Pooley., "A Tool for Conducting Modelling Studies" in 
Proceedings of $th European Simulation Multiconference, Nuremburg, 1990. 

G. Titterington and A. Thomas., "The IMSE Object Management System", IMSE Doc- 
ument D2.1-5, STC Technology Ltd, Newcastle-under-Lyme, England, 1990. 

D.A. Umphress, U.W.Pooch, and M. Tanik., "Fast Prototyping of a Goal-Oriented Sim- 
ulation Environment System" in The Computer Journal Volume 32, No 6, (December) 
1989. 

C. Uppal., "The Design of the IMSE Structured Data Manipulation Facility", IMSE 
Document D2.2-1. STC Technology Ltd, Newcastte-under-Lyme, England, 1990. 



306 

B.P. Zeigler., Multifacetted Modelling and Discrete Event Simulation, Academic Press, 
1984. 

B.P. Zeigler., Theory of Modelling and Simulation, Krieger, 1976. 


