
The KIWIS Knowledge Base Management System

M. Ahlsen 1 A. D'Atri 4 p. Yohannesson 1 E. Laenens 5

N. Leone 3 p. Rullo 3 p. Rossi 3 F. Staes 2

L. Tarantino 4 L. Van Beirendonck 5 F. van Cadsand 2 W. Van Santvliet 5

J. Vanslembrouck 6 B. Verdonk 6 D. Vermeir (ed.) 5

1SISU, 2ORIGIN, 3 CRAI, 4 University of LAquila, 5 University of Antwerp UIA, 6 Alacatel_Bell

Abstract

This report describes the functionality and architecture of the KIWI system, an advanced knowledge-

base environment for large database systems, which is currently being developed within the frame-

work of the ESPRIT programme (P2424) by a consortium of industrial and research organizations

consisting of Alacatel-Bell Tel. (BE), CRAI (I), Enidata (I), FORTH (GR), ORIGIN (NL), SISU

(SE), the universities of Antwerp UIA (BE, Coordinating Contractor), Calabria (I), and LAquila (I).

1. INTRODUCTION

This report presents an overview of the KIWI system's functionality and architecture.

Functionality

KIWI is a knowledge base management system which can be used both as a sophisticated stand-

alone "personal knowledge machine" that supports knowledge-based applications, as well as a "win-

dow on the world" that provides a seamless integration of information coming from a wide variety of

other sources with the local knowledge bases. The knowledge base management system's features

include

1. An advanced graphical user interface design system that provides a smooth transition between

default (generic) and special purpose (application) knowledge base usage.

2. A new knowledge representation and manipulation language, called LOCO Lae89a , that is based

on a tight integration between the object-oriented and the logic programming paradigm. In

addition, the language supports features such as defeasible and default reasoning, making it suit-

able also for AI-flavured applications, such as expert systems.

80

3. Efficient query evaluation algorithms that extend the state-of the art in deductive database tech-

nology.

An efficient underlying main-memory resident database management system that is tuned to the

requirements of the efficient manipulation of large numbers of complex objects and deductive

queries.

Integration with external information sources is possible in two ways:

1. The first possibility provides a tight and U~msparent read-only interface to a variety of external

information sources. These include traditional databases (relational, network or hierarchical),

text or picture databases and applications. These databases may reside on the same or remote

systems, using traditional or "new" devices (such as CD-ROM). The interface module of the

KIWI system is extendible so that the above list is not exhaustive.

2. The second possibility provides for a federation of autonomous KIWI nodes, in which KIWI

systems unite to form a network for information sharing and cooperation without a commitment

to a centrally maintained global schema.

It should be stressed that in both cases, the imported information is, in the user's or LOCO

programmer's view, completely integrated with the local knowledge base. This gives the oppommity

for the user to enrich "dumb" data from outside sources with local higher level knowledge.

4.

Architecture

The KIWI system, as illustrated in Figure 1, contains the following modules:

• The Abstraction Layer (AL) implements a logic formalism supporting complex objects, inheri-

tance and true negation. It is responsible for the intelligent manipulation of (sets of) objects,

interpreting rules, performing updates etc., using the OVM basic methods.

• The Basic Query Machine (BQM) provides optimization for queries ov~ large sets of objects.

In contrast to the AL, which uses a top-down evaluation method, BQM supports more efficient

bottom-up evaluation.

• The Object Virtual Machine (OVM) manages objects in both main and secondary memory,

including efficient access methods.

• The External System Interface (ESI) module provides read-only access facilities to a variety of

external information sources.

• The User Interface Development System (UIDS) supports a toolbox of user interface constzuc-

tion tools, which are used by the underlying layers in order to implement an environment that is

consistent over applications.

• The Cooperation Manager (CM) module gives the KIWI system the possibility to be part of a

larger federated system.

EXTERNAL SYSTEM

INTERFACE

I I
l,"' , I
CD-ROM

/

81

I USER

INTERFACE

COOPERATION

MANAGER

DEVELOPMENT

SYSTEM

BASIC

LANGUAGE

MACHINE

OBJECr

VIRTUAL

MACHINE

PERSISTENT STORAGE MEDIA

I'~.RO~' I

2. KNOWLEDGE REPRESENTATION

In this section, we present a brief and informal overview of LOCO, the native language of the KIWI

system.

Both object-oriented programming and logic programming have received increased attention over the

last decade, due in part to their applicability in the area of database management systems. Although

the term "object-oriented" is loosely defined, a number of concepts have been identified as the most

82

salient features of that approach. According tO Atk89a some of these concepts are: complex objects,

object identity, inheritance, defaults. LOCO is an object-oriented database programming language

which models all of these concepts and integrates them with the logic programming paradigm. This

greatly enhances the capabilities of the language. Indeed, on one hand, including the object-oriented

concepts yields superior modeling capabilities while on the other hand, the deductive approach allows

for a clear formal semantics as well as declaradve query capabilities, as enjoyed by relational sys-

tems. A number of other proposals which combine the object-oriented and logic programming para-

digms, can be found in the literature. We refer among others to Kit'89a,Che89a,Abi89a and references

therein. The approach taken in LOCO extends these proposals however, in that we inlroduce non-

monotonic and defaalt reasoning McDS0a,Nut88a in LOCO rather than monotonic reasoning. In many

cases the latter has indeed proven to be too restrictive for AI-flavored applications. It is essential to

note that the nonmonotonic inheritance is built into the semantics of the language, and is not algo-

rithmically defined, as is the case in Da189a

A LOCO program describes a knowledge base (schema and initial popuiation) as a partially ordered

set of interrelated objects. The properties of an object (i.e. its relationships to other objects) are

described using an extended logic program Lae90a, Lae90b, i.e. a logic program where negation may

also occur in the rule heads. Hence, to LOCO, an object is just a logical theory. However, the sen-

tences in an object's definition do not constitute the entire knowledge about that object. A specificity

relation defined on the objects allows for the introduction of some rules for knowledge flow between

them. This specificity relation (also called instance-of relation) is sufficiently general and powerful to

be useful to model e.g. delegation Lie86a, Ste87a, classification and/or generalization hierarchies, etc.

Therefore, the language does not enforce a particular modeling paradigm.

2.1. Objects as theories

Our starting point is the notion of object. In object-oriented languages, an object has, besides an

identity that remains fixed throughout its lifetime, properties that may be either passive (such proper-

ties are often called "instance variables") or active ("methods"). Methods may rely, using parameters,

on other properties of the same or different objects, in order to compute a result.

In LOCO, we use logic to describe the properties of an object, i.e. we identify an object with a logi-

cal theory. In particular, an object is represented by a set of rules of the form

H:-B 1 ,B 2 B n (nL, O)

where the head H of the rule is a literal, i.e. a positive or negative atom, and each Bi, 0 ~- i ~ n in

the body of the rule is either a literal or an extended literal, i.e. an expression of the form X.p where

X is the name of an object (or a variable) and p is a literal. Intuitively, an extended literal X~p should

be read as "p is true at object X" or "X has property p", while a literal p refers to the truth of p at the

"current" object (see below), in othe~ words p and Self ~ are equivalent.

The only ifferences between a rule and a clause as used in a "traditonal" logic program are that the

head H of a rule can be a negative atom and the object reference in an extended literal:

83

As an example, consider the following LOCO fragment describing two objects: fred and sally.

/* Example 1 *1

fred = { nameCFred").

mother(sally).

parent(X) :- mother(X).

parent(X) :- father(X).

ancestor(X) :- parent(X).

ancestor(X) :- parent(Y),Y.ancestor(X).

child(X) :- X.parent(Self). };

sally = { name("Sally"). };

The first rule name("Frea~') in fred is a fact, i.e. a rule with an empty body. The second rule is a fact

whose argument refers to the other object sally. Informally, facts in objects may be regarded as the

equivalent of "instance variables" in traditional object-oriented languages.

The next four rules define the derived properties parent and ancestor of fred. The rules for parent are

as in ordinary logic programs. The second (recursive) rule for ancestor illustrates the possibility for a

literal in the rule body to refer to a property of another object: fred has an ancestor a if he has a

parent Y where ancestor(a) holds. Rules such as those defining the parent and ancestor properties

play a role similar to that of "methods" in imperative object-oriented languages. This analogy will be

confirmed by the procedural semantics described later.

A complete LOCO program then consists of a partially ordered set of object descriptions.

2.2. Negation

LOCO supports true negation rather than negation by failure, as is illustrated by the following exam-

ple:

/* Example 2 */

situation = { safe :--dangerous.

-dangerous :- p.

dangerous :- q.

... };

Informally, situation will be deemed safe ff it is not dangerous. The latter will be true only if there

are explicit reasons (e.g. p) to accept this. In other words, failure to prove dangerous will not be

sufficient reason to conclude -dangerous and hence safe.

84

Allowing negative literals in the head of a rule raises the possibility for contradictory evidence to

appear. E.g. in the previous example, if both p and q are true, we have rules suggesting dangerous

and --,dangerous at the same time. In this case, LOCO will take a sceptical T°u84a approach and nei-

ther dangerous nor its negation will be true. Note that this implies that our logic is really three-

valued since literals may be either true, false or unknown, where the latter value represents both the

case where there is no information (undefined) and the case where there is contradictory information.

2.3. Multiple inheritance

An important feature of the object-oriented programming paradigm is the ability to structure objects

in hierarchies such that properties of lower level objects ("instances" or "subclasses") may be derived

using rules at the higher level objects (usually called "classes"). In LOCO, such inheritance will be

obtained by allowing the objects that constitute a program to be structured in a "specificity" partial

order*, denoted " < ". For example, we could rewrite Example 1 as:

/* Example 3*/

person = { parent(X) :-father(X).

parent(X) :- mother(X).

ancestor(X) :- parent(X).

ancestor(X) :- parent(Y), Y.ancestor(X).

child(X) :- X.parent(Seljg. };

(person) fred = { name("Frecr').

mother(sally). };

(person) sally = { name("Sally"). };

The construction (o 1 .-- on) o indicates that the object o is more specific than each of the objects oi,

1 < i < n, i.e. o < oi. We say that an object a is an instance of an object b if a < b.

Informally, the rules defined at an object do not constitute the entire knowledge about that object;

objects can also use the rules defined at more general (less specific) objects. E.g., sally, being an

instance of person, will have the property child(fred), by using the ride

child(X) :- X.parent(Self).

and by substituting fred for X and sally for Self. (In analogy with many other object-oriented

languages, the keyword Self in LOCO always refers to the object where the rule is "used", in this

case sally).

:[: Note that ~ does not dil~inguish betvnmn the instance-d (a dass) and subclass-of ~v.lationships, This means that
"own" (i.e. a o a ~) ptopeaiea o[¢las~.~ are ncx ~ ~ the cote language.

85

It should be stressed that objects "inherit" rules, not conclusions, from higher objects. This

corresponds to dynamic binding in traditional object-oriented languages.

The specificity order can be used to define default properties, as is illustrated in the following exam-

ple:

/* Example 4 */

bird= {fly. };

(bird) tweety;

(bird) penguin = { --~fly. };

(penguin) joe;

Since tweety is an instance of bird, it inherits the fly property of the latter.

If several rules conflict, the rule which is defined at the more specific object "wins". Thus,

penguin.~fly will hold as will joe.--,fly. We say that, for penguin and joe, the "fly" rule at bird is

overruled by the "~fly" rule at the more specific object penguin. If conflicting rules are defined at

incomparable objects, the sceptical approach is taken and both rules are said to be defeated. This is

illustrated below using a familiar example from nonmonotonic logic.

/* Example 5. */

quaker -- { pacifist. };

republican = { -xvacif~t. };

(quaker republican) nixon;

Here neither nixon.pacifist nor nixon.-~vacifist will be true. It is interesting to note the connection

between default properties and negation by failure. Indeed, in order to set up a particular predicate,

e.g. p, such that it will be false whenever we fail to prove its truth, it suffices to have a "default" rule

- ~ at a "top" object (of which all other objects axe instances). This will ensure that, whenever no

rules for establishing p are applicable at an object o, o.--xv holds because o inherits the default rule

at top>o.

The inheritance mechanism of LOCO can be put to good use in order to support database updates

and version control. Indeed, asserting a new rule or fact r at an object o is interpreted as the creation

of a new instance (version) o ' of o rather than as a modification of the set of rules describing o.

This instance has only the rule r in its object definition. The semantics of LOCO's inheritance

mechanism ensure that each update is correctly interpreted: the assexted information is taken to over-

rule any previously available information. This is true for the addition of rules as well as facts.

As an example, consider again the program of Example 7. Executing

86

!fred.sick

where ' ! ' denotes the assert operator, will result in a new program equivalent to:

(bird) fred_O00; I* The old version of fred */

(fred..O00) fred = I* the new version of fred */
{

sick.

};

Note that the present version of LOCO has no explicit retract. In order to "remove" the fact that

fred is sick, it suffices to execute

!fred.--~ick

resulting in

(bird) fred_O00 ;

(fred OOO)fred_O01 = { sick. };

(fred_OO1) fred = { --,sick. };

Note that the "removal" of sick implies the fact --,sick at fred. If we want fred to be neither sick nor

--,sick it suffices to execute

!(fred.-.~sick, fred~ick)

When updating a "class" (an object that has instances), care should be taken to "detach" all its

"direct" instances and attach them to the new version instead. In a future version of LOCO, we

intend to add facilities which allow the exploitation of the other advantages of this approach to

update: retrieval with respect to some previous version, explicit version control in general, parallel

versions etc.

87

2.4. Types and constraints

LOCO accepts type constraints in objects, as in

person = { name<string>.

parent<person>.

like<foodlperson>. };

The above fragment requires that p.name (s) implies s < string (string is a built-in "class") for all

p <_ person. Similarly, a person's parent should be another person and a person is only allowed to

like foodstuffs or other persons. Type checking is static, using a simple type checking algorithm.

2.5. Query evaluation

Whenever possible, LOCO queries are processed by the BQM. The latter is based on the declarative

semantics which have been described e.g. in Lae90b.Lae90c,Lae91a, Laeg0a, Rulg0a In particular, the

KIWI system supports the well-founded semantics, which are based on a suitable extension of the

notion of unfounded set given for classical logic programs. It is not surprising that, just as for classi-

cal logic programming, the computation of the well-founded model is quite demanding. To this

regard, some work has been done in Rulg0a'Le°90a considering a suitable adaptation of the iterated

fixpoint algorithm prz89a given for classical logic programs. It is possible, however, to specialize the

general method and make it very efficient for a meaningful class of programs, i.e. for stratified pro-

grams Rulg0b.

Typically, a stratified program shows a two level structure: the definition of a property belongs to a

certain object, while the exceptions (i.e. conflicting rules) belong only to its subobjects. In a sense,

the notion of stratification can be intended as a way to detect when a program has a simple structure

w.r.t, the treatment of contradiction so that its well-founded model can be computed in a monotonic

(non-alternating) fashion. We remark, finally, that the class of stratified programs encompasses a

very large class of applications. As a result, the BQM wil provide very good performance in most

"real life" cases.

3. USER INTERACTION AND INTERFACE MODELS

3.1. Introduction

Different classes of users may have different perceptions of the reality the KB represents, and of the

way in which such reality is represented by means of the knowledge representation model. Further-

more, in the course of using the system, the user's perception may change as a result of different

influences (e.g., training, exposure), and hence both needs and requirements change over time. It is

clear from these considerations that a fixed user interface (UI) is not a good solution, since it would

be unable to address the needs and the requirements of all users and deal with user transitions Lae89b

88

Besides the different classes of users, the system also has to support different applications. This

implies that it has to be possible to create custom interfaces for the more advanced applications, or to

adjust the default interface to them.

3.2. Architecture

To satisfy these flexibility requirements, we propose an architecture which allows to take into

account both the requirements from the users and the necessity of customizing the UI towards the

contents of the information base. Examples of this kind of customization can vary from simply hid-

ing non-interesting properties for the naive-users to completely changing the appcarance of the UI

according to the semantics of the application.

The User Interface consists of three layers: the User Interface Description Objctes, the Display Model

and the Interaction Paradigms. The User Interface Description Objects (UIDO's) arc used to describe

customizations of existing User Interfaces (or even complete user interfaces) in the Loco language.

The Display Model serves to associate with each object in the knowledge base an appropriate

representation: a description of how the object has to be represented on the screen. The Interaction

Paradigms arc a collection of different ways in which one can interact with the knowledge base. The

interaction is performed by direct manipulation of the graphical entities as defined by the Display

Model.

Browsing Querying

Display Model

Abstraction

Layer

i

UIDOS X windows

Figure 2: The User Interface Architecture

3.3. The User Interface Description Objects

In order to facilitate the definition of customized User Interfaces, the LOCO language supports a set

of builtin (graphical) objects. In other words, these User Interface Definition Objects (UIDO's in

short) are fully integrated in the native KR formalism of the system, so that the knowledge engineer

can define and maintain an application environment - from KR over connecting external

sources The89a to UI definition - using a single uniform language.

89

The User Interface Description Object are modelled using a hierarchy of object classes as shown in

figure 3.

uiOhject

primitive

raster text button slider prompt

composite

Figure 3: The hierarchy of User Interface Description Objects

The nodes in this tree are implemented using LOCO objects while the links are realized by the

LOCO specificity relation. As LOCO features inheritance and defaults, we put properties common to

all instances of a certain object class in the class itself in order to avoid redundant definitions. Some

of these properties may be redefined at the instance object, thus overruling the default values. We

distinguish between primitive and composite UIDO's. The class of primitive UIDO's is further

divided in subclasses that represent a primitive display or interaction paradigm such as buttons, slid-

ers, texts, etc. The composite UIDO's serve as a kind of containers. They are used to group a collec-

tion of primitive and/or composite UIDO's while enforcing layout constraints on them. A more pre-

cise description of these object classes can be found in Stag0a

3.4. The display model

The display model associates a standard visualization with each LOCO object, to provide a natural

and easy-to-understand graphical representation (suitable for a direct manipulation-based interaction),

which takes into account the "structural" aspects of the objects. Of course, a standard model cannot

take care of the specific semantics of objects and of the needs of a particular user. However, the

default model can be easily enriched, e.g. by customizing the presentation of those objects that are

more relevant to the user and/or to the application. The model can be customized in two ways stag0a

• By tailoring the default display model. This can be done both in an interactive and a program-

ruing way and is intended to help both the naive user and the knowledge engineer in making

adjustments to the default representation. Examples of these adjustments are the ordering of the

properties, hiding some of the properties etc.

• By defining a customizr..d representation. This is achieved by describing a representation using a

collection of built-in LOCO classes.

90

3.5. Interaction Paradigms

Supporting different classes of users does not only mean giving the possibility of tailoring the graphi-

cal appearance of object representations, but it also requires the interaction environment to provide

several interaction paradigms with different usage complexity. In order to achieve a powerful and

friendly interface which assists the users in all the phases of their interaction, the different paradigms

must be uniformly included in a graphical dialogue environment based on the direct manipulation of

the visible objects. Furthermore, working in such an integrated environment, users learn to describe

their goals more and more precisely.

To satisfy these user's demands, KIWI offers a number of interaction paradigms from browsing to

querying thus covering in a continuum the gap from very naive users to sophisticated ones. The

interaction is always carried on in a uniform way, based on the direct manipulation of the graphical

objects previously described. We briefly discuss here some of these paradigms while a more detailed

description can be found in Stag0b

The simplest interaction with a knowledge base is an elementary navigation based on the browsing

paradigm (oriented to users with a poor knowledge of the KB and not able to use querying formal-

isms): at any time the user examines a current object and its neighborhood, while the browsing pro-

cedure proceeds by iterafively selecting one of the objects in such a neighborhood to become the

current one.

Expert users may want to express their goals in a more direct way, even if they are not able to for-

mulate standard queries in LOCO. To support these users, some querying paradigms arc also pro-

vided, with different complexity and retrieval power, e.g., based on the synchronized browsing (to

speed up repetitive searches) and on a by-example approach (which extends the well known QBE

defined for the relational data model to an object-oriented data model); the query formulation is

based on the manipulation of the graphical objects, and, under the system assistance, it is possible to

graphically adjust previously formulated queries when their answers are not satisfactory.

4. COOPERATION

In addition to the local knowledge base, there are two other sources of information available to users

of a KIWIS system. One alternative is to define interfaces to existing applications, such as conven-

tional database systems. Another possibility is to connect several KIWIS knowledge bases in a

loosely coupled network to form a Federation.

4.1. The Federated Architecture

The KIWIS system supports advanced techniques for knowledge representation in combination with

database management. To provide for information sharing, several KIWI systems (or nodes) are con-

nected to form a loosely coupled network of knowledge/database management systems. The

9 1

Cooperation Manager (CM) is the component in the prototype system that provides the basic

cooperation and communication facilities between otherwise independent KIWI systems. The KIWIS

system is in this sense a Federated Information System based on the concept of federated

databasesHei85a, Hei87a and the principles for open systems Hew84a.

The federated architecture has the following characteristics which form the underlying design princi-

ples for the CM:

there is no central authority for global control

- an absence of a strict global schema

- nodes have possibly only partial knowledge of the surrounding system

- sharing is at the discretion of the individual nodes

- the topology of the federation may change

Autonomy is the central to this architecture and is the fundamental property of the member nodes.

We distringuish three forms of this autonomy Ahlg0a for the nodes in a KIWIS federation. The

semantical autonomy means that the schema of a node does not have to conform to the schema of

any other node, ,hence there is no (strict) global schema in the federation. Behavioral autonomy

implies that any node exercises full control over its own resources, and is thus not obliged to process

requests from other nodes. Finally, there is a network autonomy which says that there is no central

authority to organize the interactions between nodes; hence a node is not necessarily dependent on

intermediary nodes for communication with other members of the federation.

KIWI1

Lq

Knowledge
Base

t

Figure 1: The KIWIS Federation

The KIWIS federation is homogeneous wrt data model type, i.e., each node uses LOCO for describ-

ing the local schema. Thus, the CM does not perform any model type translations, a KIWI node

could ofcourse use other languages with local mappings to LOCO. The CM will in part run as a

LOCO application in a KIWIS system (similar to parts of the UD. The nodes in the federation form a

logical network, and they can thus reside on the same or different hosts.

92

4.2. Contracts

Cooperation between nodes in a KIWIS Federation is based on the importation and exportation of

knowledge base objects. The behavioural autonomy means that the behaviour of nodes may be

unpredictable wrt other nodes. Therefore, sharing of information can only take place if there exists an

explicit bilateral aggreement between two nodes. Such an agreement is represented by a contract,

which controls when and how nodes may exchange knowledge base objects.Contracts are established

thru bilateral dialogues between nodes J°h88a where the contract terms may be subject to

negotiation SmiS0a,Al°89a between the nodes. There is a Contracts Establishment Protocol which coor-

dinates the dialogue between the potential importer, and the potential exporter. The terms of a con-

tract represent the rules for import/export of objects. In general, these terms are specified by events

and time-intervals. One obvious term is the duration of the contract, defining the time during which

the objects conceamed, the domain objects, are available to the importer. Another term defines the

type of object access used between two nodes. An importing node may either operate directly on the

objects in the exporter's knowledge base (corresponding to remote querying), or, copies of exportable

objects may be transferred to the importing node(corresponding to snapshots or quasi copies).

Remote updates are not supported, for autonomy reasons.

4.3. The Cooperation Schema

The information needed by the CM is described by a conceptual schema, called the Cooperation

Schema, identical for each node. This schema is stored and maintained in the local knowledge base

of ~ach node and may be operated upon to provide information on existing and prior contracts estab-

lishments. The cooperation schema is represented in LOCO. Based on this schema, each node has an

export interface, the Export Schema, which serves as view on the local knowledge base made avail-

able to other members of the federation and forms the basis for establishment of new contracts.

Further, the semantical autonomy and the network autonomy imply a responsibility for each node to

aquire and maintain knowledge about the federation. To this end, each node has a local catalogue, the

Federal Map, which stores information on known member nodes of the federation, such as their

adressess and their Export Schemata. In addition, the Cooperation Schema is used to store contracts

and imported objects. Figure 2 shows some of the object types used to represent this knowledge.

93

~ 0
I

Figure 2: Part of The Cooperation Schema

In order to aquire knowledge about the federation, a node may request to import the Export Sche-

mata of other nodes, as well as their Federal Maps. Based on the object descriptions given in the

Export Schemata thus imported, a node may then request the establishment of contracts with the

corresponding nodes. In a similar way, the importation of Federal Maps may provide new

knowledge about unaquainted nodes in the federation. It should be noted that a node selectively

decides how much of this information it is willing to export.

Once a contract has been established, the domain objects may be integrated with the local KB. This

will allow for possibly transparent querying of imported information.

5. CASE STUDIES

The viability of the KIWI system will be evaluated in a number of case studies, the most important

of which is in the area of telecommunication, in particular the modelling and management of intelli-

gent network services. Intelligent networks require an extension of the capabilities of traditional net-

works to allow for specialized, customer-tailored service provision and processing. The distributed

nature of service implementation, along with the complex interactions among services, requires

advanced, highly efficient knowledge-based techniques. We therefore believe that the case study will

allow to thoroughly evaluate the different layers of the KIWIS system, and at the same time illustrate

the applicability of KIWIS for novel real-life applications in telecommunication.

LOCO is already extensively being used to describe basic and supplementary services such as a

basic (two-party) call, call transfer, call forwarding, call waiting, etc. New services are built as much

as possible upon existing ones by inheriting the functionality of existing services, using the (multiple)

inheritance mechanism of the language. For each service request, a number of rules is provided.

This leads to a more modular approach and increased reusability than is possible with present day

specification languages such as SDL or Estelle. The state of each device is itself described by a

94

number of objects which are dynamically created and removed. The declarative update mechanism of

the LOCO language is extremely important in this context.

In the future, the other layers of the KIWIS system will gradually be integrated in the case study.

The user interface will be very useful for browsing and querying the available services. Because of

the distributed nature of the subject, several KIWIS systems communicating via the Cooperation

Manager can be used for simulating parts of the real world. Charging and routing information can

be stored on non-KIWIS systems and be accessed via the Exteral System Interface.

Apart from simulation purposes, the possibility to integrate the KIWIS system (or a system based on

KIWIS) in a future telecommunication system to replace the usual database part of these systems is

considered.

6. CONCLUSION

A first prototype of the KIW system, integrating (part of) the UIDS, the AL and the OVM, is

currently available. According to the project schedule, this prototype will be gradually extended and

enlarged, integrating more and (more powerful versions of) layers, cumulating in a first fully

integrated system by 1992. A final version of the KIWI system should be available by June 1992.

Prototype versions of the KIWI systems are (and will be) available for the price of manuals and

media, provided they are used for non-commercial purposes only. Further information can be

obtained from any of the participating organizations.

References

Abi89a.

S. Abiteboul, "Towards a deductive object-oriented database language," in Proceedings

DOOD89, Kyoto, pp. 419-438, 1989.

AhlgOa.

M. Ahlsen and P. Johannesson, Contracts in Database Federations, SISU - Swedish Institute for

Systems Development, Stockholm, Oct 1990. Presented at Conference on Cooperating

Knowledge Based Systems, Keele, Oct 1990.

Alo89a.

R. Alonso and D. Barbara, "Negotiating Data Access in Federated Database Systems," Proc.

Fifth International Conference on Data Engineering, pp. 56-65, Los Angeles, Feb. 1989.

Atk89a.

M. Atldnson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik, "The object-

oriented database system manifesto," in Proceedings DOOD89, Kyoto, pp. 40-57, 1989.

Che89a.

W. Chen and D. S. Warren, "C-Logic of Complex Objects," in Proc. of the Eight Symposium

on Principles of Database Systems, pp. 369-378, 1989.

95

Da189a.

M. Dalal and D. Gangopadhyay, "OOLP: A translation approach to object-oriented logic pro-

gramming," in Proceedings DOOD89, Kyoto, pp. 555-568, 1989.

Hei85a.

D. Heimbigner and D. McLeod, "A Federated Architecture for Information Management,"

ACM Transactions on Office Information Systems, vol. 3, no. 3, pp. 253-278, 1985.

Hei87a.

D. Heimbigner, "A federated system for software management," IEEE Database Engineering

Bulletin, vol. 10, no. 3, 1987.

Hew84a.

C. Hewitt and P. deJong, "Open Systems," in On Conceptual Modelling, ed. J. Schmidt, pp.

147-164, Springer Verlag, 1984.

Joh88a.

P. Johannesson and B. Wangler, The Negotiation Mechanism in a Decentralized Autonomous

Cooperating Information Systems Architecture, 1988. Tech. Report Nr. 62, SYSLAB, Univer-

sity of Stockholm, S-10691 Stecholm, Sweden

Kif89a.

M. Kifer and G. Lausen, "F-Logic: A Higher-Order Language for Reasoning About Objects,

Inheritance and Scheme," in Proc. of SIGMOD, pp. 134-146, 1989.

Lae89a.

E. Laenens, D. Vermeil and B. Verdonk, "LOCO, a logic-based language for complex

objects," in Proceedings of the Esprit conference, pp. 604-616, 1989.

Lae89b.

E. Laenens, F. Staes, and D. Vermeil "A Customizable Window-Interface to Object-Oriented

Databases," in Proc. of the ECOOP conference, pp. 367-382, 1989.

Lae90b.

E. Laenens and D. Vermeil "A Fixpoint Semantics of Ordered Logic," Journal of Logic and

Computation, vol. 1, no. 2, pp. 159-185, 1990.

Laeg0c.

E. Laenens, B. Verdonk, D. Vermeil and D. Sacca, "The LOCO language: towards an integra-

tion of logic and object oriented progra taming," Proceedings of the Workshop on Logic Pro-

gramming and Non-Monotonic Reasoning, Austin, Texas, 1990.

Laeg0a.

E. Laenens, D. Sacca, and D. Vermeil "Extending logic programming," in Proceedings of the

SIGMOD conference, pp. 184-193, 1990.

96

Lae91a.

E. Laenens and D. Vermeir, On the Relationship between Well-Founded and Stable Partial

Models, 1991. Prec. of the Mathematical Fundamentals of Database and Knowledge Base

Systems,to appear

Leo90a.

N. Leone, A. Mecchia, M. Romeo, G. Rossi, and P. RuUo, "From DATALOG to Ordered Logic

Programming," in Proc. of the 13th Int. Seminar on DBMS, Romania, 1990.

Lie86a.

H. Lieberman, "Using Prototypical Objects to Implement Shared Behavior in Object-Oriented

Systems," OOPSLA "86, pp. 214-223, 1986.

McDS0a.

D. McDermott and J. Doyle, "Non-monotonic logic I ," Artificial Intelligence, vol. 13, pp. 41-

72, 1980.

Nut88a.

D. Nute, "Defeasible reasoning and decision support systems," Decision support systems, vol.

4, pp. 97-110, 1988.

Prz89a.

T. C. Przymusinski, "Every logic program has a natural stratification and an iterated fixed point

model," in Proc. of the Symposium on Principles Of Database Systems, pp. 11-21, 1989.

Rul9Oa.

P. Rullo, P. Rossi, and D. Sacca, Revised Specification of BQM, 1990. The KIWIS project,

Report I)2

Rul90b.

P. Rullo, P. Rossi, and D. Sacca, BQM: strategies and basic architecture, 1990. The KIWIS

project, Report BLM4

Smi80a.

R.G. Smith, "The Contract Net Protocol: High-Level Communication and Control in a Dislrib,"

Readings in Distributed Artificial Intelligence, pp. 357-366, 1980.

Sta90a.

F. Staes, E. Laenens, L. Tarantino, and D. Vermeir, "A seamless integration of graphics and

dialogues within a logic based object-oriented language," Journal of Visual Languages and

Computing, p. to appear, 1990.

Sta90b.

F. Staes and L. Tarantino, Report G2: Revised specifications of the User Interface, 1990. Esprit

P2424 (KIWIS) Report G2

Ste87a.

L. Stein, "Delegation is Inheritance," OOPSLA '87, pp. 138-146, 1987.

97

The89a.

The KIWIs Team, "The KIWI(s) projects: past and future," in Proc. of 6th Esprit Conference,

pp. 594-603, I989.

Tou84a.

D.S. Tourgtzky, "Implicit ordering of defaults in inheritance systems," in Proceedings 5th

National Conference on Artijfcial Intelligence (AAAI), pp. 322-325, Austin, TX, 1984. Also in

'Readings in nonmonotonic reasoning', M.L. Ginsbcrg

