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Abstract 

An enhancement of Mazurkiewicz's trace theory with infinite traces is presented. Infinite 
traces have been obtained by introducing the trace preorder relation on possibly infinite strings. 
It is shown that the extension gives rise to the domain of traces in the sense of Scott and a 
complete metric space. Sequential composition (concatenation) of possibly infinite traces is 
also considered. The difficulty of finding an appropriate concatenation of infinite traces is a 
consequence of the concatenation of finite traces being non-uniformly continuous wrt the 
metric for traces. A natural extension of the concatenation operation for finite traces is 
proposed; the extended operation is total, yields a generalization of Levi's lemma for infinite 
traces, but is non-associative. 

1 .  INTRODUCTION 

Trace theory, originating from Mazurkiewicz [Maz77], has recently gained popularity as a senaantic model 
of non-interleaving concurrency. Although the properties of finite traces are relatively well-known, see 
e.g. [Maz84, Aa88], it seems that infinite traces have not yet been fully investigated. This is undesirable 
as infinite behaviours are required in order to establish certain properties of reactive systems, for example 
liveness [Pnu86], and also has impact on fairness issues [Kwi89t, Kwi90t]. The corresponding 
enhancement of finite strings with infinite ones has been known for some time, see e.g. [BoN80]; it gives 
rise to an infinitary monoid, a domain in the sense of Scott and a complete metric trace. An interesting 
question arises as to what properties of the algebra of finite and infinite strings generalize onto the algebra 
of traces. 

In this paper, we investigate the monoid and order-theoretic properties of the algebra of finite and 
infinite traces. First, trace equivalence over infinite strings and the notion of trace prefix ordering for 
possibly infinite traces are introduced. It is shown that this ordering gives rise to a Scott domain and a 
complete metric space. Then, the difficulty of finding an appropriate extension of the concatenation of 
finite traces to inlrmite ones is discussed, and a total operation of sequential composition is proposed. The 
operation allows to generalize Levi's lemma to possibly infinite traces, but unfortunately is non- 
associative. Finally, possible ways of introducing an acceptable operation are discussed. This paper is a 
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contribution to the search for an adequate semantic framework for non-interleaving concurrency, which 
uses topological theory originating from Nivat, see e.g. [BoN80]. 

An alternative approach has been independently developed in [Gas90]. While preparing the final 
version of this paper, it has come to our knowledge that Levi's lemma has also been extended to infinite 
traces in [Die91]. 

2.  PRELIMINARIES 

This section introduces notation conventions and recalls standard definitions, which can be found in e.g. 
[GI-IKS0, BoN80, Law87]. 

L e t ~ ,  _<) be aposet.  F o r X  ~ P a n d x e  P write: , I ,x= { y •  P I  y_<x for some x • X}, "IX = 
{y • P I x < y for some x • X}. X ~ P is a lower set (also prefix-closed) iff X = SX. X ~ P is an 
upper set (or upward-closed) iff X = SX. X ~ P is directed iff it is non-empty and every pair of 
elements x, y • X have a bound z also in X. X ~ P is an ideal iff it is a directed lower set. 

To distinguish between orderings, we shall use < and ~; the least upper bounds and greatest lower 
bounds are denoted by II and I"1 respectively. 

Let (D, _=) be a complete partial order (cpo) and x, y • D. We say x is essentially below (or way 
f i n  . . below) y, denoted x =_ y, lff gaven a directed set M ~ D such that y E I tM, then there exists z e M 

such that x =_ z. Intuitively, x is essentially below y if x is some finite approximation ofy .  For X c D 
and x e D write: ~,finx = {y E D I y _=fro x for some x • X}, "~finx = {y • D I x fin Y for some 
x ~  X} .  

Let (D, _=) be a cpo. D is consistently complete iff every subset X ~ D bounded in D has a least 
upper bound, x • D is a finite element (also called compact) if, whenever M ~ D is directed and 
x _= LIM, then there exists y e M such that x _= y. Equivalently, x is finite iff x ___I'm X. The set of all 
finite elements of  D is denoted B D. D is algebraic iff, for every x • D, the set M = {y • B D t y ~ x} = 
Sfmx is directed and I IM = x. D is a Scott domain iff D is algebraic, consistently complete and B D is 
countable. 

Example 2.1. Consider the poset P = { 0,1 }* of all finite strings over {0,1 } (including the empty string 
e) with the usual prefix order denoted by <. The ideal completion Id(P) can be identified with all finite 
and infinite snings. Id&) is a Scott domain. {0,1 }* are finite elements. The essentially below relation 
<rm is the inherited order. 

We use A t° to represent the set of all infinite sequences over A, and A ~ is the union of A* and A c°. 
Theprefuc order over A ~ will be denoted by < and is defined as follows: 

Vx, y• A': x<y ~ Vie N-{O}:(i-<len(x) ~ x(i)=y(i)) 

where x(i) denotes the ith symbol of the sequence x if it exists, and e otherwise. 
Concatenation is extended onto A** [BoN80] by taking as the concatenation of sequences x, y: 

V x • A*, y • A°:  the infinite sequence xy 
V x • A °, y • A ' :  the infinite sequence x. 

Concatenation of  strings will be denoted as juxtaposition. A ~*, together with the above 
concatenation, forms an infinitary monoid [BoN80]. This is a natural extension of the eoneatenation over 
finite strings. A"  is a complete metric space wrt to the ultrametric: 
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dslr(x,y) = {: -k if  3 n e  N-{0}:x(n)*y(n) 

i f fV n e N-{0}: x(n) = y(n) 

where k = min{n e N-{0} I x(n) ~: y(n)}. The concatenation in A* is uniformly continuous wrt the 
metric dst r, (A*, dstr) is dense in (A**, dstr), and hence the concatenation has a canonical continuous 
extension on A**. 

Applications of the topological theory of complete metric spaces in semantics originate from Nivat, 
see e.g. [BoN80]. An alternative approach is due to Scott. Given cpo's D, E, a function f: D --* E is 
Scott-continuous iff f is monotone, i.e. x < y implies f(x) < f(y), and f(UM) = Uf(M) for every directed 
set M. The concatenation on A* is not Scott-continuous in both arguments (it is not even monotone, 
consider e.g. (a, b) < (aa, bb), but ab ~ aabb). However, the following simple modification to the 
definitions results in concatenation becoming Scott continuous. Let A be a (finite) alphabet and "~ ~ A 
denote the termination symbol. Consider the set: 

A~/°° = A* u A*~] u A ° 

of strings with the prefix ordering < as usual. It is a Scott domain, and the concatenation ; deemed by: 

x;y = { ~ ' y  i fx=x '~ ]  

otherwise 

is Scott continuous. 

3 .  INFINITE TRACES 

Trace Equivalence and Finite Traces 

In this section we recall basic definitions concerning trace theory; for complete presentations see e.g. 
[Maz77, AaR88, Maz84, Maz89]. Trace languages constitute an abstraction of concurrent behaviour 
derivable from the notion of causal independency. Define the independency to be an irrefiexive and 
symmetric relation t ~ A x A. Two actions are independent if  they can happen concurrently without 
affecting the result, and dependent otherwise. A concurrent alphabet (A,t) is formed from a finite set of 
action symbols A and an independency t ~ A x A. Given a concurrent alphabet (A,t) one may obtain 
trace equivalence [Maz77] as the least congruence =~n in the monoid of finite strings (A ,., e) such that 
a t b ~ ab = ba. It then follows that for all v, w e A*, v -fin w iff w can be obtained from v through a 
finite number of transformations involving only permutations of consecutive independent symbols. 

The equivalence class of a string is called a trace. Every trace should be thought of as containing the 
set of all possible sequentializations of a given (non-sequential) execution; two sequentializations are the 
same up to permutations of consecutive independent action symbols. For example, if A = { a, b, c} and t 
= {(a,b), (b,a)} then: 

[ab] = {ab, ba} 
[ac] = {ac} 
[acb] = {acb}. 
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The monoid structure induces an order relation over finite traces. A trace o is a prefoc of x, denoted 
o =fin x, iff there exists 7 such that x = 07. (O*, _=fin) is a poset. Trace prefix order can be viewed as 
approximation ordering on executions, where each trace corresponds to a (global) state. [el is the initial 
state, incomparable prefices of the same trace represent states arising during concurrent execution, and x l 
_=fin ,c2 means that x 1 is a partial execution leading to x 2. Fig. 1 shows a sample concurrent execution 
together with its prefices. 

The following is a summary of  properties of finite traces: 

(i) (O. , . ,  [e]) is a cancellative monoid; 
(ii) ( O ,  =_fin) is a consistently complete countable poset [Kwi89t]. 

/ 
[aa] 

\ 

[~] 
/ \ 

[a] [b] 
\ / \ 
[ab] [be] 

/ \ / 
[aba] [abc] 

\ / 
[abaci 

I 
[abacd] 

Fig. I. The poset of all trace prefices of [abcad] with a t b, a t c. 

Extending Trace Equivalence onto Infinite Strings 

We extend trace equivalence onto possibly infinite strings by introducing trace preorder <~r for finite and 
infinite strings as follows: 

u <.~ v ¢=~ ( V x _ ~ n u  3 y < f i n v :  ( 3 z ~  A*: x_<z and z = ~ n y ) ) .  

Observe that u < v implies u <tr v, that is, the preorder ~ is weaker than the string prefix order <, in the 
sense that it ignores permutations of consecutive independent symbols. We now define trace equivalence 
in A ~, denoted - ,  as the equivalence relation determined by the trace preorder <~; more precisely, for all 
x,y~ A~: 

x-y ¢~ (x~y and y_<~x). 

It can be shown that this definition coincides with trace equivalence -_fin over A*. 
The set of all infinite traces over the concurrent alphabet (A,t) is denoted by OL ~°, and ®t ~ = 

Or* u O~ c°. The subscript t will often bc omitted. 

Example 3.1. Consider A = {a,b,c} with a t b. It is easy to scc that a -<tr ab, a -<tr ba, a ~tr ac, a air 
ca, ab ~r ba, ba <-tr ab, a ~r aC°, at° -<tr (ab/°, and a °~ <-tr (ba) c°. 

It should be emphasised that, unlike the definition of trace equivalence in thc rnonoid of finite 
strings, our definition of = allows for an infinite number of permutations of two consecutive independent 
symbols. For example, (ab) °)- (ba) ~ for a t b. 
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An equivalent trace preorder definition has been independently introduced in [Gas90]. It is worth 
mentioning that there are other ways of defining trace equivalence, see e.g. [Shi85, Gas90], and other 
representations of traces, e.g. dependency graphs [AaR88] and vector languages [Shi85]. 

Trace Prefix Ordering for Possibly Infinite Traces 

Trace prefix ordering on possibly infinite traces is determined by the preorder <tr. A (finite or infinite) 
trace a is a prefix of a (finite or infinite) trace x over C = (A,0, denoted by ff -= ~, iff: 

Vxe cr 3ye x: x<trY. 

The following property follows from the definition: 

Proposition 3.2. 
(i) I f  ff =_ x then for  all y ~ x there exists x ~ ~ such that x <_~ y. 

(ii) I f  ~ _= X then for  all x e a, y e  x: x<trY. 

The restriction of the relation _= m the finite elements coincides with the ordering _=i'm over ®*. The 
following may also be easily shown: 

Proposition 3.3. L e t  ~ e O*, x ~ ®0" such that a =_ z. Then: 

(i) For all x e ¢~ there exists y ~ ~ such that x < y (i.e. x is a string prefix of y). 
(ii) For all y ~ x there exists x ~ ¢s such that x < y. 

Proposition 3.3(ii) does not extend onto infinite traces; for example [a °] _= [ba °] when a l b, but for no 
y ~ [ b a  o] = {a*ba c°} do we have a ° < y. 

The set of  prefices of a given trace is directed, but not necessarily a total order like in the algebra of 
strings. As a consequence, in contrast to prefix ordering for strings, it is possible to show two distinct 

infinite traces, of which one dominates the other one. For example, the following holds for a t b: 

[(a) °]  ~ [b(a) °] _= [bb(a) °]  =_ ... ~ [(ab)°]. 

If there exists a trace that dominates both x 1 and x2 we say that 'q and x 2 are consistent;, otherwise they are 
inconsisteng in other words, two consistent traces correspond to consistent observations of a non- 
sequential behaviour, while inconsistent ones to observations that could not possibly have occurred during 
the same execution. If  Xl -= x2 or x2 =- Xl we say that ~1 and x 2 are comparable; otherwise they are 
incomparable; two incomparable but consistent traces arise from concurrent execution. Unlike in the 
algebra of strings, two incomparable traces are not necessarily inconsistent. 

A trace x is maximal in T ~ O ~ iff there does not exist a trace c ~ T such that x _= o and c # x. 
Maximal traces correspond to complete executions, whereas non-maximal traces are partial. The notion of 
maximality has impact on fairness issues [Kwi89t]. 
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4 .  PROPERTIES OF TRACES 

The Domain of Traces 

In this section we investigate order-theoretic properties of (19"*, _=). We show that (19~, _=) is a 
generalization of (A**, _<) in the sense that it forms a Scott domain which is isomorphic to (A**, <) in the 
case of t = O. 

Lemma 4.1. Let (P, _<) be a poser. Then: 
(i) X ~ P / s  directed ¢~ SX is directed. 
(£1) I f  X is a finite directed subset o f  P then UX exists and belongs to X. 

Proof .  
(i) Can be found in [GHK80]. 
(ii) By induction on cardinality of the set. 

Theorem 4.2. Let (A,t) be a concurrent alphabet. Then (0  ~, =_) is a cpo. 

P r o o f .  
1) It is clear that [~] is the least element. 

2) We prove that every directed subset X of O " has a least upper bound. By Lemma 4.1 it is sufficient to 
show the existence of least upper bounds of infinite directed sets X ~ O** such that X = SX. l.~t 
X ~ O** be such a set. Since X (7 O* is countable, its elements can be ordered into a sequence {6k I k 

N}. We construct LIX as a limit of a monotonically increasin~ sequence in X c~ O*. Define the 
monotonically increasing famUy Mk of directed subsets of X c~ e by: 

M0=~ 

IMk. 1U {(~k} 
Mk = tMk. 1 U {(Ik, 9} 

ifMk_ 1 U {t~k} is directed 

ifMk_ 1 t.) {Ok} is not directed and I~ is a bound for Mk. 1U {Ok}. 

Note that ~ always exists by the assumption of directedness of X. Also note that X n e* = 
(.J {M k I k ~ N}. Since each M k is finite and directed, UM k exists and belongs to M k by Lemma 
4.1(ii). By construction of the family M k we have M k ~ Mk+l, and hence: 

UM k -= IIMk+ 1 for all k E N. 
Let x k e UMk, Xk+ 1 • OMk+l; then x k <-'tr Xk+l by Proposition 3.2(ii), Since each HM k • O* we have 
x k ~ A* for all k • N and by definition of trace prcorder ~ :  

3 Zk+l: x k _< Zk+ I and Xk+ 1 _-___fin Zk+l; 
it follows that Zk+ 1 • IIMk+ 1. We have thus shown: 

V k V z k • OM k ~ Zk+l• UMk+ I" z k _< Zk+l, 
and hence it is possible to construct inductively a monotonic sequence {z k I k e N} ~ A* starting from 

OM 0` Dcf'me x = U { z k I k e N} (exists because A** is a cpo), and take 7 = [x]r It is easy to see that 7 

is the least upper bound of X. 

This concludes the proof. [] 
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We now show (O ",  _=) is consistently complete. The following binary left cancellation operator, 
denoted/: O* x O* ---> O*, will be required: 

V o ,  y ¢  O*: o / y = x  ¢:~ (y =_fin o and ~ = o). 

a/Tis pronounced o after T, it denotes the continuation of o after its prefix y has been completed. 

Lemma 4.3. Let (P, _<) be a poset, and let X ~ P. Then the following conditions are equivalent: 
(i) UX exists 
(ii) U S X  exists. 
And i f  these conditions are satisfied, then UX = U,I,x. Moreover, i f  every finite subset o f  X has a least 
upper bound and i fF denotes the set of  all those finite least upper bounds, then F is directed and O) and 
(ii) are equivalent to: 
(hi) UF  exists 
Under these circumstances, UX = IIF, 

Proof. Can be found in [GHK80]. 

Lemma 4.4. Let (D, =_) be a cpo. Then the following are equivalent: 
(i) (D, =_) is consistently complete, 
(~) Every non-empty subset o l d  has a greatest lower bound. 

P r o o f .  
=#) Observe FIX equals UL x where L x denotes the set of lower bounds of X. 
~ )  Observe UX equals FlU x where U x denotes the set of upper bounds of X. 

Lemma  4.5. Let o, y ~ O*, 13 • O'*. 
I f  ~, y =_ ~ then there exists 8 • O* such that 8 = ~ u y. 

P r o o f .  

Let o, y ~ O*, 15 ~ O** such that o, y -= 13. 
1) We show there exists 15' ~ O* such that ¢~, y _= 15' ___ 15. Let x ¢ G, y ¢ y, z ~ 15; then x <tr z and 
y ~ z by Proposition 3.2. Since x and y are finite, we have by definition of .~  that there exist finite 
prefices zl, z 2 of z such that x < u 1 and y < u 2 for some u I - zl, u 2 -- z 2. Let 15' = [max{z 1, z2}]. It is 
clear that o , ' ~ _  I~'--- 15 andlY ~ O*. 

2) We can now assume t~, T, 13 • O* and G, y -  = 15. We prove by induction on the length of t~ that 8 = 
o u t  exists. If  o = [el then take 8 = T. It is clear that 6 = ouT. Suppose o # [e] and [a] _= o for some 
a e A. Since o =_ 15 we have [a] _= 15. There are two cases: 
2a) [a] _= y, and thus y = [a](T/[a]) E 13 = [a](15/[a]), which implies, by left cancellation law, that 
T/[a] -= 15/[a]. By symmetry, a/[a] _= 15/[a]. By induction on the length of o it follows that 8' = 
(o/[a]) u (y/[a]) exists. It is easy to see that: 

8 = o u ' t  = [a]8'. 
2b) [a] £ y, from which it follows by a fairly straightforward argument (omitted, see [Kwi89t]) that y -= 
15/[a]. By induction on the length of o we have 8' = (G/[a]) u T exists. Finally, it is clear that: 

S = o u ' ¢  = [a]8' 
This concludes the proof, n 
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Theorem 4.6. 
(i) (O ~, _=) is consistently complete. 
(ii) Every subset X of 0 ~ has a greatest lower bound n x  wrt =_. 

Proof. 
(i) Suppose X ~ O ~ bounded. We show UX exists. Let Y be a finite subset of X, then the existence of 
lAY can be proved using induction and Lemma 4.5. Let F denote the set of lAY for all finite subsets Y of 
X. Then F is directed by Lemma 4.3, and hence IIF exists because (O ~, -=) is a cpo (Theorem 4.2). 
Thus, since UF  = UX by Lemma 4.3, we have shown that UX exists. 
(ii) Direct from Lemma 4.4. D 

Finally, we prove that the set of all traces forms a domain in the sense of Scott. 

Lemma 4.7. Let (D, =_) be a cpo. I fD is consistently complete, then $ ~ x  is directed for all x ~ D. 

Proof. See e.g. [Law87]. [] 

Theorem 4.8. Let C = (A,t) be a concurrent alphabet. Then (®~, =_) is a Scott domain. 

Proof. 
1) Since (O ~, _) is consistently complete (Proposition 4.6), it follows by Lemma 4.7 that ,l.r~cr is 
directed for all t~ E O ~, and the least upper bound of $ ~ o  exists. It is clear that U$~tJ = tj. Hence, 
(O ~, -=) is algebraic. 

2) We now show that O* are the finite elements. Suppose c E O* and M ~ O ~ is directed. Then UM 
exists because (O**, =_) is a cpo (Theorem 4.2). We need to show the existence ofx e M such that ¢r _= 
if cr ~ IIM. Suppose t~ ~ IIM. If UM ~ M, then take x = IIM. Otherwise, if t~ _= UM and 
IIM ~ M, then M must be infinite by Lemma 4.1(ii); hence, IIM must be an infinite trace while ~ is its 
finite prefix, and thus ~ ~ UM. Let ) 'be  an arbitrary member of M, then t~, )' -= UM. It follows that 
M u {t~, IIM} is directed. Since cr~ UM, we conclude M u {~} is directed. Thus, there must exist 
x ~ M such that t~, )' _= x. 

To show that elements of O c° are not the finite elements, take any o ~ O c° and the directed set M = sfmtJ. 
Then ff = UM ~ M and for no x ~ M do we have c -= x. 
This concludes the proof. [] 

Thus, finite trace prefices can be given the usual domain-theoretic interpretation of being a 'finite 
approximation' of a possibly infinite trace. 

The following result provides us with an alternative construction for the domain of traces. 

Lemma 4.9. Let (D, ~) be a cpo. Then the following are equivalent: 
(i) (D, =_) is algebraic, 
(ii) D is isomorphic to the ideal-completion of a poser. 

Proof. See e.g. [Law87]. 

Proposition 4.10. ( 0  ~, _)  is isomorphic to the ideal completion of(O*, =fin). 

Proof. Direct from Lemma 4.9. [] 
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Next, we summarize the remaining properties of  the domain of  traces. 

Lemma 4.11. V a,  x ~ O~: ~ =- x ¢:~ ,~fin(~ ~ ~ fin,c" 

P r o o f .  
~ )  Follows from transitivity of  =-. 
~ )  Direct from algebraicity of  traces (Theorem 4.8). 

Finally, the domain of  traces can be shown to specialise to the domain of strings. 

Proposition 4.12. Let C = (A,t) be a concurrent alphabet such that t = 0 .  Then: (O ~, =-) is 
isomorphic to (A ~, <). 

Proof. Easy; observe that if t = O then traces are singleton sets. 

The Metric Space of Traces 

There exists a natural metric for traces defined as follows. Let o, x ~ O °° and put: 

dtr(o, "0 = 2 -inf{len(?)17~ ¢rAx} 

where len(y) denotes the length of  some string x ~ 7, inf O = +oo, and c A "c is the symmetric difference 

of  the sets of  finite prefices below o and x respectively. Formally: 

o A ~ = ($r%~$~) u ($rm*',$c). 

Note that the value of inf{len(T) I y ~ ~ A x} is a measure of  the 'depth' of  approximation necessary to 
distinguish between traces cr and x. 

It can be shown [Kwi90m] that dtr is an ultrametric and that the following holds. 

Proposition 4.13. ([Kwi89m]) 
(i) (O °°, dtr) is a complete metric space. 
(iii) I f  A is finite then the dtr-topology in O °° is the Lawson topology. 

Also, the metric dtr specializes to the metric dst r of [BoN80] in case of t = 9 .  Thus, infinite traces have 
two characterizations: as metric limits of Cauchy sequences of finite traces, and as order-theoretic limits of 

directed sets of  finite traces. 
It is an interesting question to investigate the continuity properties of  the concatenation of  finite and 

traces. Unfortunately, unlike in the case of strings, concatenation is not uniformly continuous on ® wrt 
the metric dtr. To demonstrate this fact, we need to show that: 

3 M VN 3 ~, x, o' ,  x': [ dtr(<O, x>, <o',  x'>) < 2 -N and dtr(OX, o"c') > 2 -M ]. 

Let A = {a, b, c} with a t b, and take ~ = [an], ~' = [ant], x = x' = [b]. Then: 

dtr(O% o'x') = dtr([anb], [ancb]) = 2 -1 

because [b] is the shortest prefix in [anb]A [ancb] = { [b],[ancb],[ancb] }, and yet: 



51 

dtr(<O, x>, <t~', x'>) = max{dtr(C, c'), dtr(X, x')} 
= max{dtx([an], [anc]), dtr([b], [b])} = max{2-(n+l), 0} = 2-(n+l) 

because [anc] is the shortest prefix in [an]A[anc]. Thus, unlike in the case of strings, the concatenation 
over @ does not have a canonical extension to O . 

5 .  S E Q U E N T I A L  C O M P O S I T I O N  OF TRACES 

We now investigate the monoid properties of O ~. We believe that concatenation in ®~ should be a 
suitable generalization of the concatenation in A**, as the latter corresponds to our intuitive understanding 
of sequential composition of two (sequential) executions x and y: if the behaviour represented by x does 
not terminate, then the behaviour represented by y should never proceed. What is then the right intuition 
for defining sequential composition of two non-sequential executions represented by traces? Ideally, 
causal independency should be taken into account. Suppose. denotes the concatenation operation, then 
for a and b independent it would be against reasonable intuition to define [aC°].[b] as [a °] because the 
occurrence of a can in no way affect b, thus, the occurrence of a should not prevent b from proceeding. 
Observe that traces [a~  and [b] are consistent, i.e. have a common bound, e.g. [ba~.  On the other hand, 
if a and b are dependent, [a°].[b] should be [aC°]. Note that in this case the traces [a c°] and [b] are 
inconsistent. 

However, if we accept the above intuition regarding respecting causality, we will lose associativity. 
Consider A = {a, b, c} with a t b. Then: 

[a~.([c] .[b])  = [a~.([cb])  = [a '°] 
([a~.[c]) . [b]  : [a~. [b]  = [ b a ~  

and [a ~] ~ [ba~. Moreover, continuity wrt the metric dtr fails for very similar reasons. We have: 

lim ([anel.[b]) = lim ([ancb]) = [a~  ~ (lim [anc]).(lim [b]) = [a~.[b] = [ba~.  

Scott continuity will also fail because the concatenation of finite traces is not even monotone. It remains to 
be seen if techniques similar to those used in Section 2 to show that concatenation of strings is Scott- 
continuous can be applied in this case. 

Defining Sequential Composition 

We now introduce an extension of the concatenation of finite traces to O °* which agrees with the above 
intuition. We also show that (®~,., [e]) is a pseudo-monoid, in the sense that.  is total and associativity 
holds on a subset. Although non-associativity may be viewed as undesirable, our definition allows us to 
generalize Levi's lemma [Maz84, COP85] to possibly infinite traces. 

Definition 5.1. 
(i) We say traces c,  x are independent iff Act(~) x Act(x) c_ t,. 
(ii) A trace x ~ Ot ~ is tail-independent with the trace ~ ~ 0 ~ iff: 

3 t~' _=fin t~, V ~" ~ O*: ~ 'c"  _= ~ ~ a ,  x are independent. 
(iii) A trace x e O ~ is tail-independent with the trace o e O ~ after cY iff 
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i f ,  . = f i n  f f  and 

e * :  V if" ~ if'if" .= ff ~ f f ,  x are independent. 

The following may be shown. 

Proposition 5.2. 
O) For every ~ ~ 0 ~, ~ is tail-independent with [e]. 
(ii) For all if, x ~ ~ ,  i f  ~, ~ independent then or, x tail-independent. 
(iii) For all ~, x ~ O*: 

i f  if, x tail-independent after ~', then ~'~ and ~ are consistent. 

Def'me an auxiliary operator A(ff,x) for if, x e 0 "  as follows. 

A((Lx) = {o'x' I o '  -=I'm if, x' _=fro x and x' tall-independent with o after o'}. 

Note that $fina ~ A(ff,x). Intuitively, we break the 'past history' of  the execution ff into finite segments 
g, _=fro ft. Similarly, the 'potential future' execution x is broken into finite segments x' -=fin x. We then 
concatenate the finite past if' with the finite future x' and choose only those segments ff'x' which represent 
a viable continuation of the past history given by a, in the sense of  (r'x' and ~ being consistent, i.e. 
having a common bound. Thus, A(~,x) represents allfinite pieces of  the new history. It is clear that for 
finite traces ~ and x the whole of the trace ~x becomes the new history; however, when traces ~ and "~ are 

infinite, part of  the future x may be delayed indefinitely. 
A(ff,x) is the maximal directed subset of  ET where ~ = Sfinff and T = sfmx that is consistent with ~. 

We can now defme sequential composition in O ~. 

Definit ion 5.3. For if, x e O~'define: 
o.x = IAA(o,z) 

Proposition 5.4. 
(i) For all ~, x e 0 ~, ~.x is well defined. 
(ii) l f ~ ,  x ~ 0", then A(~,x) = sfin[xy],for some x e a, y e x. 

Proof. 
(i) We need to show A(a,x) is a directed set. Note that A(a,x) is non-empty because ,l.fincY ___ A(cY,'0 
and ,l, finc contains [~]. Let g lz l ,  o2x 2 e A(a,x), then by definition: 
(a) (Yl .= f in  (Y ^ ' e l  .=fro  "C A 'C 1 tail-independent with c after c 1 
(b) ~2 = f ' m  (y A "C 2 _=fin x ,', x 2 tail-independent with ~ after (Y2. 

By Lemma 4.5 we have there exists ~' -=ira ~ such that ~' = ~1u~2, and hence Act(a')  = 
Act(~ 1) u Act(a2). Thus, by definition of tall-independency, x 1 must be tall-independent with ~ after c '  

• - • i ° . . , f in  
and x 2 tall-independent with (~ after ~ .  Using mductmn we can construct x -= '~ such that '~ = 
' q u x  2. Then, Act(x') = Act(x1) u Act(x2). Let a" e 0 "  such that a ' a"  -=fin c.  It is easy to see 
Act((r") x Act(x') ~ t; hence, a" and x' are independent. It follows x' is tail-independent with (y after 
c ' .  Let (Yi(~i ' '  = ~' for i e {1, 2}. Then, since x i, ai" are independent, we have by Levi's lemma: 

~ i ~ i  .= I f f i 'Ci¢~i"  = ~ i t f f i ' " ~ i  = ¢~"C i _ 0 " " [ ' .  

We have thus constructed ~'x' ~ A(ff,x) such that fflXl, ff2x2 -= ff"¢. 

Since ® "  is a cpo, IAA(c,x) must exist. 

(ii) Straightforward. [] 
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Example 5.5. The following are examples of sequential composition in O ~. Let A = { a,b,c } with 
a t b, then: 

[al . [b~ = 11([b*]u[ab*]) = [abe ,  
[ab~.[a] = II ({[el } u[ab*]u[aab*]) = [aab°], 
[ a ~ . [ b ~  = 11([a'b*]) = II { [(a*b*)~ }) = [(ab)~ 

On the other hand: 
[a].[c~ = Lt({[e]}u[ac*]) = [ae~,  
[a~°].[e] = LI ([a*]) = [at°], 

[ a ~ . [ c ~  = Ll([a*]) = [a~]. 
Finally: 

[cal . [be]  = 11({[e] }u[ca*]w{[cb] }) = [cba~, 
[ca~].[cb] = 11({[e] ]u[ca*]) = [ca°]. 

The following summarises the relationship of the sequential composition of possibly infinite strings 
and traces. 

Proposit ion 5.6. l f  t = 0 then f o r  any o, ~' e O ~ we have: 

o.~' = [xy] 
where x ~ o, y ~ x. 

Proof .  
Straightforward. I-t 

The following important property may also be shown. 

Lemma 5.7. (Shields) Suppose x, y ~ O *, then f o r  z ~ O~: 
(xy)/(zn(xy)) _= x/(znx). 

Proof. By induction on the length of y (see [Kwi89t]). [] 

Proposition 5.8. L e t  ~, ~[ ~ 0 *°. Then  

¢r -=7 ¢* 31~e O*~: a.13=y. 

Proof .  
~ )  Suppose o ~ 7. We construct the least 13 e {9** such that o,13 = T. By Lemma 4.11 we have 
sfino ~ StinT. Define: 

M = {'c/o' I Z ~ (.~finy)\(,~lYmo), ~' = UMx} 
where M x = sf'ma n srmx. 

(1) We prove that M z is directed and contains least upper bound of every pair of its elements. Observe 
that M~ is non-empty because it contains [el. Let cq, ~2 e M x, then: 

~1, 02 ~ o and a l ,  02 -= 
By Lemma 4.5 it follows that Olm o2 exists and is bounded by o and "~, and thus a l  u o2 e M x. 
Hence, M x is directed. 

(2) Observe that M is well-defined because o'  = UM x always exists by (1) and a '  -= "c. Also, 11M z is 
finite because x is finite. 

(3) We show that M is directed. Note that M is non-empty because it contains [el = 110. Let 13', 13" 
M, then ~' = x']~', ]3" = "c"/o". We need to show there exists 13"' e M such that 15', 13'' -= I 3'''. 
Observe that z' u x" exists because x', z" bounded by 7. Also, o' = a rn x' and a" = a n x" (by 
definition). Let y = ('t'u'~")/o. By Lemma 5.7: 
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(x 'ux") / (om(x 'ux"))  = (x 'y) / (on(x 'y))  _= x'/(omx') -- ~'/~'. 
By symmetry, (x 'ux") / (on(x 'ux") )  ~ "c"/(craX") = x"/ff". Note that (x'u'c")/(om(x'ux")) ~ M 
because x'ux" E (,l.finy)\($fino) and ~n(x 'ux" )  = UMx,ux,,. 

(4) Since M directed by (3), define 15 = UM (exists because O ~ is a cpo by Theorem 4.2). It follows by 
construction that this is the least such 13. 
(5) We show A(o,15) ~ ,l, flny. Suppose o'15' ~ A(o,13), then by definition o'  =I'm o, 15' _=Fro 13 and [~' is 
tail-independent with ~ after o'.  On the other hand, 15' = x/o" for some x ~ ($n~y)X($~o), o" = UMx 
(by definition of  M). Note that o ' u o "  exists, and that 13' is tail-independent with ~ after o ' uo" .  

, , ,  , / f r o .  
Define lc = (o ~mff )13 and observe that  lc ~F~ q' rm fin 
(6) We show $ti y ~ A(o,15). As $ o ~ ,1. y it is sufficient to show that ($ y)\($ o) c_ A(o,[3). Let 
'C ~ ($rmy)~$fino) and define 15' = x/~' where o' = UMx. Now 15' ~ M (by definition of M), and thus 
13, e $rm15. Finally observe that 15' is tail-independent with o after o'.  

~ )  Direct from definition of sequential composition and Lemma 4.11. 

Finally, we remark that associativity and metric continuity hold for pairs <o, x> such that o E ® ,  x 

Levi's Lemma for Infinite Traces 

The following property follows from the definition of sequential composition. It states that given any two 
consistent (i.e. bounded) traces, the corresponding continuations from their greatest lower bound 
commute. This property is referred to as the 'commutativity lemma'; it is a reformulation of the well- 
known Levi's lemma for traces, which has been proved for the finite case in [Maz84, COP85], and 
independently for the infinite case in [Gas90, Die91 ]. 

First, we extend the left cancellation operator on to ®~ in the following way: 

Definition 5.9. Let o, y, 15 ~ O ~ such that y =- o. We say that 13 is o after y (denoted o/y) iff 15 is the 
least trace such that y.13 = o. 

As an example, consider A = {a,b,c} with a t b. Then [a~]/[a ~] = [e], [ba~]/[a~ = [b], [ b a ~ / [ a ~  = [b], 
[ ca~ / [a~  is undefined. 

Proposition 5.10. (Cornmutativity lemma) 
Let o, x, ~ ~ 0"0 such that o, x =- [~. Then: 

(o/y) t (x/y) and ou'c = y.(o/y).(x/y) = y.(x/y).(o/y) 
where y = or~x. 

Sketch of proof. Observe that c u x  exists by Lemma 4.5, omx exists by Proposition 4.6, and both 
o/y and x/Tare defined. Suppose 15 _=fin (o/'/), 8 _=fro (x/y), then 15 l 8 can be proved by induction on the 
length of 15; thus conclude (o/y) t (x/y). The equality o u x  = %(c~/y).(x/y) = %(x/y).(o/y) follows from the 
definition of sequential composition. D 
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6 .  C O N C L U S I O N  

The approach presented here has concentrated on a basic semantic framework that can be used to model 
concurrency in the non-interleaving sense, and its mathematical characterizations. We have investigated 
ways by which adding structural information in the form of the relation of causal independency over 
actions can influence the mathematical space of the infinitary behaviour of concurrent systems. This has 
been achieved by a suitable extension of trace theory, which has been shown to give rise to a Scott 
domain, a complete metric space and a pseudo-monoid. It has been demonstrated that there exists a 
natural approximation ordering on traces, which may be obtained by relaxing the corresponding 
approximation ordering on strings. Being less discriminating, trace prefix ordering allows to distinguish 
between action occurrences that represent either 'consistent' (i.e. co-existing, but perhaps remote) or 
'inconsistent' (i.e. conflicting) pieces of some non-sequential 'history'. 

The detailed investigation of existence of a Scott- and metric-continuous sequential composition, 
concurrent composition, and hiding operations is in progress. Further work will include techniques for 
representing process denotations in the domain of traces, deriving appropriate operations on process 
denotations and solving reflexive domain equations. 

The mathematical structure of the space of finite and infinite traces is of considerable interest because 
it can be shown that using non-interleaving semantics has useful implications on fairness, see e.g. 
[Kwi90t, Kwi90c]. Maximality with respect to trace prefix ordering determines a certain notion of 
fairness [Kwi89e], and other notions of fairness, e.g. process fairness, also arise naturally [Kwi90p]. 
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