
A Complete Proof System for Timed Observations

Yolanda Ortega-Mall6n
David de Frutos-Escrig

Secci6n Departamental de Inform£tica y Autom£tica
Facultad de Matem£ticas

Universidad Complutense, 28040 Madrid, Spain*

Abstrac t

Timed Observations is a failure and divergence semantic model for concurrent
processes, suitable for real-time systems. Actions are not instantaneous but need
some time to complete their execution, and true concurrency is expressed by action
multisets (bags). Time is global and discrete.

The model is applied to TCSP, obtaining a denotational semantics, for which a
complete proof system is developed.

1 I n t r o d u c t i o n

In [OdF90] a timed failure semantic model for concurrent processes was presented. In that
model actions performed by a process are not instantaneous, but need a certain amount
of time to complete.

Following the ideas of Milner's [Mil80], that a concurrent process is not an isolated
item, but part of a whole system of interacting machines and users, what is interesting
about a process is its external behaviour, i.e. what an external observer (an user or another
process) can notice. In our model (Timed Observations), the observer not only notices
the visible actions performed by the process (traces), but he also relates each action to
the instant when it is executed (timed traces). Moreover, he is an active observer and
tries to guess the future behaviour of the process by asking it to perform some actions
from a set (refusals as in [BR85]). We are also interested in differentiating divergence
(the possibility of engaging in an unbounded sequence of internal actions) from deadlock
(doing nothing). Thus we make the idealised assumption that divergence is observable
(of course, divergence is not computable in general). Therefore this model has a timed
failures divergences semantics.

The model induces a specification-oriented denotational semantics in the sense of
[OH861 which is applied to TCSP [HBR81].

*Part of the work was developed during a two-month sojourn of the first author as collaborator in the
RWTH-Aachen (Lehrstuhl fiir Informatik II) (FRG) and a short visit of the second author to this same
center.

413

We have notice of several research groups working on timed models. Some of them
have produced denotational or compositional semantics like [KSdR*85,GB87,RR87]; some
others have developed timed process algebras or calculi, like [NRSV90,QAF89,MT89,
HR90,BB90,Yi90] among others. In the present paper we try to combine both approaches
and give an equational proof system for the denotational semantics obtained for TCSP
processes. This proof system is proven to be correct and complete.

The paper is structured as follows: section 2 introduces the basic notions and defini-
tions in the model. In section 3 we describe the corresponding denotational semantics for
TCSP-processes. In section 4 we present the proof system.

2 T i m e d O b s e r v a t i o n s

The model given here is slightly different from the one presented in [OdF90]. The intro-
duced changes are mainly technical, and arose when developing the proof system. Next
we give its main concepts and definitions. The interested reader is referred to [OdF90]
and mainly to lOft90] for extended explanations, and complete proofs of the results given
in this section.

2.1 Action duration

Let us start defining the kind of things we can observe in a process. For we fix the set
of actions which the processes may perform: the finite alphabet A. These actions are
considered to be indivisible but not instantaneous, i.e. we assume a duration function
d : A ~ IN + (where IN + represents the non-zero integers) which associates to each
action the time needed to complete its execution (in temporary units). As actions are no
longer instantaneous, hidden actions do not disappear completely from the trace, because
its duration time will remain reflected.

2.2 Action Bags

As we are interested in a general model for concurrent processes, we need some way
to reflect the possibility of having several actions performing simultaneously. The most
natural way to express this 1, is to consider action bags (or multisets). One important
restriction is that bags are always finite, corresponding to the fact that the execution of
an infinite amount of simultaneous actions is unrealistic. Sets (and multisets) appear in
several models for concurrent processes like [Mi183a,Mi183b,TV89,Azc89].

Def. 2.1 The set of bags over an a lphabet ,4 is B(A) = {B : ,4 .u ~ IN}.

Let a E A, some interesting bags and bag sets arc defined:

e m p t y bag: B$~fVa e ,A, B~(a) = O,

1Classical theories for concurrency are based on inlerleaving semantics where concurrency is reduced
to sequentiality + non-determinism. This is derived fl'om the fact that on each process-step only one
action is executed. However, more recent works on this topic tend to consider concurrency as a language
primitive, giving way to what is known as true concurrency [BC88].

414

bag gene ra t ed b y a: Ba~fVb E A, B~,(b) : {
0 if b # a
1 if b = a

n o n - e m p t y bags: B+(A) = B(.A) - {B~},

bags containing a: B~(A) = {B e B(A)[B(a) > 0},

bags different f rom B,: B_,(A) = B(A) - {Ba}.

When the alphabet is understood, it may be omitted obtaining B,B+,Ba, []

2.2.1 Opera t ions on bags

When defining the semantics we will need some operations and definitions on action bags.

Let a e A; A C A; B, B1, B2 E B(A); n E 1N.

Alphabe t : A(B) = {a e A]B(a) > 0}.

Size: [B] = ~.~AB(a).

Par t ia l order: BI <_BB~fVa E ..4, Bl(a) <_ B2(a).

Addition: B~+BB2~fVa E A, B~+BB2(a)%fBI(a) + B2(a),
As an abbreviation we define, 0 * B = B~,

(n + 1)* B = n* B+BB.

B(b) if b # a
Hiding: B\aa=~Vb E A, B\a(b) = 0 if b = a

B (b) i f b e A
Rest r ic t ion: B[A%fVbEA, B[A(b)= 0 if b • A

Synchronizat ion: it is only defined if B1 [A = B2 rA,

def I BI@AB2=Va E A, BI@AB2(a) = B l (a) if a E A
Bl(a)+B2(a) if a C A

Both bags must coincide on the actions of ~he synchronization set A, but a pair of
synchronized actions is reduced to a unique action.

We will use the action bags to generalize the notion of failure [BR85], which embodies
traces and refusals.

415

2.3 T i m e d t races

Classical traces reflect some causal order on the executed actions. Nevertheless this order
is insufficient for the study of real-time system behaviour. As a more absolute time notion
is needed, we relate each occurence of an action to the instant when it is produced (more
exactly to the instant when it starts, as actions are not instantaneous), obtaining timed
traces. Actions can be performed from instant 1 on (instant 0 represents the initial state
of the process).

Def. 2.2 The set of t imed t races is T T = {t : IN+ , I3}.
An special and useful trace is the e m p t y t race tz~fVi E IN +, t#(i) = B#. []

The empty bag now plays an important role, as it represents the passing of time with
the process doing no externally visible action. 2

Def. 2.3 For each t C :T?F, we define

• its first non-empty time instant by inf(t f): inf(t¢)
inf(t)

• its last non-empty time instant by sup(t f): sup(t$)
sup(t)

I"1

= 0,
= min{nlt(n) # B~},t ¢ t#.

O,
= max{nl t (n) # B¢},t # t~.

From a practical point of view, processes can only be observed during finite time
intervals. As a consequence we have the following definition:

Def. 2.4 The set of finite t imed t races is 7":T~ = { (t , n) l t e T T ^ n > sup(t)}.
For each t f = (t ,n) e TT".~ we define: tracc(tf) = t and cnd(t f) = n. []

Notice that end(tf) = 0 implies trace(tf) = re. The trace (re,0) corresponds to the
initial state of the process, when the observer has not yet started to observe.

2.3.1 Ope ra t i ons on t races

Let A C_ ¢4;n E IN+;B E/3;t E T T ; t f , ta,t2 E TT~' , we define:

Alphabet: A (t f) = U .A(trace(tf)(i)).
l<_i<end(tf)

t aef{ Vi E IN+, trace(tl+Tt~)(i) = trace(tl)(i)+Btrace(t2)(i)
Adding t races: t l+T 2= _ end(t1+Tt2) = max{end(t1), end(t2)}

~Unlike in [TV89] where empty bags are only included to facilitate the definition of the synchronizing
operator, but they can be arbitrarily added or eliminated.

416

Adding a bag to a trace:

{ { trace(tf)(i)
tf+Ts(B,n)~f Yi E lN+,trace(tf+TB(B,n))(i) = trace(tf)(i)+BB

end (tf +Ts (B , n)) = max{ end (tf), n}

if i ~ n
if i = n

def We define the trace including only one action: t,,,~ = trace((t¢, 0)+TB(B~, n)).

Moving along time:

{ { trace(tf)(i-n) if i > n
mov(tf, n)~f Vi E lN+,trace(mov(tf, n))(i) = B~ if i < n

end(mov(tf , n)) = end(if) + n

Concatenation: trt2~f tl+Tmov(t2, end(t1)).

St re t ch : Stretch(tf) 3,

Stretch(t~, n) = {(t~, m)lm > n},

Stretch((t, n)+TB(B, n + 1)) =
~T~ m {t f+Ts Ek=l(Bk,nk) Ek=l Bk = B A nk > end(tf) + 1 A tf E Stretch(t,n)}.

Actions in a bag may be "stretched" and executed at different time instants. The
only restriction for it is to keep the relative order between bags in the original trace.

Vi e ~l +, trace(tf\a)(i) = trace(tf)(i)\a
Hiding: t f \ ~ ~d(tf\~)= ~d(tf)

R e s t r i c t i o n to an action set : tf [A~ r { Viend(tfE IN +,r A)trace(tf= end(tf)[A)(i) = trace(tf)(i) [A

{ { trace(tf)(i) if i<_n
In i t ia l in terval : tf[nd~ f Vi E lN+,trace(tf[n)(i) = B~ if i > n

end(tf In) = n

Synchronization: it is only defined for traces verifying t l [A = t2 [A.

tl~At2de.f ~ Vi E IN +, trace(tl~At2)(i) = trace(tl)(i)~Atrace(t2)(i)
end(tleat2) = end(h)(= end(t~)) (

Operators on finite timed traces can also be applied to non-finite timed traces.

SThis operation is borrowed from [TV89].

417

2.4 T i m e d fai lures

Failures consist on traces plus a refusal set. A refusal is a finite set of non-empty action
bags. These sets can be empty, but empty bags are not taken into account, because
refusing the empty bag means that the process refuses to do nothing, but our model
supports "no maximum parallelism" [SM81], i.e. actions can arbitrarily delay its execution,
so that every process can always choose to let the time pass doing nothing! We should
point out that this model is a general framework for timed processe, and that it can be
convenientely modified to meet other desired timing requirements, like it was done in
[OdF90], where two versions were presented: one introducing time-outs and the other
requiring internal actions to be executed as soon as possible.

Def. 2.5 The set of refusals is 7~ = {r E P~-(B+)). n

Def. 2.6 Let rl,r2 E T~ we define its synchronizat ion:
rlSAr2de----fT~J:({B ~ /~+IVBI, B2 : B = BI(~AB2 ~ B1 E rl V B2 G r2}). D

Def. 2.7 The set of t imed failures is .~T = ((t f , r)l t f E TT.T" A r G T~}.
For each f = (i f , r) E 3:T we define: T (f) = tf and R (f) = r. 0

2.5 Divergence

A process is said to diverge when it is engaged in an unbounded sequence of internal
actions. The divergence in our model is not catastrophic; i.e. the feasibility of divergence
is not necessarily permanent, it may disappear as the process evolves by performing further
actions, i.e. by choosing a non-diverging path. Therefore we do not identify a possibly
diverging process with chaos (the process which has every possible behaviour). 4

Obviously it is very convenient to be able to distinguish a never diverging process from
one which has this possibility. Therefore, we suppose that our notion of observer is very
powerful, and the possibility of divergence in a process can be externally detected.

2.6 T i m e d observat ions

Putting all the above concepts together, the observable behaviour of a process consists
of a timed failure set plus a divergence set (timed traces which can be extended with an
infinite sequence of internal actions).

Def. 2.8 The set of t imed observat ions CO is:

0 = { (F ,D) IF C .~'T A D C TT.T'A D C_ T(F)}

For ob = (F, D) E 0 we define: F(ob) = F, D(ob) = D and T(ob) = T(F(ob)) . 0

4Brookes proved in [Bro83] that the identification of divergence with chaos is necessary for the sake of
the continuity of the hiding operator in failure semantics, due to the instantaneous nature of its actions.
As our actions are not instantaneous, it is possible, as we will see later, to define a sound semantics for
recursive guarded processes, without such restrictive technicalities.

418

2.7 Specifications

The notion of specification [OH86,01d86] is useful for the design and development of
concurrent programs. We start with a specification Sp which denotes a set of behavioural
observations that we expect in the bchaviour of the program we are looking for. We say
a program P is correct with respect to Sp (P sat Sp), if all the behavioural observations
of P axe within Sp.

In our model specifications are timed observations (Sp E O) with some restrictions.
To each program P we associate a specification SIP], so that P sat Sp when Sp~sS[P],
being ~s some paxtial order over O.

Def. 2.9 We define the specification space: IS, ~s/, where the set of specifications
is S = { ob E Olob verifies [P1] - [PS]} is and the part ia l o rde r over t imed observa-

t ions is obl<_sob2~fF(ob2) C_ F(ob~) A D(ob2) C D(ob~), for obl, ob2 E O.

• [P1]

• [P2]

• [P3]

• [P4]

• [P5]

• [P6]

• [P7]

• [PS]

D

(t,, O) 6 T(ob)

(tl, nl)-(t2, n2) 6 T(Sp) =~ (tl, nl) 6 T(Sp)

(t,n) e T(ob) A r e n =~
(3B e r: (t, n)+TB(B, n + 1) e T(ob)) V ((t, n), r) e F(ob)

(tf, r) e F(ob) A r' C r =~ (tf, r') e F(ob)

tf e D(ob) =~ Vm > sup(tf) : tfrm E D(ob)

(tf, r) e F(ob) A tf' e Stretch(g) ~ (tf',r) e F(ob)

tf E D(ob) A tf' E Stretch(tf) ~ tf' E D(ob)

B<BBt A (tf, r O {B}) e F(ob) =~ (tf ,r U {B,B'}) E F(ob)

Props. 2.1 (S, <s) is a Complete Partial Order (CPO}. []

3 Semantics of TCSP-processes

In the previous section we have only given a specification space suitable for defining
denotational semantics, but we still must provide, for each syntactic operator in the
programming language, a continuous operator over this specification space.

We consider the following set of syntactic operators for TCSP-processes:

~ = (stop} U {,~ ---*1,~ ~ X} U {n, D} u {IIAI A C_ .A} U {\,,1 a ~ 4 }

Def. 3.1 A TCSP-process is a recursive term over E1 (P e REC(~Jl)):

P ::= stop] a ---~P [PFIP I p n p [P][AP [P\a [~ [#~.P

where ~ belongs to some process identifier set Id. []

419

Only recursive closed processes CREC(E1) (without free identifiers) are considered.

We now give the semantic operator associated to each syntactic operator. The resulting
specification has two component% the first one expressing the timed failures and the
second, the divergences. Let Sp, Spl, Sp a 6 S,

{((t , ,m),r) lm e IN A r e T~}
1. S s top["] =

f
2. Sa

~[Sp] = I {(t,,,~,m)ln 6 1N + A
[u{(t.,o, n~). ty In e

where nd= n+d(a) - 1. Notice how
So long as a does not start, any bag

{((* , ,~) , r) l~ e ~ A r e ~'a:(B+_~))
U{((t,,,~,m),r)ln 6 IN + A n <_ m < nd A r E Tl}
U{((t,~,.,nd). tf, r)ln 6 IN + A (tf, r) 6 F(Sp)}

n < m < n d A (tO, 0) 6 D(Sp)}
IN + A tf 6 D(Sp)}

action a may start its execution at any instant.
except from B, will be refused.

a. s n i & ~ , & d = [F(Sp~) u F(Spa)

t D(Spl) U D(Spa)

.

{((t , ,m) ,r) 6 F(Sp1)ClF(Spa)}
S= [SPx, Sp=] = U{(tf , r) e F(Sp~) o F(Sp=)ltraee(tf) # *,}

D(Spl) U D(Sp2)

{ (tfl(~A~f2 , r}](~fl , rl} e F(Spi), i = 1, 2 A r 6 rll~)Ar2}

5. S l la[Sp , ,Sp d = {ff,eatf2t (G e D(Spx) a g2 e T(Sp2))
V(tf I 6 T(SpI) A t/2 6 D(Sp=))}

{ {(t/\~,~ u,-')t<tf,~) ~ F (&) a r' ~ ~'I(So)}
s. s \ ~ [s d = {ty\~l 3tf ' : A(ty') c_ {a} a ty.tf' ~ o (&)

V3{ti}ieiN+ : A(*i) = {a} A t f . t r t i 6 T(Sp)}

Props . 3.1 Vop 6 ~x,Sop~Spl,...,Sp,,] is well defined (6 0), monotonic, and it pre-
serves properties [P1] - [P8]. []

Props . 3.2 Vop 6 ~1 - { \ a } , S o p [S p l , . . . ,Spa I i8 continuous. []

The hiding operator is not continuous on the whole specification space, due to the
fact that we cannot distinguish between the execution of a unique hidden action and the
simultaneous execution of several of them, as the time needed for it is the same (but this
has nothing to do with the identification of divergence with chaos).

420

E x a m p l e 3.1 Let Jt = {a, b} with d(a) = d(b) = 1. We define the process

Q = a ~ b --*stopll~b}Q

This process can perform any amount of a actions, but it never performs any b. Now we
consider the process sequence {Qn}ne]N where

Qo = chaos 5
Q,, = a ~ b ~stopIl{b}Qn_l

Thus for each process Q,,-1 at least n a actions are executed before performing b.
If we define X = {S[Q,l} ,e~r , then X is a directed set and lub(X) = S[Q I. However,

when applying the hiding operator we obtain S\aI lub(X)] = S\a[Q] # lub({S\a[Q.]}).
For consider the trace tf = (t2.b, 2), then Vn E IN: tf E T(S\a~Q,~]) but tf ~ T(S\a[Q]) .

[]

3 . 1 G u a r d e d p r o c e s s e s

If we restrict the dynamic process generation by requiring that every recursive call is
preceded by the execution of at least one action, then in a bounded time interval we will
obtain a bounded amount of parallel processes. We will call this class of processes guarded
processes.

Def. 3.2 Wel l -def ined express ion E:

E ::= stop l a - - * E I E M E I E D E I Z i l a Z l Z \ a I~ I#~ .PG

G u a r d e d process P G E RECG(~I) :

P G ::= stop l a ~ E I PGrqPG I PG[]PG I PGI[APG I P G \ a I #~.PG

o

In distinction to untimed models, the hiding operator does not affect the guards in
processes, as the guard is the duration of the action and not its name. This implies, in
particular, that a guarded process may diverge. Take for instance: (#~.a ---~ ---~stop)\a.

The hiding operator is well-behaved (on the limit) when dealing with guarded pro-
cesses. This is expressed by the following proposition:

P rops . 3.3 Let a E RECG(Ex) be finite and with only one free variable. I f X , =
{Z(.l_s)},>o, then fix(f,) = lub(X,).

(Ira 6 RECG(Y]I) has only one free variable, then SIal] represents a function between
specifications denoted by f~ : S , S.) [3

P r o o f : the basic idea of the proof is that no recursive guarded process can perform
infinitely many simultaneous actions (in a finite time). This is formalized in the following
lemma:

5The semantics of chaos is the bottom of the specification space: I s = (IT ,TT~) .

421

L e m m a 3.4 I ra E RECG(~I) is finite and with only one free variable,
Sp e S, UT(f~(Sp)) is bounded in every time instant i e IN+:

n>_i

Vie ~+ 3k, = max{It(i)l,t e UT(:f~o(Sp))}
n>i

with each iteration of the process we bound the size of the bags at one more instant.

then for each

[]

4 P r o o f S y s t e m

A denotational semantics defines the meaning of each process and induces a natural
equivalence between processes: P and Q are equivalent iff they have the same semantics.

If we are really interested in this equivalence relation, we could establish it, at least in
the finite cases, by computing the corresponding denotational semantics and comparing
them. But it is clearly preferible to count on some indirect procedure which allows us to
make such decisions without leaving the syntactic level in which processes are given. Thus
we are interested in having some collection of algebraic laws which allows us to establish
any valid equality. This is called a complete and correct proof system. Correct in the
sense that every derived equality must be semantically valid, and complete in the sense
that every semantically valid equality must be derivable by the system.

In order to prove that a system is correct it is sufficient to prove that every axiom and
rule in the system is correct. Completeness of the system is more difficult to establish
and the usual way is to define some normal form (each process can be transformed into
a unique 6) normal form which reflects as well as possible the nature of the semantics, so
that two semantically equivalent processes have the same normal form.

This part of the work has been greatly inspired by [Hen88,Bro83,TV89]. The first
presents a general theory; the second includes a proof system for a failure semantics for
TCSP and the third for a failure semantics with multisets (bags). Complete proofs for
every result presented in this section can be found in [Ort90].

We first concentrate on finite processes, i.e. closed processes without recursive calls in
their syntactic definitions. Afterwards we extend the results to deal with recursion.

4.1 Finite processes

The main difficulty encountered when looking for the axiom system was defining an ap-
propiate normal form. Following the steps of Taubner & Vogler in [TV89] we introduce
new and simpler operators, to be able to eliminate the more complex operators from the
normal forms. Therefore, we will consider the following syntactic operator set:

~ = ~x u {B =>IB e/3+(A)} u {delay, delay*}

Def. 4.1 Ex tended T C S P t e r m P E F I N (~) :

P ::= stop I a -+P I B =~P I PFqP I PDP I PIIA I P\a I delay(P) I delay*(P)
[]

STo be accurate, unieity of normal forms is not required if the syntactic equivalence between the
different normal forms corresponding to a same process can be easily established.

422

The new prefix operator B ~ is similar to a ~ , but considering bags instead of single
actions, allowing us to eliminate the synchronizing operator. It is assumed that the
duration of bag B is just one instant, thus a new operator delay is needed to "delay" the
following process and to simulate longer durations. Process delay(P) waits one instant
before starting the execution of p , thus representing both the execution of internal actions
and the "passing of time". Notice how delay and B ~ reflect the temporal nature of the
seman~cs:

• B =~ represents one time unit in which B is observed,

• delay represents one time unit in which nothing is observed.

Moreover, B (in B =~) is executed immediately, so that a new operator, which expresses
the idea of no maximum parallelism, is needed: delay*(P) may wait any amount of time
before actually starting with the execution of P.

Now we are obliged to extend the semantic domain, because some of the new operators
do not preserve properties [P1]-[P8]. The new domain is (Sx, _<s):

Sx = {oh e V[ob verifies [P1]- [P5], [P6q}

[P6q (t,n) e T(ob) =~ (t,n + 1) e T(ob)

Props. 4.1 ($x,<s) is a C.P.O. []

Let Sp, Spl , . . . , Sp,, E Sx, the corresponding semantic operators are:

• SXop~Sp,,..., Spn] = Sop~Spl,..., Sp,,] for op E E1 - {\a}.

{<(t~,o),~)l~ e p ~ (z + - {B})} u {((t~,m),~)lm ~ IN+ ̂ r • n}
• 8 z B =~.[Sp] = O{(mov(tf, 1)+TB(B, 1),r)[{tf, r) • f (Sp)}

{mov(tf, 1)+TB(B, 1)ltf • D(Sp)}

If B is not immediately executed (first instant) the process "loses its chance" of
executing its first step and from then on, it cannot do anything but let the time
pass and refuse every bag. This anomalous behaviour is introduced in order to
preserve property [P6'], to make process stop be the unit of the external choice
operator, and to get the distributivity between both choice operators.

{ {((t~,0),r)lr • T~} U {(mov(tf, 1),r)l(tf, r) • F(Sp)}
• SXdelay[Sp] = {(tg,O) • D(Sp)} O {mov(tf, 1)ltf • D(Sp)}

{ {((t~,m),,')lm • IN ̂ v m ' = o..,~, ((t,, m'),,-) • F(Sp)}
• SXdelay.[Sp] = U{(mov(tf, m),r) lm • IN A trace(g) ¢ t~ A (g , r) • F(Sp)}

{mov(tf, m)lm • IN ̂ tf • D(Sp)}
Notice that delay*(P) represents a process which offers to the environment (external
choice) the possibility of delaying the execution of P as long as desired. Remember
also that in external choice the decision is taken only when the first externally visible
action starts. This idea is reflected on the first part of the semantical definition.

~The bag prefix operator is borrowed from [TV89]. A "delay" or "wait" operator appears in most
timed models like in [RR87,MT89],etc.

423

• s \al&l = {
{{t f \a,r U {B1,. . . , B,~})lr e P ~ (B ,)

m n/

AVnl,... ,n,~ e INm(tf, U{ U { Bi+Bj * B,}}} e f (Sp)}
i=1 j = 0

{ t f \a I 3t f ' : .A(tf') C {a} A tf.tf' e D(Sp)
V3{tl}idN+ : A(tl) = {a} A t f . tr. . . . t i E T(Sp)}

The hiding operator needs a small change due to the absence of property [P8]. The
new definition coincides with the old one in the domain S.

P rops . 4.2 Vop E P,~,SXop[Spl,...,Sp,] is well-defined, monotonic, and it preserves
properties [PII-[P5I,[P6']. []

Props . 4.3 Vop e B~ - {\a},SXop[Spl,. . . , Sp,] is continuous. []

Again, as happened for (S, <s), the hiding operator is not continuous in general, but
behaves well enough for guarded processes.

4.1.1 Basic terms

We consider a subset of TCSP extended terms:

Def. 4.2 Basic t e r m P E TBAS:

P ::= stop I B @P I PRP I POP I delay(P) I delay*(P)

[]

We will prove that every TCSP extended term can be transformed into a basic term
and every basic term into a normal form.

4.1.2 Proof system

The logic language for the proof system consists of extended TCSP terms plus a binary
relation =.s

From now on we consider three different identity symbols:

• = s represents semantical equality,

• = represents syntactical identity,

• = refers to the equivalence induced by the proof system.

By an abuse of notation we identify syntactic processes with its semantics, so that we drop
8 z [.] when the context is obvious. For instance we write P =s Q for Sz[P] = Sx[Q].

Tables i and 2 contain respectively the lists of axioms (At) and rules (A2) of the proof
system which allow for the transformation of any basic term into a normal form.

Axiom (D4) is like an "expansion" rule for the delay* operator. It expresses the fact
that delay.(P) represents a process which offers the possibility of starting P immediately
or waiting one instant before choosing again.

424

(A1)

(A3)

(A5)

(AT)

(i9)

(A10)

(DO)

(D1)

(D2)

(D2*)

(D3)

(D4)

(D5)

p ~ p = p

P~Q - QnP

Pn(qnR) =_ (PnQ)nn

PR(QOR) ~ (PF1Q)D(PRTI)

PDstop = P

(B ~ P) n (B ~Q) =- B ~(PnQ)

delay(stop) =- stop

delay(PnQ),.~ delay(P)~delay(Q)

delay(PDQ) =_ delay(P)DdeIay(Q)

delay*(PDQ) -~ delay*(P)Ddelay*(Q)

delay(delay*(P)) = delay*(delay(P))

delay,(P) = PDdelay(delay,(P))

delav,(delay*(P)) - delay*(P)

(A2) PDP = P

(A4) PDQ =_ QDP

(A6) PO(QDR) -- (PDQ)DR

(A8) PD(QilR) = (PDQ)•(PDR)

(All)

(DO*)

(B =~P)D(B ~Q) - B ~ (p n Q)

delay*(stop) -~ stop

Table 1: axiom set A1

(01) p _= p (02)
P = Q
Q - p

(03) P ~ Q A Q --- R (M1)
P = - R

P=_Q
B =~ P =_ B =~ Q

(M2) P1 -: Q1 A P2 -- Q2
PloP2 - QloQ2 (M3)

P1-- QI A P~ -~ Q2
P1DP2 -- Q1DQ2

P --- Q (M4,)
(M4) delay(P) =_ delay(Q)

p - Q

delay,(P) =_ delay*(Q)

Table 2: rule set A~

425

It would be nice to have also the following formula:

(91.) delay.(PrqQ) =_ delay*(P)ndelay*(Q)

Unfortunately this is false in general. However, we will need at least some restricted form
of it to complete our axiom system. Therefore, wewill investigate the grounds for its
invalidity. First of all we have the following lemma:

L e m m a 4.4 Let Spl , Sp2 E Sx: Sxldelay.(SpllqSP2)l <sSx[delay*(Spx)ndeIay*(Spz)].
[3

Moreover, it is easy to check that the falsehood of (DI*) comes only from failures with
empty traces. The conditions required to make it true are not trivial, and some previous
concepts and definitions are needed. These will also be useful for the definition of normal
forms.

4.1.3 Der ived ope ra to r s

The following derived operators are merely syntactic abbreviations. We define first two
families of delay operators:

Def. 4.3 Genera l de lay opera to r s delay(g) and delay*(g) with g E ~t:

delay(O, P) = P,

delay(g + 1, P) = delay(g, delay(P)),

delay*(g, P) = delay(g, delay*(P)).

Notice that delay(P) = delay(l, P) and delay*(P) = delay*(O, P). 1:3

Th~ks to axioms (A2), (A4), (A6) and (Ag) we can define D,~,P,, where I is any
finite index set and Pi E Sx for i E I:

V'qie~Pi = stop,

r-qi~joxPi = Pj [](r-qie1P~).

If I were allowed to be infinite, we would not need the delay* operator, as we could
represent it by [~>_.odelay(m, P). But, as it is wall-known, such infinite terms are un-
suitable, in general, within the framework of axiomatisation of algebraic processes.

Analogously we define OR~elPi, but now I cannot be the empty set:

OP~e{~}P~ = Pi,

OR/~jotPi = Pflq(OR~xPi) if I ~ 0.

Sin [Bro83,Hen88,TV89] inequation systems are considered. While we restrict ourselves to finite
processes, the results are in fact equivalent, but since it is possible, we consider more degant to work
only with equations. However when dealing with reeursive processes inequations will be unavoidable.

426

4.1.4 P r e n o r m a l form

As candidates for our normal form we are looldng for syntactic formulae which express
more clearly the internal structure (what is happening at each instant) of the processes
denoted by them.

Def. 4.4 We associate action bags to time instants and basic terms:

t imed bags : B T = B(A) x IN,

sets of t imed bags : CBT = 7~.~(BT),

bag-process pairs: BP = B(A) x TBAS ,

sets of bag-process pairs : CB7 ~ = ~'(BT~).

For each B T E CBT, the set of bags in B T is denoted by B(BT) (analogously for B P E
C~p). []

We will usually consider pairs of timed bag sets, where the first component refers to
delay operators and the second to delay*.

Def. 4.5 For each C = (el, C2) E CBT x CBT, we define:

t imed bags in C: BT(C) = C1 U C~,

- 1 if C = (0,~)
top t i m e : top(C) = max{tl(B,t) e C1 v (B,t + 1) e C2} otherwise

p ro jec t ion : I'j(C) = Cj, j = 1, 2.

0

As we will see, the top time spots the limit of changes in the activity of a process.
From the top time on, the process will maintain the same options until the first non-empty
action bag will be executed.

The above definitions can be generalized to sets of pairs:

Def. 4.6 Let C = {C~}i=l..n E 7~Y(CBT x CBT), then we define:

t imed bags in C: B T (C) = U BT(CI),
i=t..n

t op t ime : top(C) = max{top(Ci)}i=l..,,

pro jec t ion : Fj(C) = U Fj(C~), j = 1,2.
i<_i_<,*

n

A first step towards the desired normal forms are prenormal forms :

427

Def. 4.7 A term is in prenormal form if it is of form :

OR.(ca,v2)e C [[-l(B,t)eol delay(t,B ~ P(B,t))D[~](B,OeV2 delay*(t, B ~P(B,t))]

where C 6 79~'(CBT x CBT) and each P(s,t) is in prenormal form.
A prenormalform is said uni ta ry , when C consists of a unique pair of timed bag sets.
D

Notice that stop is in prenormal form.

Subprocesses P(B.t) depend only on B and t, but not on (Ca, C2). Therefore, a prenor-
mal form is completely defined by the pair (C,fp), where fp is a partial function which
associates a basic term to each timed bag:

P(B,O if (B,t) 6 BT(C)
fp(B, t) = _L otherwise

4.1.5 Expansion and dis t r ibut ion

Prenormal forms are too general to work with, because too many different prenormal
forms may correspond to the same process. Moreover, the combination of prenormal forms
with the internal choice operator not always can be transformed to another prenormal
form. In order to overcome these difficulties, we will define the concepts of expansion and
distribution.

Def. 4.8 Let (C, fp) be a unitary prenormal form with C = {(Ca, C2)} and top(C) =
K. For every m > K, a set of m + 2-tuples EX((C, fp), m) is defined which is called
expansion of (C, fp) until instant m:

EX((C, fp},m) = (D(O),... ,D(m + 1)} 6 P.~(CBP x . . . x CBP) (m + 1 times)

where D(j) = {(B,fp(B,j))I(B,j) e Ca} tO {(B,fp(B,t))lt < j ^ (B,t) e C=}.

When m = K we write EX((C, fp)). []

Expanding until instant m means developing the delay*(g) operators on delay(j) op-
erators for every j : g __< j < m plus delay.fro + 1). Thus C is decomposed in timing
groups D(t), t = 0..m + 1.

Def. 4.9 Let (C,fp) be a prenormal form with K = top(C). Two families of tuple sets
are defined:

Expansion : Vm > K, EX((C,fp}, m) = {EX((C, fp), m)}oe C.

When m = g we write EX((C, fp)).

Dis t r ibut ion : Vm = 0. .K+I, DSTR({C, fp), m) fi 79~'(CB79 × . . . × CB79) (K+2 times),

DSTR((C,Ip}, m) = {Do(O)}oe C x. . . x {Do(m-1)}oe C x { (Do(m) , . . . , Dc(K+I))}o ~

where EX((e, fp)) = (De(O),... ,Do(I f + 1)) for each C 6 C.

When m = K + 1 we write DSTR((C,fp)).

428

if (C, fp) is a distributed prenormal form.

(DI*) detay.((C,yp)) = Ol~vecdelay.((C, fp))

Let R = (P1 []delay(k, Q1))~(P2Odelay(k, Q2))

with Pi = E]0<j<k [:J(B,P)~c,~ delay(j, B ~ P)

(D6) R =. Pffq(Plndelay(k, Q2))rq(P~Odelay(k, Q1))

Table 3: distribution axiom and law

[]

Distributing until instant m means obtaining every combination of timing groups until
instant m. If top(C) = K we build tuples (D(0), . . . , D(K + 1)) where each D(i),O <_ i <
m belongs to some element of C, maybe different each time, but every D(i), m < i < K + I
belongs to the same element. Notice that DSTR((C,fp), 0) = Ex((C,fp)) .

Def. 4.10 A prenorraal form (C,fp) is said to be

expanded unti l ins tan t m (m _> 0) if top(C) = m, and (S, t) E F2(C) ==¢ t = m + l .

When ra = top(C) we say expanded.

d i s t r ibu ted unt i l ins tant m (0 < m < top(C)+l) i fDSTR((C, fp), m) = Ex((C,fp)) .

When m = top(C) + 1 we say dis t r ibuted.

13

We are now prepared to give the axiom corresponding to the distribution of the delay*
operator with the internal choice, and which should be included in the list A 1 of table 1.
We also include in A1 the distribution law, a family of axiom which allow for the trans-
formation of any prenormal form into a distributed one. These axioms appear on table 3.

From now on we write b P - Q, when the formula P = Q is provable in A1 U A2.

T h e o r e m 4.5 For every P, Q, R , . . . TCSP eztended terms, the axioms and rules in Ax U
A 2 are correct; i.e. F P =_ Q implies P =s Q. 13

429

4.1.6 Norma l form

A normal form is a prenormal form verifying some conditions.

Def. 4.11 C / s convex if it is non-empty and verifies:

1. A, B E C = = ~ A u B E C ,

2. A, D E C A A C B C D = = ~ B E C .

[]

Def. 4.12 A term is in normal form if it is in distributed prenormal form (C,fp) with
C convex and everyfp(B,t) in normal form. 13

We will give next some lemmas and propositions to transform any prenormal form
into a normal one. First lemma states the convexity laws, already presented in [Hen88]:

L e m m a 4.6

r'l

The following formulas are provable in A1 U A2:

(DV1) P n Q - PnQn(P[]Q)

(DV2) Prq(P[]Q[]R) = P[q(P[]Q)M(P[]Q[]R)

Next lemma states that in any prenormat form, C can be replaced by its convex closure
(CONV(C)).

L e m m a 4.7 t- (C,fp) - (CONV(C),fp).
P r o o f : We apply the convexity laws (lemma 4.6). []

L e m m a 4.8 Let P = PIIqP2, the following formulas are provable in A1 U A2:

(D V 3) (delay(e,B :*Pa)[]Q1)n(detay(e,B -

(delay(l, B ~P)[]Q1)N(delay(e, B ~P)t3Q2)

(DV3,) (delay,(g, B ~P1)[]Q1)M(delay,(e, B .P2)[]Q2) -
(delay,g, B P)[]Q1)n(delay,(e, B

The above rules are called expansion laws and are used to transform any prenormal
form into an expanded one. []

L e m m a 4.9 Let (C,fp) be a prenovmal form,

I I ! I 1. Vm > top(C),3(C ,fp) expanded until instant m such as ~- (C,fp) = (C ,fp),

I I 2. Vm = O..top(C) + 1, 3(C ,fp) distributed until instant m and expanded, such as
top((C',fp') = top((C, fp)) and ~" (C,fp) - (C',fp').

[]

We also must guarantee that the convexity closure preserves distribution.

430

L e m m a 4.10 / f (C,fp) is a distributed prenormal form, then (CONV(C),fp) is dis-
tributed too. []

A corollary of lemmas 4.9, 4.7 and 4.10 is given next:

C o r o l l a r y 4.11 Let (C, fp) be a prenormal form, there exists a normal form (C',fp')
such as (C , f p) -- (C ' , fp ' / . []

We can finally state the expected proposition:

P rops . 4.12 For each basic term P there exists a normal form (C,fp) such as ~- P =
(C,fp). []

4.1.7 P r o o f s y s t e m comple t enes s

In order to prove that the system is complete, we need to prove first that two semantic,ulty
equivalent normal forms are syntactically equivalent. 9

P rops . 4.13 Let (C',fp') be then (C',fp') implies , !C,fp) and normal forms, (C,fp) =s
~- (C,fp) --= (C ,fp). []

Combining propositions 4.12 and 4.13, we obtain the following theorem:

T h e o r e m 4.14 Let P, Q be basic terms, then P =s Q implies t- P - Q. []

4.1.8 T r a n s f o r m a t i o n of f ini te T C S P t e r m s in to basic t e r m s

The table 4 contains the axiom list As, which added to A1 t.J A2 allows for the transfor-
mation of any finite TCSP term into a basic one. We obtain then a proof system for finite
TCSP processes, which is correct and complete with respect to the denotational semantics
given in section 3. The more complex axioms are a consequence of the non-distributivity
of the synchronization and hiding operators with the external choice.

T h e o r e m 4.15 For any extended TCSP term P, Q, R , . . . and C, D E T~ the axioms in
A3 are correct. []

Props . 4.16 Any extended TCSP term can be transformed, by means of the axioms and
rules in A1, A2 and Aa into a basic term. []

We shall consider from now on that ~- P - Q means that the formula P _= Q is
provable in Az U A~ U As. We give next the last theorem of this part devoted to finite
processes, which is a direct consequence of proposition 4.16 and theorems 4.5, 4.14 axtd
4.15.

T h e o r e m 4.17 Let P, Q be finite TCSP terms, then P =s Q ¢~ ~" P - Q. []

9We cannot assert that they are syntactically identical, due to the fact that our normal forms are not
unique. We could have defined some order over the set of normal forms for a process, obtaining a unique
least normal form, but this is unnecessary.

431

(X) a -.-*P - delay*(O, Ba =~detay(d(a) - t, P))

(SO) stoP ll A stop -~ stop

(51) PIIAQ -- QIIAP

(S2) PIIA(QnR) - (PIIAQ)n(PIIAR)

(S3) detay(P) lla delay(Q) - delay(PIl~Q)

($4) Let P = [[--]BecB ::~PB] Ddelay(P') and Q = [[~EeDE =erQE] Ddelay(Q')
Pll~Q - [:]Br~=~rA(BeAE) ~(PBllAQE)

0
DBr~=B,B ~(P~ll~Q')

D

delay(P%Q')

($5) Let P --- delay*(E]BecB =)'PB) and Q = delay*(E]EeDE =~Q~), then

PllAQ -- delay*(Z]~r~=~f~(BeAE) ~(P~IIAQs)
[]

[lJsrA=B, B ~(PBI[AQ)
O

[I]Er~=B,E ~(Pll~#~))
(H0) stop\a -- stop
(m) (PnQ)\a - P\~nQ\~

(H2) d e l a y (P) \ a - delay(P\a)

(H3) Let C N Ba = 0, then

[E]B¢cB =#,PB[]deIay(P)] \a =_ [[-]BecB\a ~PB\a] [:]delay(P)\a
(H4) Let C N B~ ~ 0, then

[[~BecB ~eBDdetay(P)] \a - [E]Bec_I3 B\a =*'PB\a] Odelay(eRol%BecM~ PB)\a
(H5) Let C 13 B~ = 0, then

delay*([:]~cB =~P~)\a -- delay*([:]BecB\a =~PB\a)

(H6) Let C N Ba ~ 0, then

delay*(['-]B~cB =~ PB)\a = E]B6C_~.~ B\a =~ PB\a [3
delay(delay,([~ea_B~ B\a ~eB\a] ~Ol%~evnB P s\a))

Table 4: transformation axiom set A3

432

4.2 R e c u r s i v e processes

In order to deal with recursive processes we need their syntactic aproximations corre-
sponding to the semantic aproximations deduced from the fix-point theory. So as to work
with aproximations, we need to introduce some changes in the proof system above given
for finite processes. For one instance, it is no longer sufficient to deal with equivalences,
and some partial order between processes is needed. Consequentely a new symbol is intro-
duced (_), from which the syntactic equivalence (=) can be deduced. Another addition is
the syntactic equivalent to the least element of the semantic domain: the process constant
chaos.

4.2.1 S u p e r e x t e n d e d T C S P

The the new set of syntactic operators is ~x = ~= U {chaos}. We can maintain the same
specification space (Sx,<sl, where the semantics of chaos is defined as SXchaos[.] =
(.,~T, TT.T') (which is obviously well-defined, verifies [PI]-[P5] and IF6'], and is continu-
ous).

4.2.2 Syntac t i c aproximat ions

The semantics of a recursive process P is the limit of the sequence generated by unwinding
the recursive calls, and starting with chaos:

po = chaos,
p-+ , = P [p -] .

Syntactically each P= is a superextended TCSP term (P'* e FIN(~x)) .

Def. 4.13 The set of finite aproximat ions for process P is APX(P) = {P"ln e ~q}.
[]

4.2.3 N e w axioms and rules

We must include, on the one hand, the axioms concerning t he behaviour of chaos with
respect to the other operators (121); on the other hand, the rules concerning recursion
(122); and finally the rules justifying that _ is a partial order (123). The tables 5, 6 and 7
contain these sets respectively. Notice that the rules in A2 can be obtained from the rules
in 122. We shall write F= P _ Q when the formula P _ Q is provable in/"1 U 121 U 122 U 123.

4.2.4 Correctness of the new p roof sys t em

First of all we must confess that the new system is not completely correct, as axioms
(CH2), (CH4) and (CH5) are not correct. However "don't panic". As we are only inter-
ested in dealing with chaos in relation to. the finite aproximations for recursive guarded
processes, the inclusion of these "incorrect" axioms is justified by the fact that Pnchaos,
P[[Achaos and chaos\a have such a "chaotic" behaviour that it is feasible to identify them
with chaos when they appear in the aproximations. We shall formalize the concept of
partial cot'r~ctness, and we will see that by means of this concept we can prove the total
correctness of the system restricted to guarded TCSP processes. The rest of axioms and
rules are correct.

433

(A12)
(CH0)
(CH1)
(CH2)
(CH3)
(CH4)
(CHS)

PnQ E P

chaos E P

Pnchaos - chaos

P[:]chaos - chaos

delay,(chaos) - chaos

chaos[lAP = chaos

chaos\a = chaos

Table 5: axiom set ~1

(01')

(o3')

(M2')

(M4')

P E Q E P
p - Q

P E Q E R
P E R

P1E Q1A P: E Q2
P1V1P~ E QIRQ~

P E Q
dday(P) E dday(Q)

(02')

(MI')

(M3')

(M4*')

P = Q
P E Q E P

P E Q
B=c, P E B ~ Q

P1E Q1A P2 E Q2
P1DP2 E Q1DQ2

P E Q
delay,(P) E dday*(Q)

Table 6: rule set ~2

(R1)

(R2)

P[,~.P/~] E ~ . e

,,VQ E APX(P) : Q E R
P E R

Table 7: recursion rules f/a

434

L e m m a 4.18 Let P, Q , R , . . . be extended and guarded TCSP terms, then the axioms in
n2 U na U {(CH0), (CH1), (e l l4)} are correct. []

A family of semantic orders, based on the length of the observed traces, is introduced.

Def. 4.14 Let Sp E Sx and n E IN, we define:

F.(Sp) = {(t/,O} E F(Sp)lend(tf) -- n} U {(t/,r} E F(SP)lend(tf) < n},
D,~(Sp) = {tf C D(Sp)lend(tf) <_ n},
OB,~(Sp) = {F,,(Sp),D,~(Sp)}.

[]

Def. 4.15 Let Spl,Spa E Sx and n E1N: Slh <_n Sp= ~ OB,(Sp=) C_ OB,(Spl) . []

We shall write P < , Q when Sx[P] <~ Sx[Q]. These orders are only partial orders
which induce the corresponding equivalences =n between processes.

The relation between these new orders and the partial order <s is given by the following
lemma:

L e m m a 4.19 Let Spl,Sp2 E Sx, then Spl <_sSp2 ~ Vn E]N : Spl <_~ Sp:. []

L e m m a 4.20 Let P E CRECG(Ea), then Vn E IN : P =, P'~. []

L e m m a 4.21 (Par t ia l correctness) Let P, Q E CRECG(21): P" E Q ==~ P" <, Q.
P r o o f : As P is guarded it is easily proven that each occurence of chaos in P" is guarded
n times. The application of any axiom or rule in our present proof system preserves this
property. The application of correct axioms preserves gs, and consequently each < , too.
Whereas the application of "incorrect" axioms preserves _<,, too, because thay are only
applied under n guards. []

We can now prove the correctness with respect to guarded processes.

Props . 4.22 Let P, Q E CRECG(E1), then }-~ P E_ Q implies P<_sQ.
P r o o f : For every pn E APX(P) it is proved that pn _E P _ Q. The partial correctness
lemma 4.21 is applied and we obtain P~ gn Q. Therefore, by lemma 4.20 we obtain that
Vn E]hi : P _<~ Q. We conclude thanks to lemma 4.19. []

4.2.5 Completeness of the new sys t em

We shall start with the completeness with respect to finite terms. We only need to
"extend" all the results obtained before for finite TCSP terms, to extended TCSP terms.
For we introduce chaos in the normal forms.

Def. 4.16 Superbasic term P E S T B A S :

P ::= chaos] s top]B = ~ P [P M P I P Q P I d d a y (P) [delay*(P)

[]

435

Def. 4.17 A term is in supe rp renormal form if it is of any of the following forms:

• (C,fp) prenormatform with each fp(B,t) in superprenormalform,

• delay(t, chaos)D(C,fp) where (C,fp) is a prenormal form with each fp(B,t) in
superprenormal form and F2(C) = 9, and top(C) < t.

[]

The last conditions reflect the special nature of chaos: when it starts executing, then
everything else does not matter anymore. The next lemma states that these conditions
cast always be obtained:

L e m m a 4.23 Let P be a superextended TCSP term; in the new pro•f system the following
formulae are true:

1. if t <_ t', then delay(t, chaos)Ddelay(t', P) - delay(t, chaos),

2. delay(t, chaos)Ddelay,(t', P) =_ delay(t, chaos)D[-]t,<e<tdelay(g, P).
[]

Every normal form is a superprenormal form too. Superprenormal forms are deter-
mined by the instant t associated to the chaotic component (delay(t, chaos)), if it exists,
and by the set C and the function fp associated to the ordinary component. We use
the following notation: (t, C,fp). When a superprenomal form does not have chaotic
component (on the first level) we take t = cx3.

Notice that the previously defined concepts of expansion and distributivity do not
depend on the internal structure of the fp(B, t), but only on the "surface" of the prenormal
form. Therefore, both concepts and its corresponding results (like any prenormal form
can be expanded, etc), can be directly extended to superprenormal forms without chaotic
component ((0% C,fp)) and from these to the general ones, as any superprenormal form
can be written:

(t, C,fp) - delay(t, chaos)•(o•, C,fp)

Def. 4.18 A term is in supe rnorma l form if it is in distributed superprenormal form
(t, C,fp) with C convex and each fp(B,t) in supernormal form. []

Props . 4.24 For each superbasic term P there exists a supevnormal form (t, C,fp) such
as ~-= P - (t, C,fp). []

Props . 4.25 Let (t, C,fp) and (t', C',fp') be supernormal forms, then

(t, C,fp)<_s(t', C',fp') ==~ t% (t, C,fp) _ (t', C',fp')

[3

The following theorem is a corollary of propositions 4.24 and 4.25.

T h e o r e m 4.26 Let P, Q be superbasic terms, then P =s Q implies l-= P - Q. []

Props. 4.27 Any superextended and finite TCSP term can be transformed into a super-
basic term. []

436

4 .2 .6 Semant ic aproximat ions

In order to prove the completeness with respect to recursive (guarded) processes, we will
use the concept of syntactic aproximation (APX(P)). Some way of "measuring" the degree
of semantic aproximation for these syntactic aproximations is needed. To this purpose
we define a second family of semantic orders, which depend on the number of instants in
which visible actions are executed l°. First of all we count the number of non-empty steps
in a trace:

Def. 4.19 For each t f E TT.7:, the number of non-empty steps in tf is defined by
st(tf):

st((t , o)) = o,
st(if) if B = B ~

st(tf+TB(B, end(tf) + 1)) = st(tf) + 1 if B ~ B$

[]

We need observation sets with restrictions on the number of steps of the contained
traces.

Def. 4.20 Let Sp E Sx and n E IN, we define:

Fn(Sp)

D"(Sp)
OB"(Sp)

= {(tf, O) e F(Sp)[st(tf) = n A trace(tf)(end(tf)) ~ Be}
U{(tf, r) E F(Sp)lst(tf) < n},

= {t f E D(Sp)lst(tf) < n A trace(tf)(end(tf)) ~ B$},
= (F~(Sp),D"(Sp)).

[]

The corresponding semantic orders are defined:

Def. 4.21 Let Spl , Sp2 E SX and n E ~ : Spl ~n ,_pOp 2 ~ OBn(Sp2) C OB"(Spx). n

L e m m a 4 . 2 8 Let Spl,Sp: E Sx, then Spl <_sSp2 C~ Vn E lN : Spl <_" Sp 2. rn

We shall write P _<~ Q when Sx[P] <'~ Sx[Q].

L e m m a 4.29 Let P be a finite supereztended TCSP term, and Q a guarded TCSP term:

P<sQ --~ 2n E IN : P<_sQ"

P r o o f : We first prove that Vn E]N 3rn~ : P _<~ Q'~". As P is syntactically finite, there
exists some instant when every computation of P reaches stop or chaos. In both cases,
from that instant on, OB~(P) is constant, and thanks to lemma 4.28 we can coffclude the
proof. []

Theo rem 4.30 (Completeness and correctness for guarded T C S P processes) .
Let P, Q E CRECG(EI) , then P<sQ ¢==~ ~-~ P E_ Q
P r o o f :

1°The above defined orders refering to the trace length are insufficient, due to the relation between
hidden actions and the delay operators.

437

1. Correctness (¢==) is proven by proposition 4.22.

2. In order to prove the completeness (==#), take P' E APX(P) then P'<sP<_sQ. By
lemma 4.29 there exists Q~ E APX(Q) such as P~<sQ ~, and by propos.4.26, we have
that F= P' E_ Q'. Therefore, for any Q' E APX(Q) it is true that P' E_ Q' E_ Q, and
by rule (R2) we have that F~ P E Q.

1:3

5 R e l a t e d a n d F u t u r e W o r k

We have presented a timed model suitable for real-time systems, where time is explicitely
expressed by providing a global clock, so that we can see what happens at each instant
and observe how the processes evolve in time.

The model induces a denotational failure semantics with divergences for TCSP pro-
cesses, for which we have provided a correct and complete proof system. The view is
completed by the operational approach presented in [Ort91].

Among the other existing timed models mentioned in the introduction, the most re-
lated and similar to ours is Timed TCSP [RR87], which was largely commented and
compared with Timed Observations in our first work [OdF90] (a brief comparison with
other timed models can be found there too and in [Ort90]). Schneider provides in [Sch90]
a proof system for Timed TCSP, but his approach is very different to ours, as he is con-
cerned with the properties of the behaviours of the processes, so that the proof system
works on the basis of predicates over semantical objects instead of directly manipulating
processes.

Algebraic and operational-oriented timed models like [NRSV90,QAF89,MT89,HR90,
BB90,Yi90] include more or less complete sets of equational laws, but as they do not
consider denotational semantics, and they are more concerned with equivalences derived
from bisimulations and the like, they are in general far related to our work on the proof
system. Still, we would like to point out some similarities that we have found in [MT89],
although this work was known to us well after our proof system was completed. Their
approach is a timed extension of CCS [MilS0]. Consequently they do not distinguish
between internal and external non-determinism, simplifying greatly the set of equational
laws and the corresponding normal forms. Actions ~re instantaneous and concurrency
is expressed by interleaving. The passing of time must be exptidtely stated by means
of a delay operator (t).P, which is equivalent to our delay(t, P). Although their prefix
operator assumes that the prefixed action is immediately executed, they include a special
delay operator ~.P, which is equivalent to our delay*(P), thus our prefix operator can be
similarly defined as in axiom (X) (in table 4). Another difference is that their deadlock
process 0 cannot witness any passage of time (unlike stop), but we have that stop is
equivalent to ~.0. Therefore, despite of the many differences, it is interesting to constate
that most of the axioms stated there have a corresponding axiom in our proof system, and
that the normal forms that they use are quite related to our normal forms (if we ignore
the initial part corresponding to the internal choice).

Although the step-failure semantics presented in [TV89] is not a timed model, we
found there many similarities with Timed Observations, so that it was a great help to

438

refine and improve our already conceived and developed model. Moreover, the proof
system presented by Taubner & Vogler was the source of inspiration and the starting
point for the present work.

As pointed out in [OdF90,Ort90], the model studied in this paper provides a too
liberal treatment of time, inadequate to specify real time processes with time-outs and/or
maximum parallelism requirements. Nevertheless we already introduced there (in the
above cited works) two extensions of the model to cope with these features, and although
more sophisticated (specially the second one) they are based on similar ideas to the original
model. Therefore, several of the formal problems related to the future axiomatisation of
these modified versions are already solved by the results obtained in the present work,
so that the presented proof system can be taken as a basis for the development of the
corresponding proof systems for the other two versions.

6 Acknowledgements

We thank Prof. K. Indermark (Lehrstuhl fir Informatik II / RWTH-Aachen) for his
support and kind hospitality. Thanks also to Paz for her help.

R e f e r e n c e s

[Azc891

[BB90]

[BC881

A. Azcorra. Modelado Formal de Sistemas SCncronos. PhD thesis, ETSI
Telecomunicaci6n, Univ.Polit6cnica de Madrid, 1989.

J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Technical
Report, CWI/Amsterdam, 1990.

G. Boudol and I. Castellani. Concurrency and atomicity. TCS, (59):25-84,
1988.

[BRS5I S.D. Brookes and A.W. Roscoe. An improved failures model for communi-
cating processes. In Pittsburgh Seminar on Concurrency, Springer Verlag,
1985.

[Bro83]

[GB87]

[HBR81]

[Hen88]

[HR90]

S.D. Brookes. A Model for Communicating Sequential Processes. PhD thesis,
Oxford Univ., 1983.

R. Gerth and A. Boucher. A timed failures model for extended communicating
processes. In ICALP 87, Springer Verlag, 1987.

C.A.R. Hoare, S.D. Brookes, and A.W. Roscoe. A Theory of Communicat-
ing Sequential Processes. Technical Report, Programming Research Group /
Oxford Univ. (UK), 1981. Tech. Monograph PRG-16.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

M. Hennessy and T. Regan. A Temporal Process Algebra. Technical Report,
University of Sussex (UK), 1990.

[KSdR*85]

[MilSO]

[Mi183a]

[Mi183b]

[MT89]

[NRSVg0]

[OdF90]

[OH86]

[01d86]

[Ort90]

[Ortgl]

[QAF891

[RR871

[Sch90]

439

R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun-
Kumar. Compositional semantics for real-time distributed computing. In
Conference on Logics of Programs, Springer Verlag, 1985.

R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer Verlag,
1980.

G.J. Milne. CIRCAL and the representation of Communication, Concurrency
and Time. Technical Report, Dept.of Computer Science / Univ.Edinburgh
(UK), 1983. CSR 151-83.

R. Milner. Calculi for synchrony and asynchrony. TCS, (25):267-310, 1983.

F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems.
Technical Report, Dept.of Computer Science / Univ.Edinburgh (UK), 1989.
ECS-LFCS 89-104.

X. Nicollin, J.L. Pdchier, J. Sifalds, and J. Voiron. ATP-an algebra for timed
processes. In M. Broy and C.B. Jones, editors, TCP-Working Conference on
Programming Concepts and Methods, North-Holland, 1990.

Y. Ortega-Mall6n and D. de Frutos-Escrig. Timed observations: a semantic
model for real-time concurrency. In M. Broy and C.B. Jones, editors, TCP-
Working Conference on Programming Concepts and Methods, North-Holland,
1990.

E.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for commu-
nicating processes. Acta Informatiea, (23):9-66, 1986.

E.R. Olderog. Process theory : semantics, specification and verification. In
Advanced School on Current Trends in Concurrency, Springer Verlag, 1986.

Y. Ortega-Mall6n. En Busca del Tiempo Perdido. PhD thesis, Fac. CC.
Matem£ticas, Univ.Complutense de Madrid, 1990.

Y. Ortega-Mall6n. Timed Observations as Operational Semantics. Technical
Report, Dept. Inform£tica y Autom£tica, Univ.Complutense Madrid (Spain),
1991. 91-1.

J. Quemada, A. Azcorra, and D. Frutos. A Timed Calculus for LOTOS. Tech-
nical Report, DIT, E.T.S.I. Telecomunicaci6n / Univ. Politdcnica de Madrid
(Spain), 1989.

G.M. Reed and A.W. Roscoe. Metric spaces as models for real-time concur-
rency. In Mathematical Foundations of Programming Language Semantics,
Springer Verlag, 1987.

S. Schneider. Correctness and Communication in Real-Time Systems. PhD
thesis, Oxford University Computing Laboratory (UK), 1990.

[SM811

[TV891

[Yi90]

440

A. Salwicki and T. Muldner. On the algoritmie properties of concurrent pro-
grams. In Logic of Programs 1979, Springer Verlag, 1981.

D. Taubner and W. Vogler. The step failure semantics and a complete proof
system. Acta Informatica, (27):125-156, 1989.

Wang Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, CONCUR'90, Theories of Concurrency: Unification and
Eztension, Springer Verlag, 1990.

