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Abstrac t  

Timed Observations is a failure and divergence semantic model for concurrent 
processes, suitable for real-time systems. Actions are not instantaneous but need 
some time to complete their execution, and true concurrency is expressed by action 
multisets (bags). Time is global and discrete. 

The model is applied to TCSP, obtaining a denotational semantics, for which a 
complete proof system is developed. 

1 I n t r o d u c t i o n  

In [OdF90] a timed failure semantic model for concurrent processes was presented. In that 
model actions performed by a process are not instantaneous, but need a certain amount 
of time to complete. 

Following the ideas of Milner's [Mil80], that a concurrent process is not an isolated 
item, but part of a whole system of interacting machines and users, what is interesting 
about a process is its external behaviour, i.e. what an external observer (an user or another 
process) can notice. In our model (Timed Observations), the observer not only notices 
the visible actions performed by the process (traces), but he also relates each action to 
the instant when it is executed (timed traces). Moreover, he is an active observer and 
tries to guess the future behaviour of the process by asking it to perform some actions 
from a set (refusals as in [BR85]). We are also interested in differentiating divergence 
(the possibility of engaging in an unbounded sequence of internal actions) from deadlock 
(doing nothing). Thus we make the idealised assumption that  divergence is observable 
(of course, divergence is not computable in general). Therefore this model has a timed 
failures divergences semantics. 

The model induces a specification-oriented denotational semantics in the sense of 
[OH861 which is applied to TCSP [HBR81]. 

*Part of the work was developed during a two-month sojourn of the first author as collaborator in the 
RWTH-Aachen (Lehrstuhl fiir Informatik II) (FRG) and a short visit of the second author to this same 
center. 
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We have notice of several research groups working on timed models. Some of them 
have produced denotational or compositional semantics like [KSdR*85,GB87,RR87]; some 
others have developed timed process algebras or calculi, like [NRSV90,QAF89,MT89, 
HR90,BB90,Yi90] among others. In the present paper we try to combine both approaches 
and give an equational proof system for the denotational semantics obtained for TCSP 
processes. This proof system is proven to be correct and complete. 

The paper is structured as follows: section 2 introduces the basic notions and defini- 
tions in the model. In section 3 we describe the corresponding denotational semantics for 
TCSP-processes. In section 4 we present the proof system. 

2 T i m e d  O b s e r v a t i o n s  

The model given here is slightly different from the one presented in [OdF90]. The intro- 
duced changes are mainly technical, and arose when developing the proof system. Next 
we give its main concepts and definitions. The interested reader is referred to [OdF90] 
and mainly to lOft90] for extended explanations, and complete proofs of the results given 
in this section. 

2.1 Action duration 

Let us start defining the kind of things we can observe in a process. For we fix the set 
of actions which the processes may perform: the finite alphabet A.  These actions are 
considered to be indivisible but not instantaneous, i.e. we assume a duration function 
d : A ~ IN + (where IN + represents the non-zero integers) which associates to each 
action the time needed to complete its execution (in temporary units). As actions are no 
longer instantaneous, hidden actions do not disappear completely from the trace, because 
its duration time will remain reflected. 

2.2 Action Bags 

As we are interested in a general model for concurrent processes, we need some way 
to reflect the possibility of having several actions performing simultaneously. The most 
natural way to express this 1, is to consider action bags (or multisets). One important 
restriction is that bags are always finite, corresponding to the fact that the execution of 
an infinite amount of simultaneous actions is unrealistic. Sets (and multisets) appear in 
several models for concurrent processes like [Mi183a,Mi183b,TV89,Azc89]. 

Def. 2.1 The set of bags over an a lphabet  ,4 is B(A)  = {B  : ,4 .u ~ IN}. 

Let a E A,  some interesting bags and bag sets arc defined: 

e m p t y  bag: B$~fVa e ,A, B~(a) = O, 

1Classical theories for concurrency are based on inlerleaving semantics where concurrency is reduced 
to sequentiality + non-determinism. This is derived fl'om the fact that on each process-step only one 
action is executed. However, more recent works on this topic tend to consider concurrency as a language 
primitive, giving way to what is known as true concurrency [BC88]. 
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bag gene ra t ed  b y  a: Ba~fVb E A, B~,(b) : { 
0 if b # a 
1 if b = a  

n o n - e m p t y  bags: B+(A) = B(.A) - {B~}, 

bags containing a: B~(A) = {B e B(A)[B(a) > 0}, 

bags different  f rom B,: B_,(A) = B(A) - {Ba}. 

When the alphabet is understood, it may be omitted obtaining B,B+,Ba, . . . .  [] 

2.2.1 Opera t ions  on bags 

When defining the semantics we will need some operations and definitions on action bags. 

Let a e A; A C A; B, B1, B2 E B(A); n E 1N. 

Alphabe t :  A(B) = {a e A]B(a) > 0}. 

Size: [B] = ~.~AB(a). 

Par t ia l  order:  BI <_BB~fVa E ..4, Bl(a) <_ B2(a). 

Addition: B~+BB2~fVa E A, B~+BB2(a)%fBI(a) + B2(a), 
As an abbreviation we define, 0 * B = B~, 

(n + 1)* B = n* B+BB. 

B(b) if b # a  
Hiding:  B\aa=~Vb E A, B\a(b) = 0 if b = a 

B ( b ) i f  b e A  
Rest r ic t ion:  B[A%fVbEA,  B[A(b)= 0 if b • A  

Synchronizat ion:  it is only defined if B1 [A = B2 rA, 

def  I BI@AB2=Va E A, BI@AB2(a) = B l ( a )  if a E A 
Bl(a)+B2(a) if a C A  

Both bags must coincide on the actions of ~he synchronization set A, but a pair of 
synchronized actions is reduced to a unique action. 

We will use the action bags to generalize the notion of failure [BR85], which embodies 
traces and refusals. 
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2.3 T i m e d  t races  

Classical traces reflect some causal order on the executed actions. Nevertheless this order 
is insufficient for the study of real-time system behaviour. As a more absolute time notion 
is needed, we relate each occurence of an action to the instant when it is produced (more 
exactly to the instant when it starts, as actions are not instantaneous), obtaining timed 
traces. Actions can be performed from instant 1 on (instant 0 represents the initial state 
of the process). 

Def.  2.2 The set of t imed  t races  is T T  = {t : IN+ , I3}. 
An  special and useful trace is the e m p t y  t race  tz~fVi E IN +, t#(i) = B#. [] 

The empty bag now plays an important role, as it represents the passing of time with 
the process doing no externally visible action. 2 

Def. 2.3 For each t C :T?F, we define 

• its first non-empty time instant by inf( t f):  inf(t¢) 
inf(t) 

• its last non-empty time instant by sup(t f):  sup(t$) 
sup(t) 

I"1 

= 0, 
= min{nlt(n) # B~},t ¢ t#. 

O, 
= max{nl t (n  ) # B¢},t # t~. 

From a practical point of view, processes can only be observed during finite time 
intervals. As a consequence we have the following definition: 

Def. 2.4 The set of finite t imed  t races  is 7":T~ = { ( t , n ) l t  e T T  ^ n > sup(t)}. 
For each t f  = (t ,n) e TT".~ we define: tracc(tf) = t and cnd(t f )  = n. [] 

Notice that end(tf)  = 0 implies trace(tf) = re. The trace (re,0) corresponds to the 
initial state of the process, when the observer has not yet started to observe. 

2.3.1 Ope ra t i ons  on t races  

Let A C_ ¢4;n E IN+;B E/3;t  E T T ; t f ,  ta,t2 E TT~' ,  we define: 

Alphabet: A ( t f ) =  U .A(trace(tf)(i)). 
l<_i<end(tf) 

t aef{ Vi E IN+, trace(tl+Tt~)(i) = trace(tl)(i)+Btrace(t2)(i) 
Adding  t races:  t l+T 2= _ end(t1+Tt2) = max{end(t1), end(t2)} 

~Unlike in [TV89] where empty bags are only included to facilitate the definition of the synchronizing 
operator, but they can be arbitrarily added or eliminated. 
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Adding a bag to a trace: 

{ { trace(tf)(i) 
tf+Ts(B,n)~f Yi E lN+,trace(tf+TB(B,n))(i) = trace(tf)(i)+BB 

end ( tf +Ts ( B , n)) = max{ end ( tf ), n} 

if i ~ n  
if i = n  

def  We define the trace including only one action: t,,,~ = trace((t¢, 0)+TB(B~, n)). 

Moving along time: 

{ { trace(tf)(i-n) if i > n  
mov(tf, n)~f Vi E lN+,trace(mov(tf, n))(i) = B~ if i < n 

end(mov(tf , n)) = end(if) + n 

Concatenation: trt2~f tl+Tmov( t2, end(t1)). 

St re t ch :  Stretch( tf) 3, 

Stretch(t~, n) = {(t~, m)lm > n}, 

Stretch((t, n)+TB(B, n + 1)) = 
~T~ m {t f+Ts  Ek=l(Bk,nk) Ek=l Bk = B A nk > end(tf) + 1 A tf E Stretch(t,n)}. 

Actions in a bag may be "stretched" and executed at different time instants. The 
only restriction for it is to keep the relative order between bags in the original trace. 

Vi e ~l +, trace(tf\a)(i) = trace(tf)(i)\a 
Hiding: t f \ ~  ~d(tf\~)= ~d(tf) 

R e s t r i c t i o n  to  an action set :  tf [A~ r { Viend(tfE IN +,r A)trace(tf= end(tf)[A)(i) = trace(tf)(i) [A 

{ { trace(tf)(i) if i<_n 
In i t ia l  in terval :  tf[nd~ f Vi E lN+,trace(tf[n)(i) = B~ if i > n 

end(tf In) = n 

Synchronization: it is only defined for traces verifying t l [A = t2 [A. 

tl~At2de.f ~ Vi E IN +, trace(tl~At2)(i) = trace(tl)(i)~Atrace(t2)(i) 
end(tleat2) = end(h)(= end(t~)) ( 

Operators on finite timed traces can also be applied to non-finite timed traces. 

SThis operation is borrowed from [TV89]. 
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2.4 T i m e d  fai lures 

Failures consist on traces plus a refusal set. A refusal is a finite set of non-empty action 
bags. These sets can be empty, but empty bags are not taken into account, because 
refusing the empty bag means that the process refuses to do nothing, but our model 
supports "no maximum parallelism" [SM81], i.e. actions can arbitrarily delay its execution, 
so that every process can always choose to let the time pass doing nothing! We should 
point out that this model is a general framework for timed processe, and that it can be 
convenientely modified to meet other desired timing requirements, like it was done in 
[OdF90], where two versions were presented: one introducing time-outs and the other 
requiring internal actions to be executed as soon as possible. 

Def.  2.5 The set of refusals is 7~ = {r E P~-(B+)). n 

Def. 2.6 Let rl,r2 E T~ we define its synchronizat ion:  
rlSAr2de----fT~J:({B ~ /~+IVBI, B2 : B = BI(~AB2 ~ B1 E rl V B2 G r2}). D 

Def. 2.7 The set of t imed failures is .~T  = ( ( t f ,  r)l t  f E TT.T" A r G T~}. 
For each f = ( i f , r )  E 3:T we define: T ( f )  = tf  and R ( f )  = r. 0 

2.5 Divergence 

A process is said to diverge when it is engaged in an unbounded sequence of internal 
actions. The divergence in our model is not catastrophic; i.e. the feasibility of divergence 
is not necessarily permanent, it may disappear as the process evolves by performing further 
actions, i.e. by choosing a non-diverging path. Therefore we do not identify a possibly 
diverging process with chaos (the process which has every possible behaviour). 4 

Obviously it is very convenient to be able to distinguish a never diverging process from 
one which has this possibility. Therefore, we suppose that our notion of observer is very 
powerful, and the possibility of divergence in a process can be externally detected. 

2.6 T i m e d  observat ions  

Putting all the above concepts together, the observable behaviour of a process consists 
of a timed failure set plus a divergence set (timed traces which can be extended with an 
infinite sequence of internal actions). 

Def. 2.8 The set of t imed  observat ions  CO is: 

0 = { (F ,D) IF  C .~'T A D C TT.T'A D C_ T(F)} 

For ob = (F, D) E 0 we define: F(ob) = F, D(ob) = D and T(ob) = T(F(ob)) .  0 

4Brookes proved in [Bro83] that the identification of divergence with chaos is necessary for the sake of 
the continuity of the hiding operator in failure semantics, due to the instantaneous nature of its actions. 
As our actions are not instantaneous, it is possible, as we will see later, to define a sound semantics for 
recursive guarded processes, without such restrictive technicalities. 
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2.7 Specifications 

The notion of specification [OH86,01d86] is useful for the design and development of 
concurrent programs. We start with a specification Sp which denotes a set of behavioural 
observations that we expect in the bchaviour of the program we are looking for. We say 
a program P is correct with respect to Sp (P sat Sp), if all the behavioural observations 
of P axe within Sp. 

In our model specifications are timed observations (Sp E O) with some restrictions. 
To each program P we associate a specification SIP],  so that P sat Sp when Sp~sS[P],  
being ~s some paxtial order over O. 

Def. 2.9 We define the specification space: IS, ~s/,  where the set of  specifications 
is S = { ob E Olob verifies [P1] - [PS]} is and the part ia l  o rde r  over  t imed  observa- 

t ions is obl<_sob2~fF(ob2) C_ F(ob~) A D(ob2) C D(ob~), for obl, ob2 E O. 

• [P1] 

• [P2] 

• [P3] 

• [P4] 

• [P5] 

• [P6] 

• [P7] 

• [PS] 

D 

(t,, O) 6 T(ob) 

(tl, nl)-(t2,  n2) 6 T(Sp) =~ (tl, nl) 6 T(Sp) 

(t,n) e T(ob) A r e n =~ 
(3B e r: (t, n)+TB(B, n + 1) e T(ob)) V ((t, n), r) e F(ob) 

(tf, r) e F(ob) A r' C r =~ (tf, r') e F(ob) 

tf e D(ob) =~ Vm > sup(tf) : tfrm E D(ob) 

(tf, r) e F(ob) A tf' e Stretch(g) ~ (tf',r) e F(ob) 

tf E D(ob) A tf' E Stretch(tf) ~ tf' E D(ob) 

B<BBt A (tf, r O {B}) e F(ob) =~ (tf ,r U {B,B'}) E F(ob) 

Props.  2.1 (S, <s) is a Complete Partial Order (CPO}. [] 

3 Semantics of TCSP-processes 

In the previous section we have only given a specification space suitable for defining 
denotational semantics, but we still must provide, for each syntactic operator in the 
programming language, a continuous operator over this specification space. 

We consider the following set of syntactic operators for TCSP-processes: 

~ = (stop} U {,~ ---*1,~ ~ X}  U {n, D} u {IIAI A C_ .A} U {\,,1 a ~ 4 }  

Def. 3.1 A TCSP-process  is a recursive term over E1 (P e REC(~Jl)): 

P ::= stop ] a ---~P [ PFIP I p n p  [ P][AP [ P\a [ ~ [ #~.P 

where ~ belongs to some process identifier set Id. [] 
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Only recursive closed processes CREC(E1) (without free identifiers) are considered. 

We now give the semantic operator associated to each syntactic operator. The resulting 
specification has two component% the first one expressing the timed failures and the 
second, the divergences. Let Sp, Spl, Sp a 6 S, 

{(( t , ,m),r) lm e IN A r e T~} 
1. S s top[  " ] = 

f 
2. Sa 

~[Sp] = I {(t,,,~,m)ln 6 1N + A 
[ u{(t.,o, n~). ty In e 

where nd= n+d(a) - 1. Notice how 
So long as a does not start, any bag 

{((* , ,~) , r ) l~  e ~ A r e ~'a:(B+_~)) 
U{((t,,,~,m),r)ln 6 IN + A n <_ m < nd A r E Tl} 
U{((t,~,.,nd). tf, r)ln 6 IN + A (tf, r) 6 F(Sp)} 

n < m < n d  A (tO, 0) 6 D(Sp)} 
IN + A tf 6 D(Sp)} 

action a may start its execution at any instant. 
except from B, will be refused. 

a. s n i & ~ , & d  = [ F(Sp~) u F(Spa) 

t D(Spl) U D(Spa) 

. 

{( ( t , ,m) ,r )  6 F(Sp1)ClF(Spa)} 
S= [SPx, Sp=] = U{(tf  , r) e F(Sp~) o F(Sp=)ltraee(tf) # *,} 

D(Spl) U D(Sp2) 

{ (tfl(~A~f2 , r} ](~fl , rl} e F(Spi),  i = 1, 2 A r 6 rll~)Ar2} 

5. S l la[Sp , ,Sp  d = {ff,eatf2t ( G  e D(Spx) a g2 e T(Sp2)) 
V(tf I 6 T(SpI) A t/2 6 D(Sp=))} 

{ {(t/\~,~ u,-')t<tf,~) ~ F ( & )  a r' ~ ~'I(So)} 
s. s \ ~ [ s d  = {ty\~l 3tf '  : A(ty') c_ {a} a ty.tf' ~ o ( & )  

V3{ti}ieiN+ : A(*i) = {a} A t f . t r . . . . t i  6 T(Sp)} 

Props .  3.1 Vop 6 ~x,Sop~Spl,...,Sp,,] is well defined (6 0),  monotonic, and it pre- 
serves properties [P1] - [P8]. [] 

Props .  3.2 Vop 6 ~1 - { \ a } , S o p [ S p l , . . .  ,Spa I i8 continuous. [] 

The hiding operator is not continuous on the whole specification space, due to the 
fact that we cannot distinguish between the execution of a unique hidden action and the 
simultaneous execution of several of them, as the time needed for it is the same (but this 
has nothing to do with the identification of divergence with chaos). 
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E x a m p l e  3.1 Let Jt = {a, b} with d(a) = d(b) = 1. We define the process 

Q = a ~ b  --*stopll~b}Q 

This process can perform any amount of a actions, but it never performs any b. Now we 
consider the process sequence {Qn}ne]N where 

Qo = chaos 5 
Q,, = a ~ b  ~stopIl{b}Qn_l 

Thus for each process Q,,-1 at least n a actions are executed before performing b. 
If we define X = {S[Q,l} ,e~r  , then X is a directed set and lub(X) = S[Q I. However, 

when applying the hiding operator we obtain S\aI lub(X)]  = S\a[Q ] # lub( {S\a[Q.]} ). 
For consider the trace tf  = (t2.b, 2), then Vn E IN: tf  E T(S\a~Q,~] ) but tf  ~ T(S\a[Q]) .  

[] 

3 . 1  G u a r d e d  p r o c e s s e s  

If we restrict the dynamic process generation by requiring that every recursive call is 
preceded by the execution of at least one action, then in a bounded time interval we will 
obtain a bounded amount of parallel processes. We will call this class of processes guarded 
processes. 

Def.  3.2 Wel l -def ined  express ion  E: 

E ::= stop l a - - * E I E M E  I E D E  I Z i l a Z l Z \ a  I~ I#~ .PG 

G u a r d e d  process  P G  E RECG(~I ) :  

P G  ::= stop l a ~ E  I PGrqPG I PG[]PG I PGI[APG I P G \ a  I #~.PG 

o 

In distinction to untimed models, the hiding operator does not affect the guards in 
processes, as the guard is the duration of the action and not its name. This implies, in 
particular, that  a guarded process may diverge. Take for instance: (#~.a ---~ ---~stop)\a. 

The hiding operator is well-behaved (on the limit) when dealing with guarded pro- 
cesses. This is expressed by the following proposition: 

P rops .  3.3 Let a E RECG(Ex)  be finite and with only one free variable. I f  X ,  = 
{Z(.l_s)},>o, then fix(f,)  = lub(X,).  

(Ira 6 RECG(Y]I) has only one free variable, then SIal] represents a function between 
specifications denoted by f~ : S , S.)  [3 

P r o o f  : the basic idea of the proof is that no recursive guarded process can perform 
infinitely many simultaneous actions (in a finite time). This is formalized in the following 
lemma: 

5The semantics of chaos is the bottom of the specification space: I s  = ( IT ,TT~) .  
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L e m m a  3.4 I ra  E RECG(~I)  is finite and with only one free variable, 
Sp e S, UT(f~(Sp))  is bounded in every time instant i e IN+: 

n>_i 

Vie ~+ 3k, = max{It(i)l,t e UT(:f~o(Sp))} 
n>i 

with each iteration of the process we bound the size of the bags at one more instant. 

then for each 

[] 

4 P r o o f  S y s t e m  

A denotational semantics defines the meaning of each process and induces a natural 
equivalence between processes: P and Q are equivalent iff they have the same semantics. 

If we are really interested in this equivalence relation, we could establish it, at least in 
the finite cases, by computing the corresponding denotational semantics and comparing 
them. But it is clearly preferible to count on some indirect procedure which allows us to 
make such decisions without leaving the syntactic level in which processes are given. Thus 
we are interested in having some collection of algebraic laws which allows us to establish 
any valid equality. This is called a complete and correct proof system. Correct in the 
sense that every derived equality must be semantically valid, and complete in the sense 
that every semantically valid equality must be derivable by the system. 

In order to prove that a system is correct it is sufficient to prove that every axiom and 
rule in the system is correct. Completeness of the system is more difficult to establish 
and the usual way is to define some normal form (each process can be transformed into 
a unique 6) normal form which reflects as well as possible the nature of the semantics, so 
that two semantically equivalent processes have the same normal form. 

This part of the work has been greatly inspired by [Hen88,Bro83,TV89]. The first 
presents a general theory; the second includes a proof system for a failure semantics for 
TCSP and the third for a failure semantics with multisets (bags). Complete proofs for 
every result presented in this section can be found in [Ort90]. 

We first concentrate on finite processes, i.e. closed processes without recursive calls in 
their syntactic definitions. Afterwards we extend the results to deal with recursion. 

4.1 Finite processes 

The main difficulty encountered when looking for the axiom system was defining an ap- 
propiate normal form. Following the steps of Taubner & Vogler in [TV89] we introduce 
new and simpler operators, to be able to eliminate the more complex operators from the 
normal forms. Therefore, we will consider the following syntactic operator set: 

~ = ~x u {B =>IB e/3+(A)} u {delay, delay*} 

Def. 4.1 Ex tended  T C S P  t e r m  P E F I N ( ~ ) :  

P ::= stop I a -+P I B =~P I PFqP I PDP I PIIA I P\a  I delay(P) I delay*(P) 
[] 

STo be accurate, unieity of normal forms is not required if the syntactic equivalence between the 
different normal forms corresponding to a same process can be easily established. 
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The new prefix operator B ~ is similar to a ~ ,  but considering bags instead of single 
actions, allowing us to eliminate the synchronizing operator. It is assumed that the 
duration of bag B is just one instant, thus a new operator delay is needed to "delay" the 
following process and to simulate longer durations. Process delay(P) waits one instant 
before starting the execution of p ,  thus representing both the execution of internal actions 
and the "passing of time". Notice how delay and B ~ reflect the temporal nature of the 
seman~cs: 

• B =~ represents one time unit in which B is observed, 

• delay represents one time unit in which nothing is observed. 

Moreover, B (in B =~) is executed immediately, so that a new operator, which expresses 
the idea of no maximum parallelism, is needed: delay*(P) may wait any amount of time 
before actually starting with the execution of P. 

Now we are obliged to extend the semantic domain, because some of the new operators 
do not preserve properties [P1]-[P8]. The new domain is (Sx, _<s): 

Sx = {oh e V[ob verifies [P1]-  [P5], [P6q} 

[P6q (t,n) e T(ob) =~ (t,n + 1) e T(ob) 

Props.  4.1 ($x,<s)  is a C.P.O. [] 

Let Sp, Spl , . . .  , Sp,, E Sx,  the corresponding semantic operators are: 

• SXop~Sp,,..., Spn] = Sop~Spl,..., Sp,,] for op E E1 - {\a}. 

{<(t~,o),~)l~ e p ~ ( z  + - {B})} u {((t~,m),~)lm ~ IN+ ̂  r • n} 
• 8 z  B =~.[Sp] = O{(mov(tf, 1)+TB(B, 1),r)[{tf, r) • f (Sp)}  

{mov(tf, 1)+TB(B, 1)ltf • D(Sp)} 

If B is not immediately executed (first instant) the process "loses its chance" of 
executing its first step and from then on, it cannot do anything but let the time 
pass and refuse every bag. This anomalous behaviour is introduced in order to 
preserve property [P6'], to make process stop be the unit of the external choice 
operator, and to get the distributivity between both choice operators. 

{ {((t~,0),r)lr • T~} U {(mov(tf, 1),r)l(tf, r ) • F(Sp)} 
• SXdelay[Sp] = {(tg,O) • D(Sp)} O {mov(tf, 1)ltf • D(Sp)} 

{ {((t~,m),,')lm • IN ̂ v m ' =  o..,~, ((t,, m'),,-) • F(Sp)} 
• SXdelay.[Sp] = U{(mov(tf, m),r) lm • IN A trace(g) ¢ t~ A (g , r )  • F(Sp)} 

{mov(tf, m)lm • IN ̂  tf • D(Sp)} 
Notice that delay*(P) represents a process which offers to the environment (external 
choice) the possibility of delaying the execution of P as long as desired. Remember 
also that in external choice the decision is taken only when the first externally visible 
action starts. This idea is reflected on the first part of the semantical definition. 

~The bag prefix operator is borrowed from [TV89]. A "delay" or "wait" operator appears in most 
timed models like in [RR87,MT89],etc. 
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• s \al&l = { 
{{t f \a,r  U {B1,. . . ,  B,~})lr e P ~ ( B , )  

m n/ 

AVnl,... ,n,~ e INm(tf, U{ U {  Bi+Bj * B,}}} e f (Sp)}  
i=1  j = 0  

{ t f \a  I 3t f ' :  .A(tf') C {a} A tf.tf' e D(Sp) 
V3{tl}idN+ : A(tl) = {a} A t f . tr. . . . t i  E T(Sp)} 

The hiding operator needs a small change due to the absence of property [P8]. The 
new definition coincides with the old one in the domain S. 

P rops .  4.2 Vop E P,~,SXop[Spl,...,Sp,] is well-defined, monotonic, and it preserves 
properties [PII-[P5I,[P6']. [] 

Props .  4.3 Vop e B~ - {\a},SXop[Spl,. . . ,  Sp,] is continuous. [] 

Again, as happened for (S, <s), the hiding operator is not continuous in general, but 
behaves well enough for guarded processes. 

4.1.1 Basic terms 

We consider a subset of TCSP extended terms: 

Def. 4.2 Basic t e r m  P E TBAS:  

P ::= stop I B @P I PRP I POP I delay(P) I delay*(P) 

[] 

We will prove that every TCSP extended term can be transformed into a basic term 
and every basic term into a normal form. 

4.1.2 Proof  system 

The logic language for the proof system consists of extended TCSP terms plus a binary 
relation =.s 

From now on we consider three different identity symbols: 

• = s  represents semantical equality, 

• = represents syntactical identity, 

• = refers to the equivalence induced by the proof system. 

By an abuse of notation we identify syntactic processes with its semantics, so that we drop 
8 z [ .  ] when the context is obvious. For instance we write P =s  Q for Sz[P] = Sx[Q]. 

Tables i and 2 contain respectively the lists of axioms (At) and rules (A2) of the proof 
system which allow for the transformation of any basic term into a normal form. 

Axiom (D4) is like an "expansion" rule for the delay* operator. It expresses the fact 
that delay.(P) represents a process which offers the possibility of starting P immediately 
or waiting one instant before choosing again. 
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(A1) 

(A3) 

(A5) 

(AT) 

(i9) 

(A10) 

(DO) 

(D1) 

(D2) 

(D2*) 

(D3) 

(D4) 

(D5) 

p ~ p  = p 

P~Q - QnP 

Pn( qnR)  =_ ( PnQ )nn 

PR(QOR) ~ (PF1Q)D(PRTI) 

PDstop = P 

(B ~ P ) n ( B  ~Q)  =- B ~(PnQ)  

delay(stop) =- stop 

delay( PnQ ),.~ delay( P )~delay( Q ) 

delay( PDQ ) =_ delay( P )DdeIay( Q ) 

delay*( PDQ ) -~ delay*( P )Ddelay*( Q ) 

delay( delay*( P) ) = delay*( delay( P ) ) 

delay,( P) = PDdelay( delay,( P) ) 

delav,( delay*( P ) ) - delay*( P ) 

(A2) PDP = P 

(A4) PDQ =_ QDP 

(A6) PO(QDR) -- (PDQ)DR 

(A8) PD(QilR) = (PDQ)•(PDR) 

(All) 

(DO*) 

(B =~P)D(B ~Q) - B ~ ( p n Q )  

delay*( stop) -~ stop 

Table 1: axiom set A1 

(01) p _= p (02) 
P = Q  
Q - p  

(03) P ~ Q A Q --- R (M1) 
P = - R  

P=_Q 
B =~ P =_ B =~ Q 

(M2) P1 -: Q1 A P2 -- Q2 
PloP2 - QloQ2 (M3) 

P1-- QI A P~ -~ Q2 
P1DP2 -- Q1DQ2 

P --- Q (M4,) 
(M4) delay(P) =_ delay(Q) 

p - Q  

delay,(P) =_ delay*(Q) 

Table 2: rule set A~ 
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It would be nice to have also the following formula: 

(91. )  delay.(PrqQ) =_ delay*(P)ndelay*(Q) 

Unfortunately this is false in general. However, we will need at least some restricted form 
of it to complete our axiom system. Therefore, wewill  investigate the grounds for its 
invalidity. First of all we have the following lemma: 

L e m m a  4.4 Let Spl , Sp2 E Sx:  Sxldelay.(SpllqSP2)l <sSx[delay*(Spx)ndeIay*(Spz)]. 
[3 

Moreover, it is easy to check that the falsehood of (DI*) comes only from failures with 
empty traces. The conditions required to make it true are not trivial, and some previous 
concepts and definitions are needed. These will also be useful for the definition of normal 
forms. 

4.1.3 Der ived  ope ra to r s  

The following derived operators are merely syntactic abbreviations. We define first two 
families of delay operators: 

Def.  4.3 Genera l  de lay  opera to r s  delay(g) and delay*(g) with g E ~t: 

delay(O, P) = P, 

delay(g + 1, P) = delay(g, delay(P)), 

delay*( g, P) = delay(g, delay*( P) ). 

Notice that delay(P) = delay(l, P) and delay*(P) = delay*(O, P). 1:3 

Th~ks  to axioms (A2), (A4), (A6) and (Ag) we can define D,~,P,, where I is any 
finite index set and Pi E Sx  for i E I: 

V'qie~Pi = stop, 

r-qi~joxPi = Pj [](r-qie1P~). 

If I were allowed to be infinite, we would not need the delay* operator, as we could 
represent it by [~>_.odelay(m, P). But, as it is wall-known, such infinite terms are un- 
suitable, in general, within the framework of axiomatisation of algebraic processes. 

Analogously we define OR~elPi, but now I cannot be the empty set: 

OP~e{~}P~ = Pi, 

OR/~jotPi = Pflq(OR~xPi) if I ~ 0. 

Sin [Bro83,Hen88,TV89] inequation systems are considered. While we restrict ourselves to finite 
processes, the results are in fact equivalent, but since it is possible, we consider more degant to work 
only with equations. However when dealing with reeursive processes inequations will be unavoidable. 
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4.1.4 P r e n o r m a l  form 

As candidates for our normal form we are looldng for syntactic formulae which express 
more clearly the internal structure (what is happening at each instant) of the processes 
denoted by them. 

Def. 4.4 We associate action bags to time instants and basic terms: 

t imed  bags : B T  = B(A) x IN, 

sets  of  t imed  bags : CBT = 7~.~(BT), 

bag-process  pairs: BP  = B(A) x TBAS ,  

sets  of  bag-process  pairs : CB7 ~ = ~'(BT~).  

For each B T  E CBT, the set of bags in B T  is denoted by B(BT) (analogously for B P  E 
C~p). [] 

We will usually consider pairs of timed bag sets, where the first component refers to 
delay operators and the second to delay*. 

Def. 4.5 For each C = (el,  C2) E CBT x CBT, we define: 

t imed  bags in C: BT(C) = C1 U C~, 

- 1  if C = (0,~) 
top  t i m e :  top(C) = max{tl(B,t  ) e C1 v (B,t  + 1) e C2} otherwise 

p ro jec t ion  : I'j(C) = Cj, j = 1, 2. 

0 

As we will see, the top time spots the limit of changes in the activity of a process. 
From the top time on, the process will maintain the same options until the first non-empty 
action bag will be executed. 

The above definitions can be generalized to sets of pairs: 

Def. 4.6 Let C = {C~}i=l..n E 7~Y(CBT x CBT), then we define: 

t imed  bags in C: B T ( C ) =  U BT(CI), 
i=t..n 

t op  t ime  : top(C) = max{top(Ci)}i=l..,, 

pro jec t ion  : Fj(C) = U Fj(C~), j = 1,2. 
i<_i_<,* 

n 

A first step towards the desired normal forms are prenormal forms : 
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Def. 4.7 A term is in prenormal  form if it is of form : 

OR.(ca,v2)e C [[-l(B,t)eol delay(t,B ~ P(B,t))D[~](B,OeV2 delay*(t, B ~P(B,t))] 

where C 6 79~'(CBT x CBT) and each P(s,t) is in prenormal form. 
A prenormalform is said uni ta ry ,  when C consists of a unique pair of timed bag sets. 
D 

Notice that stop is in prenormal form. 

Subprocesses P(B.t) depend only on B and t, but not on (Ca, C2). Therefore, a prenor- 
mal form is completely defined by the pair (C,fp), where fp is a partial function which 
associates a basic term to each timed bag: 

P(B,O if (B,t) 6 BT(C) 
fp(B, t) = _L otherwise 

4.1.5 Expansion and dis t r ibut ion 

Prenormal forms are too general to work with, because too many different prenormal 
forms may correspond to the same process. Moreover, the combination of prenormal forms 
with the internal choice operator not always can be transformed to another prenormal 
form. In order to overcome these difficulties, we will define the concepts of expansion and 
distribution. 

Def. 4.8 Let (C, fp) be a unitary prenormal form with C = {(Ca, C2)} and top(C) = 
K.  For every m > K,  a set of m + 2-tuples EX((C, fp), m) is defined which is called 
expansion of (C, fp) until  instant  m:  

EX((C, fp},m) = (D(O),... ,D(m + 1)} 6 P.~(CBP x . . .  x CBP) (m + 1 times) 

where D(j) = {(B,fp(B,j))I(B,j)  e Ca} tO {(B,fp(B,t))lt < j ^ (B,t) e C=}. 

When m = K we write EX((C, fp)). [] 

Expanding until instant m means developing the delay*(g) operators on delay(j) op- 
erators for every j : g __< j < m plus delay.fro + 1). Thus C is decomposed in timing 
groups D(t), t = 0..m + 1. 

Def. 4.9 Let (C,fp) be a prenormal form with K = top(C). Two families of tuple sets 
are defined: 

Expansion : Vm > K, EX((C,fp}, m) = {EX((C, fp), m)}oe C. 

When m = g we write EX((C, fp)). 

Dis t r ibut ion : Vm = 0. .K+I,  DSTR({C, fp), m) fi 79~'(CB79 × . . .  × CB79) (K+2 times), 

DSTR((C,Ip}, m) = {Do(O)}oe C x. . . x {Do(m-1)}oe  C x { (Do(m) , . . . ,  Dc(K+I))}o  ~ 

where EX((e,  fp)) = (De(O),... ,Do(I f  + 1)) for each C 6 C. 

When m = K + 1 we write DSTR((C,fp)). 
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if (C, fp) is a distributed prenormal form. 

(DI*) detay.((C,yp)) = Ol~vecdelay.((C, fp) ) 

Let R = ( P1 []delay(k, Q1) )~( P2Odelay( k, Q2) ) 

with Pi = E]0<j<k [:J(B,P)~c,~ delay(j, B ~ P )  

(D6) R =. Pffq(Plndelay(k, Q2))rq(P~Odelay(k, Q1)) 

Table 3: distribution axiom and law 

[] 

Distributing until instant m means obtaining every combination of timing groups until 
instant m. If top(C) = K we build tuples (D(0), . . . ,  D(K + 1)) where each D(i),O <_ i < 
m belongs to some element of C, maybe different each time, but every D(i), m < i < K + I  
belongs to the same element. Notice that DSTR((C,fp), 0) = Ex((C,fp)) .  

Def. 4.10 A prenorraal form (C,fp) is said to be 

expanded  unti l  ins tan t  m (m _> 0) if top(C) = m, and (S, t )  E F2(C) ==¢ t = m + l .  

When ra = top(C) we say expanded.  

d i s t r ibu ted  unt i l  ins tant  m (0 < m < top(C)+l) i fDSTR((C, fp), m) = Ex((C,fp)) .  

When m = top(C) + 1 we say dis t r ibuted.  

13 

We are now prepared to give the axiom corresponding to the distribution of the delay* 
operator with the internal choice, and which should be included in the list A 1 of table 1. 
We also include in A1 the distribution law, a family of axiom which allow for the trans- 
formation of any prenormal form into a distributed one. These axioms appear on table 3. 

From now on we write b P - Q, when the formula P = Q is provable in A1 U A2. 

T h e o r e m  4.5 For every P, Q, R , . . .  TCSP eztended terms, the axioms and rules in Ax U 
A 2 are correct; i.e. F P =_ Q implies P =s Q. 13 
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4.1.6 Norma l  form 

A normal form is a prenormal form verifying some conditions. 

Def. 4.11 C / s  convex if it is non-empty and verifies: 

1. A, B E C = = ~  A u B E C ,  

2. A, D E C A A C B C D = = ~ B E C .  

[] 

Def. 4.12 A term is in normal  form if it is in distributed prenormal form (C,fp) with 
C convex and everyfp(B,t) in normal form. 13 

We will give next some lemmas and propositions to transform any prenormal form 
into a normal one. First lemma states the convexity laws, already presented in [Hen88]: 

L e m m a  4.6 

r'l 

The following formulas are provable in A1 U A2: 

(DV1) P n Q -  PnQn(P[]Q) 

(DV2) Prq(P[]Q[]R) = P[q(P[]Q)M(P[]Q[]R) 

Next lemma states that in any prenormat form, C can be replaced by its convex closure 
(CONV(C)). 

L e m m a  4.7 t- (C,fp) - (CONV(C),fp). 
P r o o f  : We apply the convexity laws (lemma 4.6). [] 

L e m m a  4.8 Let P = PIIqP2, the following formulas are provable in A1 U A2: 

( D V 3 )  (delay(e,B :*Pa)[]Q1)n(detay(e,B - 

(delay(l, B ~P)[]Q1)N(delay(e, B ~P)t3Q2 ) 

(DV3,) (delay,(g, B ~P1)[]Q1)M(delay,(e, B .P2)[]Q2) - 
(delay,g, B  P)[]Q1)n(delay,(e, B 

The above rules are called expansion laws and are used to transform any prenormal 
form into an expanded one. [] 

L e m m a  4.9 Let (C,fp) be a prenovmal form, 

I I ! I 1. Vm > top(C),3(C ,fp ) expanded until instant m such as ~- (C,fp) = (C ,fp ), 

I I 2. Vm = O..top(C) + 1, 3(C ,fp ) distributed until instant m and expanded, such as 
top((C',fp') = top((C, fp)) and ~" (C,fp) - (C',fp'). 

[] 

We also must guarantee that the convexity closure preserves distribution. 
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L e m m a  4.10 / f  (C,fp) is a distributed prenormal form, then (CONV(C),fp) is dis- 
tributed too. [] 

A corollary of lemmas 4.9, 4.7 and 4.10 is given next: 

C o r o l l a r y  4.11 Let (C, fp) be a prenormal form, there exists a normal form (C',fp') 
such as ( C , f p )  -- (C ' , fp ' / .  [] 

We can finally state the expected proposition: 

P rops .  4.12 For each basic term P there exists a normal form (C,fp) such as ~- P = 
(C,fp).  [] 

4.1.7 P r o o f  s y s t e m  comple t enes s  

In order to prove that  the system is complete, we need to prove first that  two semantic,ulty 
equivalent normal forms are syntactically equivalent. 9 

P rops .  4.13 Let (C',fp') be then (C',fp') implies , !C,fp) and normal forms, (C,fp) =s 
~- (C,fp) --= (C ,fp ). [] 

Combining propositions 4.12 and 4.13, we obtain the following theorem: 

T h e o r e m  4.14 Let P, Q be basic terms, then P =s Q implies t- P - Q. [] 

4.1.8 T r a n s f o r m a t i o n  of  f ini te  T C S P  t e r m s  in to  basic  t e r m s  

The table 4 contains the axiom list As, which added to A1 t.J A2 allows for the transfor- 
mation of any finite TCSP term into a basic one. We obtain then a proof system for finite 
TCSP processes, which is correct and complete with respect to the denotational semantics 
given in section 3. The more complex axioms are a consequence of the non-distributivity 
of the synchronization and hiding operators with the external choice. 

T h e o r e m  4.15 For any extended TCSP term P, Q, R , . . .  and C, D E T~ the axioms in 
A3 are correct. [] 

Props .  4.16 Any extended TCSP term can be transformed, by means of the axioms and 
rules in A1, A2 and Aa into a basic term. [] 

We shall consider from now on that ~- P - Q means that  the formula P _= Q is 
provable in Az U A~ U As. We give next the last theorem of this part devoted to finite 
processes, which is a direct consequence of proposition 4.16 and theorems 4.5, 4.14 axtd 
4.15. 

T h e o r e m  4.17 Let P, Q be finite TCSP terms, then P =s Q ¢~ ~" P - Q. [] 

9We cannot assert that they are syntactically identical, due to the fact that our normal forms are not 
unique. We could have defined some order over the set of normal forms for a process, obtaining a unique 
least normal form, but this is unnecessary. 
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(X) a -.-*P - delay*(O, Ba =~detay(d(a) - t, P)) 

(SO) stoP ll A stop -~ stop 

(51) PIIAQ -- QIIAP 

(S2) PIIA(QnR) - (PIIAQ)n(PIIAR) 

(S3) detay( P ) lla delay( Q ) - delay( PIl~Q ) 

($4) Let P = [[--]BecB ::~PB] Ddelay(P') and Q = [[~EeDE =erQE] Ddelay(Q') 
Pll~Q - [:]Br~=~rA(BeAE) ~(PBllAQE) 

0 
DBr~=B,B ~(P~ll~Q') 

D 

delay(P%Q') 

($5) Let P --- delay*(E]BecB =)'PB) and Q = delay*(E]EeDE =~Q~), then 

PllAQ -- delay*( Z]~r~=~f~(BeAE) ~(P~IIAQs) 
[] 

[lJsrA=B, B ~(PBI[AQ) 
O 

[I]Er~=B,E ~(Pll~#~)) 
(H0) stop\a -- stop 
( m )  (PnQ)\a - P\~nQ\~ 

(H2) d e l a y ( P ) \ a  - delay(P\a) 

(H3) Let C N Ba = 0, then 

[E]B¢cB =#,PB[]deIay(P)] \a =_ [[-]BecB\a ~PB\a] [:]delay(P)\a 
(H4) Let C N B~ ~ 0, then 

[[~BecB ~eBDdetay(P)] \a - [E]Bec_I3 B\a =*'PB\a] Odelay(eRol%BecM~ PB)\a 
(H5) Let C 13 B~ = 0, then 

delay*([:]~cB =~P~)\a -- delay*([:]BecB\a =~PB\a) 

(H6) Let C N Ba ~ 0, then 

delay*(['-]B~cB =~ PB)\a = E]B6C_~.~ B\a =~ PB\a [3 
delay(delay,( [~ea_B~ B\a ~eB\a] ~Ol%~evnB P s\a)) 

Table 4: transformation axiom set A3 
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4.2 R e c u r s i v e  processes  

In order to deal with recursive processes we need their syntactic aproximations corre- 
sponding to the semantic aproximations deduced from the fix-point theory. So as to work 
with aproximations, we need to introduce some changes in the proof system above given 
for finite processes. For one instance, it is no longer sufficient to deal with equivalences, 
and some partial order between processes is needed. Consequentely a new symbol is intro- 
duced (_),  from which the syntactic equivalence (=) can be deduced. Another addition is 
the syntactic equivalent to the least element of the semantic domain: the process constant 
chaos. 

4.2.1 S u p e r e x t e n d e d  T C S P  

The the new set of syntactic operators is ~x = ~= U {chaos}. We can maintain the same 
specification space (Sx,<sl, where the semantics of chaos is defined as SXchaos[ .] = 
(.,~T, TT.T') (which is obviously well-defined, verifies [PI]-[P5] and IF6'], and is continu- 
ous). 

4.2.2 Syntac t i c  aproximat ions  

The semantics of a recursive process P is the limit of the sequence generated by unwinding 
the recursive calls, and starting with chaos: 

po = chaos, 
p-+ ,  = P [p - ] .  

Syntactically each P= is a superextended TCSP term (P'* e FIN(~x)) .  

Def. 4.13 The set of finite aproximat ions  for process P is APX(P) = {P"ln e ~q}. 
[] 

4.2.3 N e w  axioms and rules 

We must include, on the one hand, the axioms concerning t he  behaviour of chaos with 
respect to the other operators (121); on the other hand, the rules concerning recursion 
(122); and finally the rules justifying that _ is a partial order (123). The tables 5, 6 and 7 
contain these sets respectively. Notice that the rules in A2 can be obtained from the rules 
in 122. We shall write F= P _ Q when the formula P _ Q is provable in/"1 U 121 U 122 U 123. 

4.2.4 Correctness of the  new p roof  sys t em 

First of all we must confess that the new system is not completely correct, as axioms 
(CH2), (CH4) and (CH5) are not correct. However "don't panic". As we are only inter- 
ested in dealing with chaos in relation to. the finite aproximations for recursive guarded 
processes, the inclusion of these "incorrect" axioms is justified by the fact that Pnchaos, 
P[[Achaos and chaos\a have such a "chaotic" behaviour that it is feasible to identify them 
with chaos when they appear in the aproximations. We shall formalize the concept of 
partial cot'r~ctness, and we will see that by means of this concept we can prove the total 
correctness of the system restricted to guarded TCSP processes. The rest of axioms and 
rules are correct. 
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(A12) 
(CH0) 
(CH1) 
(CH2) 
(CH3) 
(CH4) 
(CHS) 

PnQ E P 

chaos E P 

Pnchaos - chaos 

P[:]chaos - chaos 

delay,( chaos) - chaos 

chaos[lAP = chaos 

chaos\a = chaos 

Table 5: axiom set ~1 

(01') 

(o3') 

(M2') 

(M4') 

P E Q E P  
p - Q  

P E Q E R  
P E R  

P1E Q1A P: E Q2 
P1V1P~ E QIRQ~ 

P E Q  
dday(P) E dday(Q) 

(02') 

(MI') 

(M3') 

(M4*') 

P = Q  
P E Q E P  

P E Q  
B=c, P E  B ~ Q  

P1E Q1A P2 E Q2 
P1DP2 E Q1DQ2 

P E Q  
delay,(P) E dday*(Q) 

Table 6: rule set ~2 

(R1) 

(R2) 

P[,~.P/~] E ~ . e  

,,VQ E APX(P) : Q E R 
P E R  

Table 7: recursion rules f/a 
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L e m m a  4.18 Let P, Q , R , . . .  be extended and guarded TCSP terms, then the axioms in 
n2 U na U {(CH0), (CH1), (e l l4)}  are correct. [] 

A family of semantic orders, based on the length of the observed traces, is introduced. 

Def. 4.14 Let Sp E Sx  and n E IN, we define: 

F.(Sp) = {(t/,O} E F(Sp)lend(tf) -- n} U {(t/,r} E F(SP)lend(tf) < n}, 
D,~(Sp) = {tf  C D(Sp)lend(tf) <_ n}, 
OB,~(Sp) = {F,,(Sp),D,~(Sp)}. 

[] 

Def. 4.15 Let Spl,Spa E Sx  and n E1N: Slh <_n Sp= ~ OB,(Sp=) C_ OB,(Spl) .  [] 

We shall write P < ,  Q when Sx[P] <~ Sx[Q]. These orders are only partial orders 
which induce the corresponding equivalences =n between processes. 

The relation between these new orders and the partial order <s is given by the following 
lemma: 

L e m m a  4.19 Let Spl,Sp2 E Sx,  then Spl <_sSp2 ~ Vn E ]N : Spl <_~ Sp:. [] 

L e m m a  4.20 Let P E CRECG(Ea), then Vn E IN : P =,  P'~. [] 

L e m m a  4.21 (Par t ia l  correctness)  Let P, Q E CRECG(21):  P" E Q ==~ P" <,  Q. 
P r o o f  : As P is guarded it is easily proven that each occurence of chaos in P"  is guarded 
n times. The application of any axiom or rule in our present proof system preserves this 
property. The application of correct axioms preserves gs,  and consequently each < ,  too. 
Whereas the application of "incorrect" axioms preserves _<,, too, because thay are only 
applied under n guards. [] 

We can now prove the correctness with respect to guarded processes. 

Props .  4.22 Let P, Q E CRECG(E1), then }-~ P E_ Q implies P<_sQ. 
P r o o f  : For every pn E APX(P) it is proved that pn _E P _ Q. The partial correctness 
lemma 4.21 is applied and we obtain P~ gn Q. Therefore, by lemma 4.20 we obtain that 
Vn E ]hi : P _<~ Q. We conclude thanks to lemma 4.19. [] 

4.2.5 Completeness  of the new sys t em 

We shall start with the completeness with respect to finite terms. We only need to 
"extend" all the results obtained before for finite TCSP terms, to extended TCSP terms. 
For we introduce chaos in the normal forms. 

Def.  4.16 Superbasic term P E S T B A S :  

P ::= chaos ] s top]B  = ~ P [ P M P I P Q P I d d a y ( P ) [  delay*(P) 

[] 
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Def. 4.17 A term is in supe rp renormal  form if it is of any of the following forms: 

• (C,fp) prenormatform with each fp(B,t) in superprenormalform, 

• delay(t, chaos)D(C,fp) where (C,fp) is a prenormal form with each fp(B,t) in 
superprenormal form and F2(C) = 9, and top(C) < t. 

[] 

The last conditions reflect the special nature of chaos: when it starts executing, then 
everything else does not matter anymore. The next lemma states that these conditions 
cast always be obtained: 

L e m m a  4.23 Let P be a superextended TCSP term; in the new pro•f system the following 
formulae are true: 

1. if t <_ t', then delay(t, chaos)Ddelay(t', P) - delay(t, chaos), 

2. delay(t, chaos)Ddelay,( t', P) =_ delay(t, chaos)D[-]t,<e<tdelay(g, P). 
[] 

Every normal form is a superprenormal form too. Superprenormal forms are deter- 
mined by the instant t associated to the chaotic component (delay(t, chaos)), if it exists, 
and by the set C and the function fp associated to the ordinary component. We use 
the following notation: (t, C,fp). When a superprenomal form does not have chaotic 
component (on the first level) we take t = cx3. 

Notice that the previously defined concepts of expansion and distributivity do not 
depend on the internal structure of the fp(B, t), but only on the "surface" of the prenormal 
form. Therefore, both concepts and its corresponding results (like any prenormal form 
can be expanded, etc), can be directly extended to superprenormal forms without chaotic 
component ((0% C,fp)) and from these to the general ones, as any superprenormal form 
can be written: 

(t, C,fp) - delay(t, chaos)•(o•, C,fp) 

Def. 4.18 A term is in supe rnorma l  form if it is in distributed superprenormal form 
(t, C,fp) with C convex and each fp(B,t) in supernormal form. [] 

Props .  4.24 For each superbasic term P there exists a supevnormal form (t, C,fp) such 
as ~-= P - (t, C,fp). [] 

Props .  4.25 Let (t, C,fp) and (t', C',fp') be supernormal forms, then 

(t, C,fp)<_s(t', C',fp') ==~ t% (t, C,fp) _ (t', C',fp') 

[3 

The following theorem is a corollary of propositions 4.24 and 4.25. 

T h e o r e m  4.26 Let P, Q be superbasic terms, then P =s Q implies l-= P - Q. [] 

Props.  4.27 Any superextended and finite TCSP term can be transformed into a super- 
basic term. [] 
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4 .2 .6  Semant ic  aproximat ions  

In order to prove the completeness with respect to recursive (guarded) processes, we will 
use the concept of syntactic aproximation (APX(P)). Some way of "measuring" the degree 
of semantic aproximation for these syntactic aproximations is needed. To this purpose 
we define a second family of semantic orders, which depend on the number of instants in 
which visible actions are executed l°. First of all we count the number of non-empty steps 
in a trace: 

Def. 4.19 For each t f  E TT.7:, the number of non-empty  steps in tf  is defined by 
st(tf): 

st((t , o)) = o, 
st(if) if B = B ~  

st(tf+TB(B, end(tf) + 1)) = st(tf) + 1 if B ~ B$ 

[] 

We need observation sets with restrictions on the number of steps of the contained 
traces. 

Def. 4.20 Let Sp E Sx  and n E IN, we define: 

Fn(Sp) 

D"(Sp) 
OB"(Sp) 

= {(tf,  O) e F(Sp)[st(tf) = n A trace(tf)(end(tf)) ~ Be} 
U{(tf, r) E F(Sp)lst(tf) < n}, 

= {t f  E D(Sp)lst(tf) < n A trace(tf)(end(tf)) ~ B$}, 
= (F~(Sp),D"(Sp)). 

[] 

The corresponding semantic orders are defined: 

Def. 4.21 Let Spl , Sp2 E SX and n E ~ :  Spl ~n ,_pOp 2 ~ OBn(Sp2) C OB"(Spx). n 

L e m m a 4 . 2 8  Let Spl,Sp: E Sx,  then Spl <_sSp2 C~ Vn E lN : Spl <_" Sp 2. rn 

We shall write P _<~ Q when Sx[P] <'~ Sx[Q]. 

L e m m a  4.29 Let P be a finite supereztended TCSP term, and Q a guarded TCSP term: 

P<sQ --~ 2n E IN : P<_sQ" 

P r o o f  : We first prove that Vn E ]N 3rn~ : P _<~ Q'~". As P is syntactically finite, there 
exists some instant when every computation of P reaches stop or chaos. In both cases, 
from that instant on, OB~(P) is constant, and thanks to lemma 4.28 we can coffclude the 
proof. [] 

Theo rem 4.30 (Completeness  and correctness for guarded  T C S P  processes) . 
Let P, Q E CRECG(EI) ,  then P<sQ ¢==~ ~-~ P E_ Q 
P r o o f  : 

1°The above defined orders refering to the trace length are insufficient, due to the relation between 
hidden actions and the delay operators. 
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1. Correctness (¢==) is proven by proposition 4.22. 

2. In order to prove the completeness (==#), take P'  E APX(P) then P'<sP<_sQ. By 
lemma 4.29 there exists Q~ E APX(Q) such as P~<sQ ~, and by propos.4.26, we have 
that F= P' E_ Q'. Therefore, for any Q' E APX(Q) it is true that P' E_ Q' E_ Q, and 
by rule (R2) we have that F~ P E Q. 

1:3 

5 R e l a t e d  a n d  F u t u r e  W o r k  

We have presented a timed model suitable for real-time systems, where time is explicitely 
expressed by providing a global clock, so that we can see what happens at each instant 
and observe how the processes evolve in time. 

The model induces a denotational failure semantics with divergences for TCSP pro- 
cesses, for which we have provided a correct and complete proof system. The view is 
completed by the operational approach presented in [Ort91]. 

Among the other existing timed models mentioned in the introduction, the most re- 
lated and similar to ours is Timed TCSP [RR87], which was largely commented and 
compared with Timed Observations in our first work [OdF90] (a brief comparison with 
other timed models can be found there too and in [Ort90]). Schneider provides in [Sch90] 
a proof system for Timed TCSP, but his approach is very different to ours, as he is con- 
cerned with the properties of the behaviours of the processes, so that the proof system 
works on the basis of predicates over semantical objects instead of directly manipulating 
processes. 

Algebraic and operational-oriented timed models like [NRSV90,QAF89,MT89,HR90, 
BB90,Yi90] include more or less complete sets of equational laws, but as they do not 
consider denotational semantics, and they are more concerned with equivalences derived 
from bisimulations and the like, they are in general far related to our work on the proof 
system. Still, we would like to point out some similarities that we have found in [MT89], 
although this work was known to us well after our proof system was completed. Their 
approach is a timed extension of CCS [MilS0]. Consequently they do not distinguish 
between internal and external non-determinism, simplifying greatly the set of equational 
laws and the corresponding normal forms. Actions ~re instantaneous and concurrency 
is expressed by interleaving. The passing of time must be exptidtely stated by means 
of a delay operator (t).P, which is equivalent to our delay(t, P). Although their prefix 
operator assumes that the prefixed action is immediately executed, they include a special 
delay operator ~.P, which is equivalent to our delay*(P), thus our prefix operator can be 
similarly defined as in axiom (X) (in table 4). Another difference is that their deadlock 
process 0 cannot witness any passage of time (unlike stop), but we have that stop is 
equivalent to ~.0. Therefore, despite of the many differences, it is interesting to constate 
that most of the axioms stated there have a corresponding axiom in our proof system, and 
that the normal forms that they use are quite related to our normal forms (if we ignore 
the initial part corresponding to the internal choice). 

Although the step-failure semantics presented in [TV89] is not a timed model, we 
found there many similarities with Timed Observations, so that it was a great help to 
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refine and improve our already conceived and developed model. Moreover, the proof 
system presented by Taubner & Vogler was the source of inspiration and the starting 
point for the present work. 

As pointed out in [OdF90,Ort90], the model studied in this paper provides a too 
liberal treatment of time, inadequate to specify real time processes with time-outs and/or 
maximum parallelism requirements. Nevertheless we already introduced there (in the 
above cited works) two extensions of the model to cope with these features, and although 
more sophisticated (specially the second one) they are based on similar ideas to the original 
model. Therefore, several of the formal problems related to the future axiomatisation of 
these modified versions are already solved by the results obtained in the present work, 
so that the presented proof system can be taken as a basis for the development of the 
corresponding proof systems for the other two versions. 
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