
Full Abstraction for Series-Parallel Pomsets*

Luca Aceto

INRIA-Sophia Antipolis

F-06560 Valbonne Cedex, France

Abst rac t

In this paper, we provide a behavioural characterization of the class of finite, series-

parallel pomsets by showing that this simple model based on partial orders is fully-

abstract with respect to the behavioural equivalence obtained by applying Abramsky's

testing scenario for bisimulation equivalence, [Ab87], in all refinement contexts, [AH89].

This casts the observability of series-parallel pornsets in a purely interleaving framework.

Moreover, we prove that the order structure of a series-parallel pomset is completely

revealed by its set of ST-traces, [GIg0], and provide a complete axiomatization of ST-

trace equivalence over the class of series-parallel pomsets.

1 I n t r o d u c t i o n

In recent years, many models of concurrent computation based upon partial orders have

been proposed in the literature, e.g. Petri Nets [Rei85]~ Event Structures [Win80,87], Pore-

sets [Pr86] and, more recently, Causal Trees [DD89]. These models are based upon the

idea that concurrent, communicating systems are characterized by their causal structure,

i.e. by the computational events a system performs during its evolution together with the

causal dependencies amongst them, and that its proper description is necessary in account-

ing for the nonsequential behaviour of distributed systems. The mathematical tractability of

causality-based models has been investigated in the literature by providing operational and

denotational semantics for process algebras, such as C C S [Mi180,89], C S P [Hoare85] and

A C P [BK85], in terms of the above mentioned models. Partial order operational semantics

for standard process algebras have been presented in e.g. [BC88], [DDM88], [DD89], and

*This work has been carried out at the University of Sussex, Falmer (U.K.). tt has been supported by a

grant from the United Kingdom Science and Engineering Research Council and by the Esprit BRA project
CEDISYS.

denotational semantics are given in e.g. [Win821, [Go88], [Tau89]. Several notions of equiv-

alence over the above mentioned models, which allow to abstract from the way processes

evolve, have recently been proposed in the literature (the interested reader is invited to con-

sult [GV87] and [G190] for a comparison among some of the proposals), thus importing in

the partial ordering setting some of the abstraction techniques supported by the standard

interleaving equivalences and preorders [HM85], [H88a], [BHR84].

However, not much work has been carried out in studying reasonable testing scenarios,

[DH84], which justify the use of these models in giving semantics to concurrent programming

languages. Notions of observability play a fundamental rhle in the study of suitable seman-

tics for programming languages. Following Milner and Plotkin's paradigm, mathematical

models for programming languages should be justified by comparing them with some natural

notion of behaviourally defined equivalence between processes. Models that are in complete

agreement with the coarsest equivalence over processes induced by the chosen notion of

observability are called fully abstract in [MU77], [P177], [HP79], [Sto88]. As fully abstract

semantic models are the most abstract ones which are consistent with the chosen notion of

observability, it is natural to try to justify the choice of a model for a language by showing

that it induces exactly all the distinctions that can be made by means of some natural notion

of observation.

The main aim of this paper is to provide such a behavioural justification for a simple

model based on partial orders, namely the class of series-paralld or N-free pomsets [Gi84],

[Pr86]. Series-parallel pomsets have been extensively studied in the literature, see e.g. [GiS4],

[BC88], [Ts88], and have a pleasing algebraic and order-theoretic structure that will be ex-

ploited in the proofs of the main results of this paper. Following Gischer, the algebraic

structure of the class of series-parallel pomsets will allow us to relate it t o a simple process

algebra, whose terms axe built from a set of generators by means of the operators of sequen-

tial and parallel composition. This gives us a syntax for denoting such partially ordered

structures and will allow us to give a standard LTS semantics for the resulting language. We

shall define a standard notion of observational equivalence over processes by means of the

bisimulation technique [PaSl], [Mil83]. The notion of observability underlying such a notion

of equivalence has been thoroughly investigated in [Ab87] and is called "tightly-controlled

testing" in [H88b]. Series-paxallel pomsets do not give rise to a fully abstract model with

respect to standard bisimulation equivalence; however, by enriching the language with a

refinement operator like the one used in [AH89], [NEL88], [GG88], and closing bisimula-

tion equivalence with respect to all the contexts built using this new language construct we

shall be able to make series-parallel pomsets fully observable. In other words, series-parallel

pomsets are fully abstract with respect to the coarsest congruence obtained by applying

Abramsky's testing scenario in all refinement contexts. By relying on results from [AH89],

we shall be able to provide a natural behavioural characterization of series-parallel pomsets

in terms of Hennessy's timed equivalence [H88c]. These results will cast the observability of

series-parallel pomsets in a well-known interleaving setting.

A natural notion of basic observation which is widely used in the interleaving models

for concurrency is that of trace, [Hoare85]. Indeed, some natural models for concurrency,

e.g. Hennessy's Acceptance Trees, [H85], and the Failures model, [BHR84], have been shown

to be fully abstract with respect to behavioural equivalences which are intrinsically based

on such a notion of observability, [Main88], [H88a]. A natural question to ask is whether

series-parallel pomsets can be made fully observable by assuming a trace-based notion of

observation. In this paper, we shall provide a partial answer to this question by showing

that the order structure of a series-parallel pomset is totally revealed by its set of ST-traces,

[GI90]. ST-semantics has been recently proposed in [GV87], [GI90] as a refinement of split-

semantics, [H88c], in which an explicit link is required between the beginning and the end

of any event. It will be shown that series-parallel pomsets give rise to a fully abstract model

with respect to ST-trace equivalence over the simple process algebra considered in this paper.

As a corollary of this result, we shall be able to give a complete axiomatization of ST-trace

equivalence over the class of series-parallel pomsets.

We now give a brief outline of the remainder of the paper. Section 2 is devoted to a review

of mostly standard material in the theory of pomsets. Two behavioural semantics for series-

parallel pomsets, based on the notion of blsimulation equivalence, are presented in §3. We

shall show that series-parallel pomsets are fully abstract with respect to the finer of the two

behavioural semantics, which may be seen as arising by applying Abramsky's testing scenario

for bisimulation equivalence in all refinement contexts. The proof of this result is algebraic in

nature and relies on Gischer's axiomatization of the theory of series-parallel pomsets, [Gi84].

Section 4 is entirely devoted to providing another behavioural characterization for series-

parallel pomsets. We shall prove that ST-trace equivalence coincides with equality over the

class of SP pomsets, thus giving a trace-theoretic understanding of this simple model based

on partial orders. We end with a conclusion and a discussion of related work.

2 Series-parallel pomsets

This section will be devoted to a brief review of some basic notions of the theory of partially

ordered multisets (or pomsets in Prat t and Glscher's terminology) which will find application

in the remainder of the paper. The interested reader is referred to [Gr81t, [Gi84], [PrS6],

for more information on pomsets and further references. The following definition introduces

the main objects of study of the paper.

Def inRion 2.1 1. A labelled poset • over a label set L is a triple ~ = (P, <, 1), where

* P is a f ini te set of events,

* < is a binary, transitive and aeyelic relation over P , and

• I : P -~ L is a labelling function.

Two L.labelled posers ~ = (P~, <i,l~), i = 1,2, are isomorphic, writ ten 2Pi ~- ~2 , i f f

there exists a bijeetive funct ion h : Px -+ P2 such that, for all u, v E Px, u <1 V i f f

hCu) <2 hCv) and llCu) = 12(hCu)).

2. A pomset over L, a = [P,<,I] , is an isomorphism class of L-labelled posets. For a

label set L, Pore[L] will denote the set of pomsets over L and will be ranged over by

0[, /3

Several operations on pomsets have been defined in the above given references. Since pomsets

are isomorphism classes of labelled posets, it will be convenient to define operations on them

by using arbitrary representatives of the isomorphism class. For each operation it will be

straightforward to establish that the result of the operation is independent of the chosen

representative and such verifications will be omitted. Let A be a set of observable actions

ranged over by a, b, a r In the remainder of the paper we shall only need the following

operations over Pore[A] .

• Empty pomset. I will denote the isomorphism class of the A-labelled poset (0, 0, 0).

• A tomic actions. For each a E A, a will denote, with abuse of notation, the isomorphism

class of the one element poser labelled with a. In what follows, A will be used to denote,

with abuse of notation, the set of all such atomic pomsets.

• Sequential and parallel composition. Let a = [P1, <1, ll] and/3 = [P2, <2,12] be pomsets

on A and assume, wlog, that P1 D P2 = 0. Then a;/3, the sequential composition of a

and/3 is given by

= [P1 u P2, <1 u <2 u(P1 x P2), Ii u 12]

and c~1/3, the parallel composition of a and/3, is given by

(P A R 1) x[nil = x

(P A R 2) xly = Ylx

(PAR3) (~ lv) l z = ~ l (v l z)

(S E Q 1) x ;n i l = z = n i l ; x

(S E Q 2) (x ; y) ; z : x ; (y ; z)

Figure 1: The set of axioms E

Following Gischer [Gi84], the class S P of series-parallel pornsets over A may now be defined

to be the closure of A and I with respect to the operations of sequential and parallel

compositon. The definition of the class of pomsets S P has a pleasing algebraic flavour;

indeed, the class of pomsets S P is in close correspondence with the set of terms $ fl built

from the set of observable actions A by means of the operators of sequential and parallel

composition. More formally, let S P be the set of terms generated by the syntax

p ::= ,~il I a I P; p I pip,

where a 6 A. SP will be ranged over by p,q, f f Following Gischer, the set of terms 5P

may be interpreted as series-parallel pomsets by defining the semantic map ~.] : S ? ~ S P

as follows:

• ~ i q = , ,

• ~ = ~,

The following theorem, which formalizes the close connection between S P and S P and gives a

complete axiomatization of the congruence on S P induced by the above given denotational

semantics, has been proven in [Gi84] (Theorem 5.2, page 23). Let --E denote the least

S P-congruence which satisfies the set of axioms E in Figure 1.

Theorem 2.1 (Gischer) For each p, q 6 S ? , UP~ = Uq~ iff p =E q.

The algebraic characterization of the theory of S P pomsets given by the above theorem

will provide the key to their behavioural characterization, which will be presented in the

following section; namely, we shall give a behavioural view of the processes in $ P, based on

a well-understood testing scenario familiar from the theory of bisimulation semantics, and

prove that the denotational semantics for SP given by the map [.] is fully abstract with

respect to it. Following Mitner and Plotkin's paradigm, this will justify the choice of S P as

a denotational model for $ P by showing that S P is the most abstract model for S P which

is consistent with the chosen testing scenario.

We end this review of standard material on series-parallel pomsets with an order-theoretic

characterization of the class of pomsets SP. It is well-known that the class of pomsets S P

coincides with that of the so-called N-free pomsets, see e.g. [Gi84] (Theorem 3.2, pp. 14-15)

and [BC88], where a more general result is proven for Event Structures. Here we only present

a result from ITs88] giving a characterization of SP pomsets in terms of their order structure

which will find application in §4.

P r o p o s i t i o n 2.1 (T s e h a n t z) A pomset [P, <,l] is series-parallel iff the following property

holds:

(N) V w , x , y , z E P w < y , w < z and x < z imply y < z or w < x or x < y.

In what follows, a labelled pose t /P will be said to be series-parallel (SP) iff it satisfies the

above-given property (N). Pos[A] will denote the class of S P posets labelled on A.

3 Full-abstraction for series-parallel pomsets

This section will be entirely devoted to a discussion of a behavioural semantics for the simple

language S P and to a proof of full abstraction of the denotational semantics given by the

map [-] with respect to it. Following Milner and Plotkin's approach, the behaviourat view

of processes we shall present, which is based on the notion of testing characterizing standard

bisimulation semantics studied in [Ab87], will justify the denotational semantics in terms

of series-parallel pomsets. In what follows, we shall introduce two operational semantics

for the set of processes SP and two notions of observational equivalence for it. Relying on

results from [AH89], we shall study the relationships between the two behavioural theories

of processes and prove that the denotational semantics is fully abstract with respect to the

finer one, the timed equivalence proposed in [H88c].

Operationally, the constructs in the language for processes $ Y will be interpreted in a

fairly standard way; following Milner [Mi180,89], nil will be interpreted as the process that

cannot perform any move. A generator a E A will be interpreted as a process which is capable

of performing the task represented by a and terminate in doing so. The combinators ; and

(1) a - -~ nil

(2) p - -~ p' implies p;q - -~ pt;q

(3) p~/, q - -~ q' imply p; q __~ qr

(4) p -2-+ p' implies Plq - -~ P'lq

qlP --% qlg

Figure 2: Axiom and rules for - -~

I will stand for sequential composition and parallel composition (without communication),

respectively. Both the operational semantics for the language S Y consist of two ingredients:

1. a termination predicate V/, used in giving an operational account of the sequential

composition operator, and

2. a standard LTS semantics for SP given using Plotkin's SOS method, [P181].

The termination predicate v / i s the least subset of S P which satisfies the following axiom

and rule:

* n i l e , ~ ,

* p e r / a n d q C x / i m p l y p ; q E v / a n d p l q E x / .

In what follows, p E x/will be often written as Px/. Using this termination predicate we

may now give the first Labelled Transition System semantics for SP; this semantics will be

based on the assumption that processes evolve by performing actions which are atomic. For

each a E 2k, -2-+ will denote the least binary relation over S P which satisfies the axiom and

rules given in Figure 2. A standard notion of observational equivalence over SY may now

be defined by means of the bisimulation technique [Pa81], [Mi183]. The relation --,C_ Sp2 is

the largest symmetric relation which satisfies, for all p,q E SP, p ~ q if, for all a E A,

P a ~ p~ implies q - -~ q~ and p~ N q~, for some q~.

The following proposition is then standard.

P r o p o s i t i o n 3.1 ,,- is a $ P-congruence.

The testing scenario which is needed to characterize ,,~ as a testing equivalence has been spelt

out by S. Abramsky in lAb87]; a tutorial exposition of Abramsky's testing characterization

of the equivalence ,,, may be found in [H88b]. The main import of Abramsky's results is

that, by using ,~ as our basic notion of equivalence, we automatically have a testing scenario

justifying it; in the remainder of this section we shall behaviourally characterize the class of

S P pomsets by means of the testing scenario presented in [Ab87]. However, as it is stated in

the following proposition, there is still a mismatch between the denotational semantics for

SP given by ~.] and the behavioural semantics given in terms of N. In fact, the denotational

semantics is sound, but not complete, with respect to the behavioural one.

P r o p o s i t i o n 3.2 (i) For all p,q C t P , ~p~ = ~q~ implies p ~ q.

(ii) a; a ~ aJa, but ~a; a~ # ~ala ~.

The import of the above proposition is that, not surprisingly, series-parallel pomsets do

not give rise to a fully-abstract model with respect to standard bisimulation equivalence.

The remainder of this section is devoted to showing how to define a behavioural semantics

for the language t P with respect to which the denotational model S P is fully abstract.

Following the system-testing approach discussed in [H88b], the discriminating power of the

testing scenario which induces the equivalence ~ over ,q P may be increased by enriching the

language with some computationally meaningful constructs and by applying the basic tests

presented in [Ab87] to processes in all language contexts built using the new combinators. In

what follows, we shall apply this philosophy by enriching the language S P with a refinement

operator p like the ones considered in e.g. [NEL88], [GGSS], [AH89].

Def in i t ion 3.1 (i) A refinement map is a funct ion p : A ~ t P.

(ii) The closure of ,~ with respect to all refinement contexts, ~P, is given by

p ~P q iff, for all refinement maps p, pp ~ qp,

where pp and qp are the terms (in S P} obtained by syntactically replacing p(a) for each

occurrence of a in p and q, respectively.

By construction, ~P is the largest $ P-congruence contained in -~ which is preserved by all

refinements of actions by processes. As pointed out before, this notion of equivalence may

be seen as arising by applying Abramsky's testing scenario in all refinement contexts. We

shall now show that ~P is indeed the behavioural counterpart of the denotational model SP,

i.e. that series-parallel pomsets are fully abstract with respect to the behavioural semantics

induced by , J . The proof of this claim proceeds in two steps. First of all, relying on work

presented in [AH89], we shall give a behavioural characterization of NP in terms of Hennessy's

timed equivalence [H88c], ~t . Secondly, we shall prove that the set of equations E in Figure

1 completely axiomatize ~t over $ P. The result will then follow as N~ and the congruence

induced over S P by the denotational semantics have a common axiomatization.

It is easy to see tha t ,~ is strictly weaker than ,-~P. For instance, as previously remarked,

a; a ~ a)a; however, (a; a)p 7 ~ (ala)p , where p is any refinement map such tha t p(a) = b; c.

In fact, (ala)p = (b; c)I(b; c) can perform two b-moves in a row, whilst (a; a)p = (b; c); (b; c)

can not. Hence a; a ¢5p al a and this implies tha t ~ itself is not preserved by the refinement

combinator over SP. As pointed out in e.g. [AH89], this is not at all surprising as the

definition of ~ is based on the assumption tha t processes evolve from one state to another by

performing actions which are atomic. This behavioural view of processes becomes inadequate

in the presence of a refinement operator like p and a more refined behaviourat description

of the processes in SP is needed. If actions are no longer atomic, a minimal consequence

is tha t they have a beginning and an ending. This is exactly the intuition underlying the

t imed view of processes presented in [H88c]. By assuming tha t beginnings and endings of

actions are distinct events and that they may be observed, a new behavioural description of

processes may be obtained. Formally, for each a E A, S(a) and F(a) are used to denote the

beginning and the termination of action a, respectively. Ev -'-d~I {S(a) , F(a)] a E A} will

be the new set of observable events and will be ranged over by e.

As pointed out in [H88c], the language for processes is not sufficiently expressive to

describe a possible state a process may reach by executing the beginning of an action. To

overcome this problem, a new symbol S(a) for each a E A is introduced into the language.

S(a) will denote the state in which action a is being executed but is not terminated yet.

The set of process states $ is the least set which satisfies:

i) p e S P i m p l i e s p E $

ii) a E A implies S(a) E $

iii) s E $, p E SP imply 8;p E $

iv) sl , s2 E S imply si182 E S.

The operational semantics for process states may be defined following s tandard lines. For

each e E Ev , the transit ion relation :=~ over $ is defined as the least binary relation over $

which satisfies the axioms and rules in Figure 3. The defining rules of = ~ use a termination

predicate on process states, x/s, which is induced on $ by the one previously defined on $P ;

namely, s~/s iff s E $ P and s~/. A s tandard behavioural equivalence over process states

may now be defined using the notion of bisimulation. A relation)~ C_ $~ is a t-bisimulation

iff it is symmetr ic and, for each (sl, sz) E ~, e E Ev ,

10

sca s(a)

2. ,s'@

3. s ==~ d implies s ; p ~ d ;p

4. sV/S, p = ~ d imply s; p :=~ ~'

5. sx = ~ s t implies sl[s2 ~ s~]82, s2[s~ ==~ s2]~

Figure 3: Axioms and rules for =A~

sl ==~ s t implies, for some s~, s2 = ~ s~ and (sl, s2) e £.

Let ut denote the maximum t-bisimulation. The following theorem from [AH89] states

that "~t gives a behavioural characterization of the relation , J defined previously by purely

algebraic means.

T h e o r e m 3.1 (AH89) For all p ,q 6 SP , p u t q if f p up q.

The behavioural characterization of ,-~P given by the above-stated theorem will be the touch-

stone for relating Np to the denotational semantics for S P in terms of series-parallel pomsets.

The proof of full-abstractness of the denotational semantics with respect to ~P relies on Gis-

chef's axiomatization of the congruence induced by ~.U over SP stated in Theorem 2.1. Let

us recall, for the sake of clarity, that = z denotes the least congruence over S P that satisfies

the set of equations E in Figure 1. The key to the full-abstraction result is then provided

by the following theorem, whose proof, which is rather long and involved, may be found in

the full version of the paper [Acg0].

T h e o r e m 3.2 (E q u a t i o n a l c h a r a c t e r i z a t i o n of ~t) For all p, q 6 S P, p N, q iff p =E q.

The full-abstractness of series-parallel pomsets with respect to ~P now follows fairly straight-

forwardly from the results stated above.

T h e o r e m 3.3 (F u l l - a b s t r a c t i o n for se r ies -para l le l p o m s e t s) For all p ,q C S P, ~p~ =

~q~ iff p uP q.

P r o o f : Assume p, q 6 S P. Then:

p =~ q by Theorem 2.1

p u t q by Theorem 3.2

p ~P q by Theorem 3.1. D

11

We end this section with a few comments on the equational characterization of ~t provided

by Theorem 3.2. First of all, it is interesting to remark that the equational characterization

of Nt, and consequently of ~P, is finite and does not make use of any auxiliary operator.

This is not in contrast with F. Moller's results on the non-finite axiomatizability of "strong

bisimulation'-l ike equivalences because ~t , when considered over S P, does not satisfy his

"reasonableness criterion". See [Mol89] for more details. Moreover, we can prove a stronger

version of Theorem 3.2 stating that the above-given equational characterization of ,~ is also

w-complete [Mo189], i.e. complete for the open term theory.

We shall now present a proof of the w-completeness of the set of equations E with respect

to Nt. Let Var be a countable set of variables ranged over by x , y , z . SP(Var) will denote

the set of expressions built by adding the clause

• x 6 Vat implies x E SP(Var)

to the formation rules for S P. SP (Var) will be ranged over by t , t ' , t l , The equivalence

~t can now be extended to S2(Yar) in the s tandard way as follows:

D e f i n i t i o n 3.2 Let t, t' E S P (Var). Then t " t t' iff for all closed substitutions a : Var --*

$ P, ta ~ t t'a. A n equational theory E Q over the signature of S P is then called w-complete

with respect to N t iff for all open terms t , t ' C $P(Var) , t ~ t t' iff E Q ~ t = t'. E Q ~ t = t'

will also be written as t =E¢ t'.

We shall now prove that the set of axioms E presented in Figure 1 is indeed w-complete

with respect to ~t over $ P (Var). In the proof we shall make use of a novel technique for

proving the w-completeness of a set of equations developed by J.F. Groote in [Gro90]. For

the sake of clarity, we shall now briefly outline Groote 's proof-technique for showing the

w-completeness of a set of equations. Assume that t and t ' are open terms in $ P (Vat) and

t ~ t t ' , i.e., by Theorem 3.2, t a =E t ' a for all closed substitutions a. The application of

Groote 's technique requires the isolation of a closed substi tut ion p : Var --* $ fl, mapping

each variable occurring in t and t' to a distinguished closed term representing this variable,

and of a translation map R : SP --, SP(Var) , which replaces each subterm representing

a variable by the variable itself. This pair of functions is required to satisfy the following

conditions:

(1) t =E R(p(t)) and t ' =E R(p(t ')) ,

(2) for each ® e {; , I} and P:,P2, q:,q~ C $ 2 , R(pl ® Pz) =E, R(q: ® qz), where E ' =

Z U {R(pl) = R(q~)] i = 1, 2}, and

12

(3) for each axiom t l = t2 in E and closed subs t i tu t ion a , R (a (t :)) =E R(u(t2)) .

Having found such a pair of maps p and R sat isfying condit ions (1)-(3) above, we could

then ob ta in the w-completeness of E with respect to "~t by apply ing the following instance

of Theorem 3.1 f rom [Grog0], page 317.

T h e o r e m 3 .4 If for each t , t ' E SP(Var) such that ta =E t'a, for all closed substitutions

a, there exist a closed substitution p : Vat --~ SP and a map R : S 2 --~ S ? (V a r) satisfying

(1)-(3) above then E is w-complete.

We shall now apply the technique described above to prove tha t E is indeed w-complete

wi th respect to ~ t over $ P .

T h e o r e m Z.5 (w - C o m p l e t e n e s s) For each t , t ' E SP(Var) , t ~t t' iff t =E t'.

P r o o f : Let t , t ' E SP(Var) be such tha t t ~ t t ' . By Theorem 3.4, in order to prove tha t

E is w-complete, it is sufficient to find p : Vat --~ $ P and R : $ P --~ SP(Var) satisfying

condit ions (1)-(3) above. Define p : Vat --+ SP by p(x) = a~ E A , where, for each x , y E Var,

• a= does not occur in t and t ~, and

• a~ = a~ implies x = y. (Note tha t such a map can be found because A is infinite)

The t rans la t ion map R : $ P --+ SP(Var) is defined by induct ion on the s t ruc tu re of p E SP

as follows:

• R(n i t) = nil,

f x if a = a~
R(a)

a otherwise,

• R iP ® q) = R(p) ® R(q) , for ® e {;, l}.

We are now left to prove tha t p and R satisfy condit ions (1)-(3). We examine each of the

condi t ions in turn .

(1) We prove tha t , for all ~ • SP(Var) not containing act ions of the form a , , ~ =E R(p(~)).

The proof is by s t ruc tura l induct ion on L We only examine two of the cases.

• i = a. Then Rip(a)) = R(a) = a because a # a , , for all x. The c la im now follows

by the reflexivity of = s .

13

• t = tl;t2. Then we have that

R(p(tl; t2)) =

-~E

RCP(tl);p(t2))

R(PCtl)); RCPCt2))

tl; t2 by induction.

(2) Let ® C {; ,I} and Pl,P2,ql,q2 C SP. Then, letting E ' = E U (R (p i) = R(q,)li = 1 ,2 } ,

we have that

n(p~ 0 p2) = R(pl) ® R(p,)

= n(q, ® q~).

(3) Let t~ = t2 be an equation in E and a be a closed substitution. Then it is easy to see

that R(a(Q)) =~ R(a(t2)). For instance,

RCaCC~lY)lZ)) = RCCoC~)laCY))laCz))
= (R(a(x)) lR(a(y)))]R(a(z))

=z R(a(x)) l (R(a(x)) lR(a(Y))) by (PAR1)

= R(a(xl(y lz))).

As p and R satisfy conditions (1)-(3), by Theorem 3.4 we have that E is indeed w-

complete. [3

4 S e r i e s - p a r a l l e l p o m s e t s a n d S T - t r a c e s

In the previous section we showed that series-parallel pomsets are fully-abstract with respect

to the equivalence obtained by applying Abramsky's testing scenario for bisimulation in

all refinement contexts. The observability of S P pomsets was then cast in a well-known

interleaving setting. The aim of this section is to investigate to what extent the model S P

can be made fully observable by assuming a trace-based basic notion of observation. It will

be shown that the causal structure of an N-free pomset is totally revealed by its set of ST-

traces [G190], i.e. that S P pomsets are fully abstract with respect to ST-trace equivalence

over the set of processes $ P. ST-semantics has recently been proposed in [GV87], [G190] as a

refinement of the timed behavioural view of processes outlined in §3. This more refined view

of processes is obtained by requiring a link between the beginning and the end of any event;

this allows one to express that a start-action S(a) and an end-action F(a) represent the

beginning and the end of the same occurrence of action a. Notions of ST-bisimulation and

14

ST-trace equivalence have been proposed and studied in [GV87], [G190] for Petri Nets and

Event Structures, respectively, and the interested reader is invited to consult these references

for more details on ST-semantics.

In what follows we shall mainly work with labelled posets rather than pomsets; this will

make the technical development slightly less cumbersome. All the results will be lifted to

pomsets and the process language SP in a straightforward way. Our first aim is to give

the class of labelled SP posers the structure of a labelled transition system following the

intuitions underlying the timed view of processes described in [I-I88c] and §3. In order to

provide an LTS semantics for the class of A-labelled posers, we shall have to extend the class

of labelled posets in order to express those intermediate stages in the evolution of a process

in which some actions have started but have not yet terminated.

Def in i t ion 4.1 Let A s = A tO {S(a) [a E A}. A n As-labelled poser JP = (P , < , I) is

sensible iff, for all u E P, l(u) = S(a) , for some a E A , implies u is minimal in if'.

Pos[As] wilt denote the class of sensible, series-parallel As-labelled posets.

Note that each h ° ~ Pos[A] is a sensible, series-parallel As-labelled poset. Intuitively, A s -

labelled posers (P, < , l) in which l(u) E A, for all u E P , are the model-theoretlc counterpart

of the processes in SP and those with at least a minimal element labelled S(a) , for some

a G A, correspond to proper states in S, i.e. states in which some actions will have started,

but have not yet terminated. The following definition introduces the transition relations

over Pos[As] .

Def in i t ion 4.2 (T r a n s i t i o n r e l a t i ons for pose t s) Let ~ = (P, < , I) E Pos[As] . Then:

(a) u is minimal in JP,

(b) = a, a . d

(e) h ~' = (P, <,l ') , where, for each v E P,

i l . =
l'(v)

L l(~t) otherwise.

(ii) P (v(_~u) P1 iff

(a) u is minimal in IP,

(b) = S (a) , a . d

15

(c) ~1 = (P~, <~,ll), where P1 = P - {u} and <1, l~ are the restrictions of < and l

to P1, respectively.

The following fact, whose proof follows easily from the definition of the transition relations

(/Y~, e E Ev, and is thus omitted, states that Pos[As] is indeed closed under derivation.

Fac t 4.1 (C losure u n d e r de r iva t ion) L e t / P E Pos[As] and e E Ev . Then 119 ~ • '

implies .~t E Pos[As] .

Using the above-given operational semantics for Pos[As] , it is now possible to define a

natural notion of complete trace of a poset L ° E Pos[As]. Intuitively, a complete trace "~

of a poset ~o E Pos[As] records a possible linear history of the evolution of the process

denoted by JP, i.e. the set of events the process involves in together with their relative order

of execution. In what follows we shall only be interested in this notion and the ones derived

from it for S P posets h ° E Pos[A].

Def in i t ion 4.3 (C o m p l e t e t races) Let /P = (P ,< , I) E Pos[A]. A sequence ff =

(el, Ul) . . . (ek, Uk) E (By x P)*, k > O, is a complete trace of 1l 9 iff there exist IPo, . . . , J~ak in

Pos[As] such that

(i) ~o = ~ , ~P~ = (0, 0, O) and

(ii) £v/("+22~+') JPi+l,/or all i < k.

CT(1P) will denote the set of complete traces of £:~. The projection maps will be homomor-

phieally extended to strings over (Ev × P)*, i.e. for 7 = (e l , U 1) " ' " (ek, uk), 7r l (' /) = el '" "ek

and ~r2('I) = u l ' " uk.

It is easy to see that if "y = (el, u l) . . . (ek, uk) is a complete trace of h ~ = (P, < , l) E Pos[A]

then P = {u~, . . . , Uk}, k = 2m where [P] = m and, for all u E P, there exist unique i , j such

that 1 < i < j < k, (ei, ui) = (S(a) ,u) and (ej ,uj) = (F(a) ,u) , with a = l(u). By using the

above notion of complete trace it is now possible to define two key notions of trace equivalence

over Pos[A]. The first one, which is based on the operational intuition underlying the timed

operational semantics defined in §3, is (complete) split trace equivalence [Va88], [G190]. Split

trace equivalence is just standard interleaving trace equivalence, [Hoare85], but based on

interleavings of beginnings and endings. ST-trace equivalence, [G190], will then be defined

as a refinement of split trace equivalence by requiring that beginnings and endings of the

same occurrence of an action a E A are explicitly connected in a complete trace.

Def in i t ion 4.4 (Spl i t and S T - t r a c e equivalence) Let ff},~l, n92 ~ Pos[A].

16

(i) A sequence a E Ev* is a split trace of J~ iff there exists "y E CT(•) such that 7rx('y) = a.

S(K*) will denote the set of split traces of IP. Then J~l and 1P2 are split trace equivalent,

~, ~2, ~2, i;y S (~) = S(~2).

(ii) PI and F= are ST-trace equivalent, J~l ~-'ST .~2, iff the following conditions hold:

(a) for each ~/x = (¢x,•l)... (ek, uk) E CT(~Pl) there exists "1= = (h , v l) " " (fh, Vh) e

CT(JF2) such that

• h = k , = a n d

• for all 1 < i < j < k, ul = uj iff vl = vj (ST-condition);

(b) vieeversa, with the r61es of J~l and J~2 interchanged.

The following fact states two basic properties of the above-given notions of equivalence over

Pos[A]. The first justifies our choice of working with labelled posets rather than pomsets by

showing that the notions of equivalence given above may be consistently lifted to pomsets.

The second states that ~ST is at least as strong as split trace equivalence. For the sake of

clarity, we recall that isomorphism between labelled posets is denoted by -~ (see Definition

2.1).

Fac t 4.2 Let IP1, IP2 e Pos[A]. Then:

(i) /Px ~- IP2 implies Fx ~2t TP2 and ~1 ~sT ~2.

(ii) T1 ~ST ~2 implies 1P1 ,~2t 1P2.

In the light of the statement above, ~--2t and ~ST may be now extended to S P in a rather

straightforward way.

Def in i t ion 4.5 Let a = [P1,<1,ll],3 = [P2,<~,12] E S P . Then a ~.2t 3 (a ~ S T 3) i f f

<1, ll) <2,12) <1,11) (P2, <2,12)).

The remainder of this section will be entirely devoted to showing that ST-trace equivalence

coincides with isomorphism over Pos[A] (and thus with equality over SP) . This implies

that SP pomsets can be made fully observable by assuming a trace-like notion of observation,

albeit one in which beginnings and endings of the same occurrence of an action axe explicitly

linked. The following standard example shows that ~ST does not coincide with isomorphism

over general labelled posets and pomsets.

E x a m p l e 4.1 Let a and f3 denote the following pomsets:

• ~ = ~(a;b)]Ca;b)] and

17

• 8 = [P,<,I], where P = {1,2,3,4}, 1 < 2, 3 < 4 and 1 < 4,/C1) = I(3) = a and

l (2) = l (4) = b. This pomsa is j ~ t Ciseher's NCa, b,a,b), [GiSt~.

Then a ~ST 8, but obviously a ~ 8. Note that 8 is not a series-parallel pomset.

The following lemmas, which analyze basic properties of the transition relations (e'ul, e E E v ,

will be useful in the proof of the main result of this section. The following lemma states that

sequences of sta~-moves are made up of independent transitions; such transitions may then

be performed in any order without influencing the resulting target state. A similar property

holds for end-moves.

L e m m a 4.1 (C o m m u t i n g s t a r t and end moves) Let]P = (P, <, l) E Pos[As]. Then

the following properties hold.

(i) JP ~s(a).,) ~ , ~S(b),~) F " implies JP (S(b_~},~) JP1 (S(,)~) ~ , , , /or some ~ E Pos[As].

(ii) F (e(a).u) ~o' (e(b),v) IF" implies ~ (F(b!,v) P I (e(.~u) jp,,, for some IF~ E Pos[As] .

The following lemma states that end-moves and start-moves corresponding to events which

are not causally related may be performed in any order without influencing the resulting

target state.

L e m m a 4.2 Let ~ = (P ,< , I) E Pos[As]. Then ~ (F(a)~u) ~ , (S(b!.~) ~p,, and u ~ v imply

(S(b),u) ~o 1 (F(~)~u) jp, , for some IFI E Pos[As].

The following result presents a basic consistency requirement on the complete traces of a

poser J/~ -- (P, < , l) e Pos[A]; namely that, for each v C P, the end of each event u < v

must precede the start of v in every linear history of ~ .

L e m m a 4 . 3 Let /P = (P ,< , I) E Pos[A]. Assume that u, v E P and u < v. Then q =

(el, u x) . . . (e~,uk) E C T (~) , (F(a) ,u) = (e,,ui) and (S(b) ,v) = (ey,uy), with l(u) = a and

l(v) = b, imply i < j .

We now have all the technical material which is needed to prove the main theorem of this

section, namely that ~ST coincides with isomorphism over Pos [A].

T h e o r e m 4.1 (S T - t r a c e equ iva lence -- i s o m o r p h i s m ove r Pos[A])

L a ~ , = (P,, <,,l,) ~ PosD,] , i = 1,2. Then ~ ~- ~ iiT ~ ~ s r ~ .

Proof : The "only if" implication follows by Fact 4.2. We shall now concentrate on the proof

of the "if" implication. Assume that ~ , ~ ~ Pos[A] and that IP~ ~ST ~P~; we will show

that/P~ ~ ~2. The proof proceeds in two steps:

18

1. first of all, we shall show that ~s, i = 1, 2, may be recovered from a part icular 7~ E

CT(~,);

2. secondly, we shall construct an isomorphism between IP1 and £P2 by making use of the

information on the order s t ructure of the posets obtained in the previous step and the

fact tha t IP1 ~,sT IP2.

Following ITs88], let << be the ordering relation over C T (~ I) obtained by lexicographically

extending the one over E v × P1 given by

(S (a) ,u) << (F(b) ,v) , for all a,b E A and u ,v E P1.

Let ql = (e l , u l) . . . (ek, u~), k >_ O, be minimal in C T (~ I) with respect to <<. Then there

e x i s t / P I , - - . , J~Pk-1 such tha t

r = ~ (~) ~ i < ~) . . . z ' k _ l ~) (0,0,0).

As previously remarked, P1 = {ux , . . . ,Uk} ; we shall now show that the ordering relation

<1 and the labelling function ll of P1 may be recovered from 71. By the definition of the

transit ion relations over P o s [A s] , it is easy to see that , for each u E PI, Ix(u) = a iff

(S(a), u) = (ei, us) for some 1 < i < k. We shall now concentrate on showing how <1 may be

recovered from 71. As we are dealing with finite partial orders, <1 is completely determined

by the covering relation over JP1; for all u ,v E P1, u is covered by v iff u <1 x <1 v, for no

x E P1. Intuitively, 71 begins with a block of start-moves followed alternately by blocks of

end-moves and blocks of start-moves and then ends with a final block of end-moves. Then

the events in P1 appearing in the first block of start-moves will correspond to the minimal

elements in/F1, those appearing in the last block to the maximal elements of/F1 and, for

each intervening block of end-moves followed by a block of start-moves, the events appearing

in the block of end-moves will correspond to events in J~l covered by those appearing in the

block of start-moves. We shall thus be able to recover from 71 the covering relation in 1FI;

this is sufficient to recover < 1.

Let -<1 be the relation over P1 such that , for all u, v E P1, u ~1 v iff

(F S) there exists a subword (eh, uh) • -- (eh+~, uh+~)(eh+~+l, uh+~+l) --- (e,, u,) of 71, with h <

l and r > 0, such tha t

(i) uh = u and ut = v,

(ii) for all i < r, eh+s = f (as) for some as E A, and

(iii) for all h ÷ r ÷ 1 <_ j <_ l, ei = S(b~) for some bi C A.

19

Let -<+ denote the transitive closure of "<1. We claim that

, , < i v . (11

* We prove, first of all, tha t u "<+ v implies u <1 v, i.e. tha t "<+ is sound with respect to

<1. Assume tha t u , v 6 t"I and u "<1 v. Then there exists a subsequence of r

with h < t, r > 0, such tha t uh+l = u, uL+1 = v and

(F (a h + l) , u h + l) " " (F (a h + ~ + i) , Uh+r+ l) <S(bh+,+2) , uh+~+2) " " (S(b,+l), u,+l>

satisfies the proper ty (FS). Assume, towards a contradiction, tha t u ~1 v. Then, by

repeatedly applying lemma 4.1, we have that , for some £p, and J~P",

with wl = <F(a,+2), uh+2> "- • <F(ah+r+l), Uh+,+l} and w2 = (S(bh+~+2), u,+~+2> • -- (S(b,), u,)

As u :£1 v, by lemma 4.2 there exists fP such tha t

ZP' (s(k~ +~)'") ~' (~(~h-t~ +~)'") ~".

Thus q = <el, U1).-. (eh, uh)wl<S(b,+,) ,v)(F(ah+l) ,u}w2(e,+2,u,+2>. . .<ek, uk> E

CT(~O1) and ~/<< ~1. However, this contradicts the minimality of ~/1 in CT(2P1) with

respect to <<. Hence u "<1 v implies u <1 v; by transitivity, u -<+ v implies u <1 v.

. We now prove that u <1 v implies u -<+ v, i.e. tha t -<+ is complete with respect to <1.

The proof of this fact will depend on the assumption that 2P1 is a series-parallel poset.

Assume tha t u is covered by v in/P1. Then, by lemma 4.3, (F(a) , u} = <¢h, Uh) and

(S(b) , v) = <¢,, u,), for some h, l such that h < I. If the subword of q

u , ,) . • •

has the (FS) property then we have that u "<1 v. Otherwise, there exist hi and h2,

with h < hi < h2 < l, such that eh, = S(ahl), eh2 = F(ah2), for some ah,, ah2 E A, and

(oh, uh) . . . (eh~, Uh~} and (eh2, U~) . . . (eL, u,) have the (FS) property. By the definition

of "<1, we have tha t u = uh "<1 Uh, and u~2 "<1 u~ = v. By the soundness of "<1 with

respect to <1~ we have tha t u <1 Uh, and Uh2 <1 v. Hence we have tha t

u <1 v, u <1 uh~ and uh~ <1 v.

As ~1 is a series-parallel poset, by applying the (N) proper ty in proposit ion 2.1 we

der ive tha t

20

a) Uhl <~1 ?] o r

(b) ~ <1 uh~ or

(e) uh~ <x uh,.

We examine each possibility in turn, showing tha t each of them leads to a contradiction.

If (a) holds then we have tha t u <1 uh, <1 v, contradicting the hypothesis tha t u is

covered by v in F1. Similarly, if (b) holds. If (c) holds then u ~ <~ uhl, but this

contradicts the assumption tha t hi < h2, i.e. tha t the s tar t of event uhl occurs before

the end of event uh2 in ~h. Hence we have shown tha t if u is covered by v in/P1 then

u -<1 v; by transitivity, u <1 v implies u -<+ v.

Thus we have shown tha t u < i v i f fu -<+ v, for all u , v E P1. As /P1 ~ST ~ , there exists

"~2 : (f l , v l) . . . (f~, v,) e CT(~2) such that:

(i) k : = a n d

(ii) for a l l l ' ~ i < j < k , u i = u i i f f v i = v i.

Again, we have tha t P~ = (v l , . . . , v ,) . We may now define -<2 from if2 as we did for -<1

f rom ffl and, as "Y2 is also minimal in CT(IP2), by symmet ry and (1) we obtain tha t x <2 Y

iff x -<+ y, for all x, y E P~. Let us now define ¢ : Px "-~ P~ by ¢(u) = x iff there exists

1 < i < k such tha t ui = u and vl = x. Then, ¢ is a well-defined function by clause (ii)

above and it is label-preserving by clause (i) and the definition of the transit ion relations.

It is easy to see tha t ¢ is also bijective by clause (ii). Moreover, by construction, ¢ is such

tha t u -<1 v iff ¢(u) ~<~ ¢(v), for all u, v E PI- Hence, by claim (1) and transitivity, we have

that u <1 v i f f¢ l <2 ¢(v), for all u , v C P1. Thus J~Pl = JP2. Q

The following result is an immediate corollary of the above theorem.

C o r o l l a r y 4 .1 Let a, ~ E S P . Then a = ~ iff a ~ST ~.

ST-trace equivalence can be inherited by SP via the semantic map H in a straightforward

way; for each p, q E SP, we write p ~ z r q iff ~p]] ~ s r ~q~. By using the results presented in §3

and the above theorem and corollary, it is now possible to provide a complete axiomatization

of ST-trace equivalence over SP. Moreover, as stated by the following theorem, ~ST gives yet

another characterization of the largest congruence over SP which is preserved by refinement

and is contained in --~.

Theorem 4.2 For all p,q E S P, p ~ sT q iff p ..~P q i f f p ---t~ q.

21

P roo f : The claim follows by the above corollary, Theorem 2.1 and theorem 3.3. []

ST-trace equivalence, ~sz , could be defined directly on the language SP without much

difficulty; however, the proof of the main result of this section has been greatly simplified

by working with labelled posers rather than with terms in $ P.

5 C o n c l u s i o n s

In this paper, we have presented a behavioural characterization of the class of series-parallel

pomsets, [Gi84], based on a natural interleaving testing scenario. This has been obtained

by showing that the model of series-parallel pomsets is fully-abstract with respect to the

behavioural equivalence obtained by applying Abramsky's testing scenario for bisimulation

equivalence, [Ab87], in all refinement contexts, [AH89], [GG88], [NEL88]. Following Milner

and Plotkin's paradigm, this result justifies the use of this simple mathematical model based

on partial orders in giving semantics to the basic process algebra studied in this paper.

Moreover, we have shown that identity over the class of SP pomsets coincides with ST-trace

equivalence, [G190]. Thus SP pomsets can be made fully abstract by assuming a trace-based

notion of observation, albeit one in which beginnings and ends of the same occurrence of

an action are explicitly linked. This retrievability result has allowed us to give a complete

axiomatic characterization of ST-trace equivalence over the class of SP pomsets. A natural

question to ask is whether SP pomsets are completely characterized by their set of split

traces, see [Va88], [G190] and §4. The following conjecture naturally suggests itself.

Con j ec tu r e : For all a, ~ E SP , a = fl iff a ~2t ~.

All the author's attempts to prove or disprove the above conjecture have so far failed.

It is interesting to note that the validity of the above conjecture would have some striking

consequences. First of all, it would imply that, for all p, q E S P, p ~t q iff p ~2~ q, i.e. that

tlmed-bisimulation and split trace equivalence coincide over S P. As it is well-known, this

result is not true of standard strong bisimulation and trace equivalence because the processes

in SP are not deterministic, [Mi189], [Va88]. Moreover, by following the proof of the results

presented in [AH89], it would be possible to show that equality between SP pomsets is the

largest congruence contained in standard interleaving trace equivalence which is preserved

by refinement.

The work presented in this paper may be seen as an embryonic at tempt at defining a

natural testing scenario which justifies the use of partial order semantics without assuming

22

any notion of "causal observation ~. We have shown that such a testing scenario does exist

for the simple model considered in the paper; however, as work by R. van Glabbeek on

ST-bisimulation semantics shows, [G190], a notion of system testing based on the refinement

operator does not suffice to reveal the full-distinguishing power of partial order semantics.

The search for a testing scenario which justifies models like Event Structures and Causal

Trees seems to be a very interesting topic for future research.

We end this conclusion with a brief discussion of related work. Precursors of the work

presented in §3 are [Gi84], [Ts88], where language equivalence for pomsets and series-parallel

pomsets are studied in detail, and recent papers in the literature studying notions of equiv-

alence for concurrent systems which are perserved by refinement of actions [AH89], [GG88],

[NEL88], [G190]. In all these references, the authors present semantic theories for processes

which support refinement of actions. The reference [GG88] gives a good survey of the work

in this area; [NEL88] gives a natural fully abstract model for a language incorporating a re-

finement operator and [AH89] characterizes the largest congruence contained in bisimulation

equivalence which is preserved by refinement over a simple process algebra and gives a finite,

complete axiomatization for it. In [G190], the author studies notions of ST-bisimulation and

ST-trace equivalence over prime Event Structures [Win87] and proves that they are both

preserved by refinement.

Retrievability results like the one presented in §4 for SP pomsets have been shown in, e.g.,

[Va88]. There the author shows that deterministic Event Structures are characterized, up to

isomorphism, by their set of step-sequences. A similar result is shown for split-traces; this

implies that the causal structure of a deterministic concurrent system can be reconstructed

by observers which are capable of observing the beginning and the end of events.

A c k n o w l e d g e m e n t

I should like to thank my supervisor Matthew Hennessy for his guidance, continuous

support and the joint work which has led to the development of the main ideas in this

paper.

6 R e f e r e n c e s

[Ab87] S. Abramsky, Observation Equivalence as a Testing Equivalence, TCS 53, pp. 225-

241, 1987

[Ac90] L. Aceto, Full Abstraction for Series-Parallel Pomsets, Computer Science Report

1/90, University of Sussex, March 1990

23

[AH89] L. Aceto and M. Hennessy, Towards Action-refinement in Process Algebras, Proc.

4 th LICS, pp. 138-145, IEEE Computer Society Press, 1989 (Full version to appear in

Information and Computation)

[BC88] G. Boudol and I. Castellani, Concurrency and Atomicity, TCS 59, pp. 25-84, 1988

[BHR84] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe, A Theory of Communicating

Sequential Processes, JACM 31,3, pp. 560-599, 1984

[BK85] J.A. Bergstra and J. W. Klop, Algebra of Communicating Processes with Abstrac-

tion, TCS 37, 1, pp. 77-121, 1985

[DD89] P. Darondeau and P. Degano, Causal Trees, Proc. ICALP 89, LNCS 372, pp. 234-

248, Springer-Verlag, 1989

[DDM88] P. Degano, R. De Nicola and U. Montanari, Partial Ordering Semantics for CCS,

Technical Report TR-3/88, Universit~ di Pisa, 1988

[DH84] R. De Nicola and M. Hennessy, Testing Equivalences for Processes, TCS 34,1, pp.

83-134, 1984

[Gi84] J. L. Gischer, Partial Orders and the Axiomatic Theory of Shu, O~c, Ph.D. Thesis,

Stanford University, 1984

[GG88] R. van Glabbeek and U. Goltz, Equivalence Notions for Concurrent Systems and

Refinement of Actions, Proc. 14 th MFCS, LNCS 379, pp. 237-248, Springer-Verlag,

1988

[Gl90] R. van Glabbeek, The Refinement Theorem for ST-bisimulation, to appear in Proc.

IFIP Working Group, Sea of Galilee, 1990

[Go88] U. Goltz, On Representing CCS Programs by Finite Petri Nets, Arbeitspapiere der

GMD 290, February 1988

[Gr81] J. Grabowski, On Partial Languages, Fundamenta Informaticae IV.2, pp. 427-498,

1981

[Grog0] J.F. Groote, A New Strategy for Proving w-Completeness applied to Process Al-

gebra, Proceedings CONCUR '90, LNCS 458, pp. 314-331, Springer-Verlag, 1990

[GV87] R. van Glabbeek and F. Vaandrager, Petri Net Models for Algebraic Theories of

Concurrency, Proc. PARLE Conference 1987, LNCS 259, Springer-Verlag, 1987

24

[H85] M. Hennessy, Acceptance Trees, JACM 32,4, pp. 896-928, 1985

[H88a] M. Hennessy, Algebraic Theory o/ Processes, MIT Press, 1988

[H88b] M. Hennessy, Observing Processes, Proc. REX Workshop 88, LNCS 354, pp. 173-

200, Springer-Verlag, 1988

[H88c] M. Hennessy, Axiomatising Finite Concurrent Processes, SIAM Journal on Com-

puting, October 1988

[HM85] M. Hennessy and R. Milner, Algebraic Laws for Nondeterminism and Concurrency,

JACM 32,1~ pp. 137-161, 1985

[Hoare85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985

[HP79] M. Hennessy and G. Plotkin, Full Abstraction for a Simple Parallel Programming

Language, Proc. MFCS, Lecture Notes in Computer Science vol. 74, Springer-Verlag,

1979

[Main88] M. Main, Trace, Failure and Testing Equivalences for Communicating Systems,

International Journal of Parallel Programming 16, pp. 383-401, 1988

[Mi177] R. Milner, Fully Abstract Models of Typed Lambda-Calculi, TCS 4, pp. 1-22, 1977

[Mil80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer

Science Vol. 92, Springer-Verlag, 1980

[Mi183] R. Milner, Calculi for Synchrony and Asynchrony, TCS 25, pp. 267-310, 1983

[Mi189] R. Milner, Communication and Concurrency, Prentice-Hall, 1989

[Mo189] F. Moller, Axioms/or Concurrency, Ph.D. Thesis, University of Edinburgh, 1989

[NEL88] M. Nielsen, U. Engberg and K. S. Larsen, Fully Abstract Models for a Pro-

cess Language with Refinement, Proc. REX Workshop 88, LNCS 354, pp. 523-548,

Springer-Verlag, 1988

[Pa81] D. Park, Concurrency and Automata on Infinite Sequences, Lecture Notes in Com-

puter Science vol. 104, Springer-Verlag, 1981

[P17~] G. Plotkin, LCF Considered as a Programming Language, TCS 5, pp. 223-255, 1977

25

[P181] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI FN-19,

Computer Science Dept. , Aarhus University, 1981

[Pr86] V. Pratt, Modelling Concurrency with Partial Orders, International Journal of Par-

allel Programming 15, pp. 33-71, 1986

[Rei85] W. Reisig, Petri Nets, EATCS Monographs on TCS, Springer-Verlag, 1985

[Sto88] A. Stoughton, Fully Abstract Models o/ Programming Languages, Research Notes

in TCS, Pitman-Wiley, 1988

[Tau89] D. Taubner, The Fiaite Representatioa of Abstract Programs by Automata and

Pctri Nets, LNCS 369, Springer-Verlag, 1989

ITs88] S. Tschantz, Languages Under Concatenation and Shuffling, Vanderbilt University

Report, 1988

[Va88] F. Vaandrager, Determinism ---+ (Event Structure Isomorphism = Step Sequence

Equivalence), Report CS-R8839, CWI Amsterdam, October 1988

[Win80] G. Winskel, Events in Computatioa, Ph.D. Thesis, University of Edinburgh, 1980

[Win82] G. Winskel, Event Structure Semantics for CCS and Related Languages, Proc.

ICALP 82, LNCS, Springer-Verlag, 1982

[Win87] G. Winskel, Event Structures, Advances in Petri Nets 1986, LNCS 255, pp. 325-

392, Springer-Verlag, 1987

