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Abstract. A formal development method for concurrent programs is proposed. It gen- 
eralizes several variants of  the stepwise refinement method often used in concurrency, 
in that not only atomicity refinements, but also arbitrary transformations, are taken into 
account. The method is illustrated by simple examples. 

1 Introduction 

It is now widely accepted that systems of concurrent processes are complex objects, which should be 
specified, designed and verified in a formal way. Much work has been devoted to this problem, and 
useful results have been obtained. Some of  them are now briefly recalled, upon which our work is 
based. 

Logics and related formalisms are adequate tools for the expression of properties of concurrent 
systems. They are also appropriate for proving these properties [38,28,34,35]. The design and the 
verification of  concurrent systems are easier when appropriate abstract languages are used, for instance 
CSP [23,24], Action Systems [5] or UNITY [10]. The semantics of  these languages and of the 
programs written in them can be formally stated. The notion of  invariant, initially introduced for 
sequential programming, has proved very useful in parallel programming as well [1,38,43]. 

These formal tools (languages, logics and deduction systems) should be the foundation of  a formal 
methodology of  parallel programming [24,32,10]. The usual methodology for the design of  concurrent 
systems relies on the notion of  "stepwise refinement". Roughly speaking, this method consists in 
generating a sequence of systems, each of them being slightly more complicated and, hopefully, "better" 
than its predecessor. Many examples of concurrent systems developed by the stepwise refinement 
method (in fact, several variants of  it) have appeared in the literature; some of  them are [14,8,27,3,9]. 
It should be emphasized that this method seems to be quite general; it is not restricted to some 
languages or programming constructs. 

In practice, the designer has first to discover a possible refinement, and then to establish that this 
refinement is valid. The first step is usually a creative one: the designer wants to transform the 
program in order to satisfy a stronger specification, or the same specification in a more efficient way. 
The designer has to identify some parts of  the program which maybe should be replaced by new parts. 
The second step is to check whether an attempted refinement is acceptable or not. This can be done 
by producing an appropriate invariant of the refined version. It has been observed that an adequate 
"small" clhange in the system usually induces a "small" change in the invariant; the nature of this 
change is not identified easily and its expression depends on the language used to write the assertions. 

Much work about the problem of stepwise refinement in concurrency has been and still is performed. 
The obtained results can be roughly classified in two categories. The papers of the first category contain 
examples of development. The authors introduce a sequence of versions of their programs, each of 
them with a proof, that is, an invariant. This kind of presentation allows the readers and the authors 
themselves to understand the subtleties of the problem and its proposed solution in an incremental 
way. An early example in this category is [14]; many examples presented in [10] are also based on 
the stepwise refinement method. 

The s~ond category contains more theoretical results about the notion of  refinement itself. These 
results are usually about a particular but important kind of  refinement, called the "atomicity refinement", 

1Suppor~t in part by the ESPRIT project ATES. 
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or the "sequential refinement". The notion of  atomicity occurs in concurrent programming when the 
interleaving semantics is used, that is, when concurrency is modelled by non-determinism" a step of 
the computation consists in executing a statement of some arbitrarily chosen process of the system. In 
a "coarse-grained" system, a statement can be a rather big segment of program, involving the access 
to several variables; in a "fine-grained" system, a statement is a simple assignment or a simple test. A 
sequential refinement consists in "breaking" a statement into a sequence of more elementary statements; 
for instance, the double assignment (~, ~t) := (7¢, z) is refined into the sequence t := z; z := g; y := t ,  
where t is a new variable. An early work about refinements is [31]; more recent papers are [27,30,7]. 

From the theoretical point of view, it is rather easy to deal with sequential refinements. Suppose we 
have a program P whose invariance properties are established by some invariant I. If  a process ~r of  P 
contains some statement S, sequentially equivalent to $1; Sz, one can attempt to split the statement S 
into the sequence formed by the more elementary statements $1 and $2. Due to possible interaction with 
other processes, the program Pt obtained by such a transformation is not. always correct with respect 
to the specifications of P.  A simple method to evaluate the impact of the refinement on the semantics 
of the program is as follows. Let R be the predicate which is false when the control of the execution 
of  ~ is between the statements S1 and $2 (that means that the next statement executed by ~r will be 
$2) and true otherwise. If  a formula J exists such that the formula I ~ =def [(R =:~/") A ('aR :=~ J)] 
is an invariant of  the refined version P~, then the specified invariance properties of P ,  summarized 
in the invariant I ,  are preserved in the refined program P~ (except maybe in "transient" states, when 
R is false). On the contrary, when no adequate J can be found, the semantics of P~ deeply differs 
from the semantics of P ,  and the refinement is likely to be incorrect. This method and the strategy 
for finding J ,  when it exists, have been presented and illustrated in detail in [18,19]. 

In practice, sequential refinement is not sufficient, since new variables are introduced in a very 
restricted way. Especially, this kind of  refinement disallows the strengthening and the weakening of 
the guards of the statements, and modifying guards is often used in practice during the design of  
concurrent systems. More general transformations, involving for instance the unrestricted introduction 
of new variables, may induce substantial changes in the computation, if the guards of some statements 
of the program are made dependent on the value of the new variables. 

The purpose of  this paper is to generalize the method recalled above to the general case of arbitrary 
transformations. The main problem is the choice of  a "refinement formula" R; this choice is evident for 
sequential refinements, but not for more general transformations. On the contrary, when the formula 
R has been chosen, the determination of an adequate J (when there is one) can be done in the same 
way for a sequential refinement or for an arbitrary transformation. 

The paper goes on as follows. The formal tools needed to explain and apply the method are 
presented in Section 2; the method for finding R and J is presented in Section 3 and illustrated in 
Sections 4 and 5. Section 6 is a conclusion. 

2 Formal  tools 

In this section, we first introduce briefly our programming notation, called FCS (for Formal Concurrent 
System), with a simple example. This example will also show that sequential refinements are not 
sufficient in practice: more general transformations are needed, even in the development of elementary 
concurrent systems. Afterwards, the Hoare logic for FCS is introduced, together with the notions of 
weakest liberal precondition and strongest liberal postcondition. 

2.1 A programming notation 

The programming notation FCS is elementary and best explained by an example. Here is first a 
graphical presentation of a toy algorithm. 
This is a simple scheme for mutual exclusion. P and Q are cyclic processes sharing the variable T 
(for "Turn"). A process, say P,  can perform internal computation (not involving the shared variable 
7") either in its non-critical state Po or in its critical state Pc- As, at every time, at most one process 
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Figure h A toy algorithm 

can execute its critical section (CS), the shared variable is used to implement the mutual exclusion; 
when, for instance, process Q is in its critical section, then process P must be delayed, in its waiting 
state p,~. Classical place predicates will be used; for instance, the formula (at p~, ^ at qc) is true 
when process P is in its waiting state and process Q is in its critical state. The mutual exclusion is 
modelled by the formula 

-~ (at Pc A at qc). 

The equivalent FCS, called $00, is simply a lexical version of the graphical representation : 

79 = { P , Q } ,  where P = {po, p~,pc} and O = {qo, q~,qc} ; 

.mr : {T : {p, q}} ; 

7" = {(po, T :=q, p~), (qo, T :=p, q~), 
(Pw, T = p  ~ sk ip ,  Pc), (q~,, T = q  - -~  sk ip ,  qc), 
(Pc, sk ip ,  po), (qc, skip,  qo) } .  

An FCS has three components. First, the set of  O~ormal) processes 7 9, second, the memory AA and, 
third, the set o f  transitions T.  Processes are disjoint non-empty sets of  labels; the memory is a finite 
set of typed program variables. A transition is an expression like r = (O, G ~ A, E),  where O is 
the origin (or entry point), E is the extremity (or exit point) and G ---+ A is the guarded (multiple) 
assignment of the transition. An axiomatic semantics for FCS is given in the next paragraph. Let us 
simply mention here that a step of computation consists in executing an arbitrary executable transition 
(if there is one). The transition 7- is executable when the formula condO') =de/ (at 0 A G) is 
true; after the execution of  v, at E is true. A formula I is an invariant of an FCS if  each transition 
~- respects I :  if r is executed from a state satisfying I (and cond(v)), then the resulting state also 
satisfies L An initial condition A may be specified for an FCS; it means that only computations whose 
first state satisfies A are considered, ff an FCS is introduced with an invariant, this invariant is also 
the initial[ condition, unless stated otherwise. 
Comments. Every transition of the system S0o involves a single process (either P or Q). Some systems 
can contain transitions involving several processes; in this case, the origin and the extremity contains 
a label of each involved process. 
We am not interested in the internal computation performed by the processes; as a consequence, it is 
not modelled in the formal concurrent system Soo. 

With self-explaining notation, a useful invariant of the system is 

Ioo =de/ (at Pw ~ (T = q V at qw)) A (at qw =~ (T = p V at pw)) 
A (at P c = ~ T = p )  A ( a t q e - - ~ T = q ) .  
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(The invariant Io0 is also the initial condition.) 
Let us emphasize two implicit parts of any invariant. First, the process rule asserts that each process 
is at exactly one place at every time. For process P ,  this rule is formalized into the assertion 

at po + at p~ + at p¢ = 1 

(with the usual convention: true is identified with 1 and false is identified with 0). The second implicit 
part is the variable rule: each variable has exactly one value at a time, and the set of  the possible 
values is the type of the variable. For the variable T, one can formalize the rule into the assertion 

T = p  V T = q .  

As the formula ~(at pcAat  qc) is a logical consequence of the invariant Io0, the system ,500 guarantees 
mutual exclusion. 

Some useful pieces of notation are introduced now. 
If L = t l . . .  In is a sequence (or a set) of labels belonging to distinct processes P h . . . ,  Pn of some 

system `5, then at L stands for (at I i  ^ . . .  ^ at in). If B is a formula, then B[at £] is obtained by 
"making at £ true" in formula B; more formally, B[at L] is obtained by replacing each place predicate 
at k occurring in B by true when k E { l h . . . ,  tn},  by false when k E (P10 . . .  U Pn) \  {tt, . . . , l n} ,  
by at k (no change) when k t/(P1 U . . .  O pn).  
Notice that the formulas (B ^ at £)  and (B[at L] A at £)  are always equivalent. 

Here is an example, about the system ,5o0 introduced in the previous section. If  B is Io0, then 
B[at  Pw] is obtained by replacing in B the formulas at po, at  p~, and at Pc by false, true and false, 
respectively. The result is [(T = q V at q~,) ^ (at q¢ ~ T = q)], reducing into (T = q v at q,o). 
Similarly, B[at  P~,qe] is obtained by replacing, in B[at pao], the place predicates at qo and at q~, by 
false,  and at q, by true; the result is T = q. 

2.2 Hoare logic for FCS 

In the previous paragraph, the invariant I00 of the system So0 has been introduced without proof; let 
us now introduce the Hoam deduction system [22,2] for proving that some formula is an invariant of 
some FCS. The deduction system also provides an axiomatic semantics for the language FCS. 

The following elements am fixed throughout this paragraph : 

• AnFCS S = ( ~ , A 4 , T ) .  

• A family of processes {P1 . . . . .  Pn} C 7 ~. 

• A family of  transitions ~ C T. 

• Labels Ii, rnl E P~. for all i (ti = ml  is allowed). 

A transition ~- = (L, C ~ A,  M) E T,  where C and A are respectively a guard and an 
assignment; L and M stand for l l . . .  tn and m l - "  rnn, respectively. (Only the case n = 1 has 
appeared in the example S0o.) 

• P and Q am assertions, that is, logical formulas interpreted on the states of S. 

Hoare's logic is adapted to FCS by the following rules. 

{P} C ----+ A {Q} =d# {P ^ C } A { Q } ,  (1) 
{P} (L, C ~ A,  M) {Q} =~$ {P[at  L]} C ---+ A {Q[at M]} ,  (2) 

{P} To {Q} A [ {P} {Q} ] • (3) 
rETo 
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These roles model the execution mechanism of FCS. 
The first role expresses the semantics of the guarded assignment C ----, A; it is equivalent to A 
when C is true; otherwise, it cannot be executed (as a consequence, the triple {-~C} C , A {Q} is 
vacuously true). 
The second rule expresses the semantics of  the transition; it can be executed only when (at L ^ C) 
is true and leads to a state where at M is true. 
The third rule is not mandatory; it is introduced as an abbreviation. 

As an example, we will prove that the invariant I0o is respected by the transition 
v= (p0 ,  T :=q,  p~,). Due to rule (2), the triple {Ioo}r{Ioo} reduces to the triple 
{Ioo[at PO]} T := q {Ioo[at p~]}.  The precondition is evaluated in 

(m~ q,n ~ T = p) ^ (at qc =~ T = q),  

whereas the postcondition is evaluated in 

( T = q  v at qw) ^ (at q, =~ T = q). 

The classical Hoare axiom for the assignment is 

U'}~ :=e{Q} ¢=~ (P =~ 0[z/el); 

it allows: to further reduce the triple to the implication 

[(atq,~=~ T = p )  h (atqe=V T = q ) ]  ~ [(q=q V atqw) ^ (atqc=~ q=q)] ,  

which is: a tanmlogy. 

2.3 l~'ogramming calculus 

The liberal version of Dijkstra's programming calculus is adapted to the language FCS as follows. 

wtp[(C ~ A); Q] =del (C =¢, wlp[A; Q]), (4) 
slp[P ; ( c  ...... , A)] =de~ slp[(P A C) ; A],  (5) 

wlp[(L, C ~ A, M); Q] =de! at L ~ wlp[(C ~ A); Q[at M]] ,  (6) 
slp[P ; (L, C ~ A, M)] =del slp[P[at L] ; (C -----, A)] A at M ,  (7) 

wtp[T; O] =d,/ m Mp[r;  O] ,  (8) 
vET 

slp[P; T] =d~ V sip[P; r ] .  (9) 
~'ET 

The predicate transformers wlp and sip are strongly related to Hoare's logic; their extensions have 
been defined in such a way that the three formulas 

{ P } X { Q } ,  P =~ wlp[X; Q], slp[P; X] ~ Q 

are equivalent not only when X is an assignment, but also when it is a guarded assignment, a transition 
or a set of transitions. The first formula is used when P and Q are both known or both unknown. 
The second formula is used when only Q is known and the third one is used when only P is known. 
Comment. Let us emphasize the difference between top [13], and wlp [11]: 

wIp[(c ~ A);  Q] - v =~ w/p[A;Q],  
wp[i fC ~ Af t ;  Q] _= C A  wp[A;Q]. 
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3 A methodology of incremental transformation 

In this section, we introduce a notion of refinement that is general enough to allow any kind of program 
transformation. Afterwards, we show how the effect of such a transformation on the semantics of the 
refined system can be formalized. The method generalizes the results presented in [18,19]. 

3.1 Examples and definitions 

Various kinds of  transformations usually referred to as "refinements" are now illustrated with the 
elementary system `500. This example provides a useftfl guideline towards an appropriate definition 
of  the concept of  refinement. It formalizes the original development of  Peterson's algorithm given in 
[39]. 

The system `500 has an obvious drawback: it enforces the processes to access their critical section 
strictly in turn. This is too restrictive: we would like to allow one process to proceed when the other 
is in its non-critical section. Otherwise stated, the guards T = p and T = q should be weakened into 
the guards (at qo v T = p) and (at P0 v T = q), respectively. 

As place predicates are not considered as program variables in FCS, this transformation is (syn- 
tactically) disallowed. However, nothing prevents the introduction of new variables, for recording the 
tmthvalues of at po and at qo. Such variables are called secondary variables because their values are 
fully determined by the values of already existing, primary objects (variables and place predicates); 
on the contrary, the values of the primary variables do not depend on the values of the secondary 
variables. As a consequence, the impact of the introduction of secondary variables on the invari- 
ant I of the system is trivial : if a secondary variable z is introduced, then the invariant becomes 
I '  =aef (I  A P(z)),  where P(z )  describes the value of z in terms of primary objects. 

Let us introduce boolean variables i nP  and inQ to record the values of the place predicates at po 
and at qo. More precisely, we define inP =aef ~at Po and inQ =dey -~at qo. This leads to the system 
`511 given below. 

7~ = { P , Q } ,  where P = {po, p~,p~} and Q = {qo, q~,q~} ; 

AA = {T  : {p, q}, i nP  : bool, inQ : bool} ; 

T = {(Po, (inP, T):=( true ,  q), Pw), (qo, ( inQ,T) :=( t rue ,  p) ,  qw), 
(p~,, T =p  , sk ip ,  Pc), (q~,, T = q - -~  skip ,  qc), 
(Pc, i nP  := false,  po) , (qc, inQ := false,  qo) } .  

Obviously, the invariam I11 associated with the system Sl l  will be 

111 =des [I00 A (at po -- -~inP) h (at gO -- -~inO)]. 

Now, we would like to weaken the guards T = p and T = q into (-~inQ v T = p) and (~ inP v T = q), 
respectively. This will lead to the refined system ,522, but an invariant I22 has to be discovered for it. 
Let us note that this transformation is less trivial than the previous one; in particular, the new invariant 
122 is not bound to be ( I l l  A F )  for some formula F .  A method for discovering I22 is explained in 
the sequel. 

As ,522 contains double assignments, sequential refinements should be attempted. However, such 
transformations require that new "intermediate" labels are introduced first. In fact, two new labels Pi 
and qi are introduced in P and Q respectively; this leads to the refined system $33 and to a refined 
invariant I33 for it. As no transition evokes the new labels, the new invariant will be 

133 =def (122 h ~at Pi A ~at ql). 

As a last step, the sequential refinements themselves can be attempted; for instance, the transition 

(PO, (inP, T)  := (true, q), p~) 
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will be replaced either by the transitions 

(PO, inP := true,  Pi) , 

(Pl, '/ ' : =q ,  P, ,) ,  

or by the transitions 

(Po, T :=q, pO, 
(Pi, i nP  := true,  p~o) . 

A similar replacement will be done for the transition 

(qo, ( inQ,T)  :=(true,p),  q,~). 

These transformations will lead to the refined system `544 and, hopefully, to an appropriate invariant 
I44 for this system. (144 will be appropriate if the formula -1 (atp~ A at qc) is still a logical consequence 
of  it.) Once again, the derivation of /44 from I33 is not trivial; especially, the way the assignments 
about i nP  (or inQ) and T are ordered may be important. 

As a conclusion, we see that two very different kinds of refinements must be performed. First, the 
refinements from ,5oo to ,511 and from £22 to 833 are rather trivial. The role of these transformations 
is simply ~0 introduce new objects (secondary variables or labels), in order to prepare more substantial 
and less trivial refinements. For this reason, they are called preliminary refinements. Their main 
characteristic is that they respect the invariant of  the system; with self-explaining notation, we have 
the relation 

l.ew =- (Iold A F), 

where the formula F describes the new objects. No specific methodology is needed to deal with such 
transformations; they are also called non-semantical refinements, since they do not alter the invariant 
(that is, the semantics) of the system. 

On the other hand, the refinements from `511 to ,822 and from 833 to ,544 are not trivial. They involve 
the introduction of  no new object, but some transitions are replaced by new ones. In order not to rule 
out any kind of  program transformation, no restriction is placed on the nature of the new transitions, 
except thai: they must be syntactically acceptable; as a consequence, they cannot evoke undefined labels 
and variables, z As such transformations are likely to alter deeply the invariant (the semantics) of the 
system, they are called semantical refinements. The sequential refinement (or atomicity refinement) is 
the most elementary case of  semantical refinement. 

3.2 Sequen t i a l  refinement 

The purpose of  this paper is to evaluate the impact on the invariant of any kind of  semantical refinement 
but, as the particular case of  sequential refinement has already been studied [7,18], it is helpful to recall 
it first. 

A sequential refinement S '  of an FCS S is obtained by replacing a transition r = (l, C - - ~  A, ra) 
of £ by two transitions r ' = (l, C ~ ) A ~, n) and r "  = (n, C"  ~ A", m), where r ~ and r "  satisfy the 
following compatibility conditions. First, n is a new label; one can suppose that it has been introduced 
by a preliminary refinement, and that the invariant of  the system ,5 is (3 A -~at n). Second, for all 
assertions P and Q, if  the triple {P} r {Q} is tree, then there exists an assertion R such that the 
triples {P} r I {R} and {R} r "  {Q} are also true. The second condition can be rewritten as 

wlp[r; Q] ~ wlp[r'; wlp[r"; Ql l ,  for all Q .  

2If new labels and variables are needed, preliminary refinements must be performed first to introduce them. 
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Comment. The definition of a sequential refinement given here agrees with the formal notion of refine- 
ment introduced in [6,36,37]. This notion is convenient in the framework of sequential programming 
but, as already mentioned, insufficient in the framework of  parallel programming. 

We briefly recall the method for dealing with sequential refinements. (More details are given in 
[18] and will be given, for the general case, in the next paragraph.) A definition is introduced first. 
A transient state of the sequentially refined system 5̀~ is a state where the place predicate at n is true 
(n is the new label). It is considered that a sequential refinement is acceptable, or valid, when the 
invariant of  the initial system ,5 remains true throughout the computations of  the refined system ,st, 
except maybe in transient states. This is the case if and only if an assertion J exists such that 

I '  =a~ [(-~at n =~ I )  ^ (at n ~ J)] 

is an invariant of the system ,51. As a consequence, to validate a refinement means to discover an 
adequate J.  Such a J is a solution of the constraint 

{ ( - , a t n  =~ I )  A ( a t n  =e~ J ) } T ' { ( - , a t n  =~ I )  ^ ( a t n  =~ J )} ,  (10) 

where T I = (T  \ {r}) u {7", 1-"} is the set of transitions of the refined system ,5~. It is helpful to 
decompose this constraint into four parts, depending on the fact that at n can be true or false in the 
precondition or in the postcondition. The four resulting constraints are listed below. 

{-,at n ^ z} 7" {-~at n =~ z } ,  
{-~at n ^ I}  T '  {at n ~ J }  , 
{at n ^ s }  7-, {~at  ,', ~ z } ,  (11) 
{at n ^ S}  7" {a t  n =~ J } .  

The first constraint is easy to check, since J does not occur in it. The second and the third constraints 
are rewritten respectively into 

(slp[(-~at n ^ 1); T ' ]  ^ at n) ~ J ,  
J =~ (at n ~ wlp[T~; (-~at n =~ I)]) ,  

and give respectively a strongest possible choice and a weakest possible choice for j.3 Last, the 
fourth constraint contains two occurrences of J ;  as a consequence, it cannot be solved easily. The 
proposed strategy is to repeatedly select "candidates" in the set of formulas determined by the slp- 
and w/p-constraints, and to use the fourth constraint as an acceptance/rejection filter. 

3.3 The general case 

Our purpose is to identify the semantical consequences of  the replacement of a transition by an arbitrary 
set of new transitions. The starting point is the constraints (10,11). The conditions -~at n and at n 
have no longer any meaning here; they are replaced respectively by a refinement condition R and 
its negation -~R. The problem is to determine an appropriate refinement condition. Our guideline 
for doing that will be to simplify the constraints as much as possible; we suppose that a refinement 
condition R has been chosen, and we look for the properties of R inducing simplification of the 
constraints. As a starting point, the invariant of the refined system 81 is 

I '  = [(R =~ I)  ^ (-~R =~ 9')]. 

In practice, the invariant I is the conjunction of  several assertions. All of them are true when R is true, 
but some of  them are false when R is false. This suggests a decomposition like I =d# (1- ^ I+), 
where the invariant I -  contains only non-altered assertions, whereas the formula I + may contain altered 
ones. More formally, we have {/} T '  { / - } ,  and even { / - }  T ~ { / - } ,  but we have not {I} T I {/+}. 
This decomposition suggests to rewrite 

3A further simplification is possible: T s can be replaced by ~ in the Mp.constraint, and by I-" in the w/p-constraint. 
Let us also mention that it is sufficient to find J[a~ ~]. 
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I '  ~ [ I -  A (R ~ I +) ^ (-~R => K)] ,  (12) 

for appropriate I -  and I+; formulas R and K are still unknown. (Note that J is ( I -  A K).) If I is 
the conjonction (I1 A . . .  ^ 1,0, it is convenient to evaluate first {I} T r \ 7" {I j} ,  for j = 1 , . . . ,  n :  
the conjunction/o of the I j ' s  for which the triple is true is a good approximation of I - .  More often 
than not , /o  is an invariant, so I -  =aef I ° is appropriate. It is also convenient to choose R =clef I +, 
for obtaining a simplified form of formula (12), that is: 

I '  = [ I -  A ( I  + V K)] .  (13) 

In order to discover K,  the constraint 

g,} 7., {r,} 

will be made explicit and simplified. We first observe that I -  is tree in every relevant state; it is 
therefore convenient to discard any state not satisfying I - .  Formally, this means that I -  is taken as 
an additional axiom of the deduction system. The constraint is rewritten into 

{I+ V K} T '  {I+ V K} .  

The set T '  of  the transitions of the refined system ,S' can be partitioned into the set T '  n T of old 
transitions and the set T ~ \ T of new transitions. Furthermore, we distinguish the case where I + is 
true in the precondition and the case where K is true in the precondition. The constraint is therefore 
split into the set of constraints listed below. 

{1 +} 7.'n 7" {I+ v K } ,  
{ g }  7"' n 7" {jr+ V K } ,  
{/+} 7" \ 7" {/+ V K } ,  
{K} 7"' \ 7" {/+ V K } .  

As I+ is respected by old transitions, a further reduction leads to 

{ I  +} 7" \ 7" {i+ V g } ,  
{ K }  7"' { i+ v K } .  (14) 

As K occurs in the definition (13) of  I ~ only in the term (I  + V K), it is not a real restriction to 
add the constraint (K ~ -~I+). As a consequence, K must be stronger than formula -~I ÷ whereas, 
on the other hand, the first constraint of (14) asserts that (i+ v K)  must be weaker than the formula 
slp[I+; 7: \ 7"1. 
The set C of appropriate choices for K is therefore a subset of  

go =ace {X : [ (Kt r=>X)  A O f ~ K D ) ] } ,  

where 

Kay =aey ~i+ ^ sip[I+; T' \ 7"], 
KD =def "aI+. (15) 

The determination of the whole set C is usually intractable but, fortunately, we are satisfied with a 
single dement of  it. Furthermore, practice shows that, when an appropriate K exists, the formula Ku 
often tmns out to be acceptable. If  it is not, the strategy proposed for the sequential refinement still 
holds in the general case: repeatedly select "candidates" inside Co and test them against the second 
constraint of (14); any candidate satisfying this test can be accepted. 

4 A worked-out elementary example 

In this section, the system 811 introduced in paragraph 3.1 is incrementally transformed into Peterson's 
algorithm. 
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4.1 Weakening a guard 

The first step is to refine the system `511 (§3.1) by weakening the guard T = p into the guard 
(~inQ v T = p). This will lead to the system 821. In order to simplify the notation, we rename ,51t 
into S and 82~ into `5~. The latter is obtained from the former by replacing the transition 

r : (Pw, T = p  ~ sk ip ,  pc), 

by the transition 

r ' :  (Pw, ~inQ y T = p ........... ~ s k i p ,  Pc). 

The invariant I of  the system ,5 is 

(at pw ~ (T = q v at qw)) A (at q~, ~ (T = p v at p~,)) 
^ ( a t p e ~ T = p )  ^ ( a t q c = ~ T = q )  
^ (at po = ~ i n P )  ^ (at qo = ~ inQ) ;  

The triple {I} T ' {A} is checked for each assertion A; this leads to the decomposition I = ( I -  ^ I+), 
where 

I -  : (atp~, :~ ( T = q  v at q~,)) ^ (atq~, =~ ( T = p  V a t p ~ ) )  ^ 
(at qc ~ T =q) ^ (at po = -~inP) A (at qo = -~inQ), 

I + : ( a t p c = ~ T = p ) .  

Formula I -  is easily checked to be an invariant of the refined system (but, obviously, this invariant 
does not ensure mutual exclusion). Definitions (15) give rise to 

KD = -~I + 
= (atpc ^ T = q ) ,  

K v  = "~I + ^ slp[I+; T ' \  T] 
= -~I + A sip[I+; (pw, -~inQ v T = p  , skip,  Pc)]) 
= (atpc A T = q )  A [atpc ^ ( - ~ i n Q V T = p ) ]  
= a tpc  A T = q  ^ -~inQ. 

The "candidate set" for K is 

K.o = { X  : [(atpc A T = q  h -~inQ)=~ X]  A [X ~ ( a t p c  h T = q ) ] } .  

We tentatively select K =def Ktr and check that the triple {K} T '  {I+ Y K} holds (recall that, in the 
present context, I -  is assumed to be true in all states). The formula I + Y K reduces to 
(at Pc =~ (T = p V ~inQ)) .  The formula I '  =aef [ I -  ^ ( I  + y K)] can be simplified into 

121 =~f (at pw ~ (T  = q Y at  q~,)) A (at qw ~ (T  = p Y at p~,)) 
A (at P c ~ ( T = P  V -~inQ)) A ( a t q e ~ T = q )  
^ (at po = -~inP) A (at qO =- ~ i n Q ) .  

It is straightforward to check that the formula 

I21 =~ -~(at Pc ^ at qc) 

is valid; as a consequence, the refinement preserves the mutual exclusion. 
A similar work leads to the system ,522 and the invariant 

/22 =aef (at p~, ~ (T = q V at q~)) A (at q~ =~ (T = p V at p~)) 
A ( a t p e = ~ ( T = p  V -~inQ)) A ( a t q c = t , ( T = q  V -~inP)) 
A (at po = ~ i n P )  A (at qO =--- -~inQ). 
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4.2 S e q u e n t i a l  d e c o m p o s i t i o n  

We consider now a sequential refinement. The initial version is S =def ,533 and the refined version 
St =def S,13 is obtained by replacing the transition 

r : (Po, ( inP,  T ) : = ( t r u e ,  q) ,  p~,), 

by the transitions 

r ~ : (po, i n P  : = t r u e ,  Pi) ,  
r "  : (p~, T := q ,  p ~ ) .  

As usual, the invariant I =aef I33 is split into 

I -  : (at  pv, ~ ( T  = q V a t  q~))  A (at  qw ~ ( T  = p V a t  pw))  A 

(at Pc =~ (T = p V -~inQ)) A 
(at po -- ~ i n P )  A (at qo =-- ~ i n Q )  A -~at ql ,  

I + : (at qc ~ (T  = q  V -~inP)) A -~a tp i .  

Formulas KD and Ktr are easily computed; once again, the fact that I -  is always tree in relevant 
states (it is an invariant of 143) induces some simplification. The results are 

KD = 71 + 
= (atqc A T = p A  inP)  V a t p l ,  

Ktr = "~I + A slp[I+; T '  \ 7"] 
= ('~I + A slp[I+; (Po --* Pl)]) V (-~I + A slp[l+; (Pi ~ P~)]) 
= ('~I + A at Pi A slp[I+[at Po]; i n P  := true]) V (-~I + A at p~ A slp[I+[at Pl]; T := q]) 
= (at pi A sip[true; i n P  := true]) V (at qe A T = p A i nP  A at p~ A slp[false; T := q]) 
= (at Pi A inP)  V false 
= (at Pl ^ - a t  Po) 
= a t p i .  

We have to select a K within the set 

K.o = { X  : [atpi=c,  X ]  ^ [ X = ~ ( ( a t q c h  T = p h  i n P )  y a t p l ) ] } .  

Once again, K = Ktr is an appropriate choice, such that {K} t {I+ v K}  holds for each transition t 
of the refined system. The formula ( I  + v K )  reduces to [(at qc :¢" (T  = q V ~ i n P ) )  Y at  Pl], and 
further to [at qc =~ (T  = q V ~ i n P  V at  P i ) ] .  The formula I '  =a~y [ I -  h ( I  + v K)] is 

143 :=clef (at p~, :~ (T  = q V at  q~,)) h (at qw :~ (T  = p V at  p~,)) 

^ (a tpc  =¢, ( T = p  V ~ i n Q ) )  ^ (a tqc  =~ ( T = q  v -~inP v a t p l ) )  
A (at po = ~ i n P )  A (at qO = -~inQ) 

^ -~at ql • 

A simi]tar sequential refinement leads to ,544; an invariant of this system is 

I44 =a# (at p~  =~ (T  = q V at  qw)) ^ (at q~, ~ ( T  = p V at  p~))  

A (at pc =~ (T  = p  Y -~inQ y at  qi)) 

^ (at qc =~ (T  = q  V - i n P  v at  pl)) 
A (at po =- -~inP)  ^ (at qo - -~inQ),  

and the mutual exclusion is still satisfied. 
Comments.  In [18,19], we proposed a slightly different technique; for the first sequential refinement, 
we could have chosen R =aef -~atpi instead of R =d~f I +. One can check that both choices lead to 
the same refined invariant •43. 
One can also check that reverting the order in the sequential refinement, that is, replacing the transition 
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r : (Po, (inP, T)  := (true, q), p~),  

by the transitions 

# '  : (20, T :=q ,  P0 ,  
I t" : (Pl, inP := true,  p~,), 

leads to an unsatisfactory version (see [39,15,17]). 

5 Development of a data transfer protocol 

Even the development of  small to medium-sized systems involves rather many steps but most of them 
reduce to routine symbolic manipulation. The interesting, non trivial steps are concerned with the 
specific algorithmic idea(s) of the system in development. 

We address in this section the development of a variant of Stenning's data transfer protocol [42]. In 
order to keep the presentation within a short size, only the crucial step of  the design will be considered 
(see [20] for the complete development). 

5.1 The initial version 

A data transfer protocol must ensure reliable transmission of  information from a station to another. 
The problem is that transmission channels are not safe: they can lose, corrupt, duplicate and reorder 
messages. It is assumed that any corruption is detected by the receiving station, which simply discards 
corrupted messages. The sequence of data is to be transmitted without loss, alteration, duplication or 
permutation. 

The information to be sent along is represented by a sequence X =de/ (X[n] : n = 1,2, ...) 
of messages, whereas a similar sequence Y records the already (and correctly) transmitted part of 
X. A simple transmission strategy is as follows. The sending station repeatedly transmits a message 
X[n]. The receiving station discards corrupted copies of  X[n] until a correct copy is received; 
then, "acknowlegrnents" are repeatedly sent back to the sending station. Upon receiving such an 
acknowledgment, the sending station can begin to send copies of the next message X[n  + 1]. 

Our initial version will implement this elementary strategy, at a rather abstract level: first, no 
process is introduced (like in UNITY [10], a formal concurrent system can be represented by a set of 
global actions) and, second, the (unreliable) channels are supposed to be synchronous. Three counters 
are used. The sequence X[1 : LA] has been successfully transmitted and acknowledged ("LA" means 
"Last Acknowledged"); the sequence X[1 : LR] has been correctly received ("LR" means "Last 
Received") and the sequence X[1 : I-IS] has been transmitted ("HS"  means "Highest Sent"). As a 
consequence of  the transmission stategy, the relation LA < L R  <_ H S  < LA+ 1 is maintained. Here 
is the formal representation of  the initial system ,50 = (7~o, A,10, 7~). 

7~0 = O; 

A4o = {LA,  LR,  H S  : nat; X , Y  : array[nat] of  string}; 

= {i. (LA=rXS 
2. (LA=HS 
3. (LA<HS 
4. (LA < HS 
5. (Y[LR + 1] 
6. (Y[LR  + I] 
7. ( Y [ L R  + 1] 
8. (Y[LR + 1] 

---~ (HS, Y[HS + I]) := (HS + I,X[HS + I])), 
HS := HS + I), 

---* Y[HS] :=X[HS]), 
- - ~  sk@), 

51NIL ~ (LA, LR)  := (LA + 1, L R  + 1)), 
5t N I L  --~ L R  := L R  + 1), 
= N I L  ~ LA := L R ) ,  
= NIL ---~ skip) }. 
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The invariant is 

Io =def (LA < L R  < H S  <_ L A  + 1) A 
VS (Y[s] E {X[s], NIL}) A 
Ys(1 < 8 < L R  =~ Y[8] =X[s ] )  A 
Vs ( H S  < s =~ Y[s] = N I L ] ) ,  

and simply expresses the strategy informally introduced above. Any state satisfying t0 is an adequate 
initial state; the standard initial state is characterized by 

Co =aef L A = L R = H S = O  A Vs(O< s=~ Y [ s ] = N I L ] ) .  

Transitions 1 and 2 model message transmission. When message X [ H S ]  has been acknowledged, 
message X [H S + 1 ] can be transmitted; this transmission can succeed (transition 1 ) or fail (transition 2). 
The value N I L  is a "dummy" value; it models the initial empty value of  elements of  the recording 
sequence Y, and also any corrupted value. As a result, unsuccessful transmission is simply modelled 
by skip. 
If message X [ H S ]  has not been acknowledged within some delay (this delay is not modelled here), 
it has to be transmitted again, and retransmission can succeed (transition 3) or fail (transition 4). 
When a new, uncorrupted message arrives, it is acknowledged; the transmission of  the acknowledgment 
can succeed (transition 5) or fail (transition 6). The acknowledment corresponding to some message 
is sent repeatedly, until the next message arrives. The acknowledgment retransmission can succeed 
(transition 7) or fail (transition 8). 

5.2 Cor:rectness of the initial version 

The invariant expresses that, at every time, the prefix X[1 : LR] of the sequence has been correctly 
transmitted; it is also clear that the counters LA,  L R  and H S  cannot decrease. These properties are 
the interesting invariance properties of the system. Although we are mainly concerned by invariance 
properties, let us also mention an interesting liveness property of the system : the counters increase, 
provided that some fairness requirements are satisfied. This property is formally specified and proved 
in [20]; only a graphical proof outline is given here (Fig. 2), with the following notation : 

At, :  L A = L R = H S = n ,  
B n :  L A = L R = n  A H S = n + I  A Y [ H S ] = X [ H S ] ,  
C,,:  L A = L R = n  A H S = n + I  A Y [ H S ] = N I L ,  
D, , :  L A = n  A L R = H S = n + t .  

The self loops in Fig. 2 correspond to useless moves, whereas the other arcs correspond to useful 
moves. Fairness requirements are that self looping cannot last forever. These requirements can be 
informally expressed as follows. 

The receiver cannot delay the sender forever, (loop A),  
The sender cannot delay the receiver forever, (loop B) ,  
The transmission channel cannot fail forever, (loop C) ,  
The acknowledgment channel cannot fail forever, (loop D).  

5.3 Stenning's window principle 

The next step will be the implementation of  Stenning's technique. For now. the transmitter may 
be ahead of the receiver, but only by one message. The synchrony between the transmitter and the 
receiver can be decreased by allowing a "window" of  already sent but still unacknowledged messages. 
Let W > 1 be the finite maximal size of  the window. Notice that the candidates for retransmission are 
no longer X [ H S ]  only, but each X[r]  such that L A  < r < H S .  All the messages belonging to this 
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Figure 2: Graphical proof outline 

window will be retransmitted after some delay, fin our model, the delay is left unspecified; any finite 
delay is acceptable, as far as only correctness is concerned.) A preliminary refinement is needed to 
introduce a window index r; that leads to the system ,51, with invariant I1 = I0. The window principle 
is now introduced by a semantical refinement. The set of transitions of the resulting system $2 is 

7"2 = {1. ( H S -  LA < W ----. (HS, Y [ H S  + ll) :=(HS + I , X [ H S  + I])), 
2. ( H S -  LA < W ~ H S  := H S  + I), 
3. (LA < r < _ H S  ~ ( Y [ r ] , r ) : = ( X [ r ] , r + l ) ) ,  
4. ( L A < r < H S  ----* r : = r + l ) ,  
5. (-~(LA < r <_ HS)  ~ r := LA  + 1), 
6. ( Y [ L R +  1] ~ tNIL  ~ (LA, LR)  := (LA+ 1 ,L R+ 1)), 
7. ( Y [ L R + I ] ~ N I L  ---+ L R : = L R + I ) ,  
8. ( Y [ L R + I ] = N I L  ~ L A : = L R ) ,  
9. ( Y [ L R + I ] = N I L  ~ sk ip)} .  

Transitions 1 and 2 correspond to first message transmission, transition 3, 4 and 5 implement mes- 
sage retransmission, transitions 6 and 7 correspond to message reception and acknowledgment, and 
transitions 8 and 9 implement acknowledgment retransmission. 

As usual, some parts of the initial invariant are respected by the new transitions but others are not; 
this gives rise to the decomposition I1 =aef ( I -  A I+), where 

I -  =d~ (LA < L R  <_HS) I\ 

Vs(Y[s] e { X [ s ] , N I L } )  ^ 
Vs(l < s < L R ~  Y[s]=X[s] )  ^ 
V s ( H S  < s =~ Y[s] = N I L ) ,  

I ÷ =de[ H S < _ L A + I .  
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Formulas K 9  and Ktr are determined as follows. 

KD --= "1I + 
=_ H S >  L A + I .  

Kg  - -~I + A slp[I+; T ' \  T] 
=_ H S  > L A  + 1 A slp[HS < LA  + 1; {1, 2, 3, 4, 5}] 
=_- H S  > L A  + 1 A (slp[HS < LA  + 1; {1, 2}] V slp[HS < L A  + 1; {3, 4, 5}]) 
=_ H S >  L A + I  A ( H S < L A + 2 A H S < L A + W  V I t S < L A + I )  
=_ H S = L A + 2  A H S  < L A + W .  

(In this computation, I -  is assumed to be true and only relevant variables have been considered.) The 
choice K =clef K V  is tOO strong but, as K v  is a conjunction, it is natural to try one of the conjunct. 
An adequate choice is ( I  + v K )  =,iel H S < L A  + W .  The resulting invariant is 

I2 =def ( L A < L R < _ H S < _ L A + W )  A 

Vs (Y[s] E {X[s], N I L } )  A 

Vs(1 < s < L R ~ Y [ s ] = X [ s ] )  A 
Vs ( H S  < s ~ Y[s]  = N I L ) .  

The correcmess proof given for So is easily adapted to S2. 

6 Related work and further work 

The abstract programming language used in this paper is based on the classical notion of a transition 
system, frequently used in parallel programming (see e.g. [25,33]). Our variant has been obtained 
by adding labels to the formalism presented in [41]. The adaptation of  Hoare logic to this language 
is similar in spirit to the adaptations for concurrency presented in [26,28] (although some technical 
differences exist). The rules (3) comes from [16]. 

The stepwise refinement approach has been widely used in parallel programming. Early contribu- 
tions are mainly concerned with the refinement of  the grain of  parallelism [14]; [27] introduces the 
concept of  a state function, which connects the invariant of the refined version with the invariant of 
the initial version. This concept can lead to concise proofs, but the discovery of appropriate state 
functions is not always trivial. 

In this paper, a (semantical) refinement is the replacement of an old transition by a set of new 
transitions. This definition is too general, since any transformation can be achieved by a sequence 
of  such replacements. However, the distinction between a refinement and a general transformation 
is somewhat arbitrary; several authors have demonstrated that many non-trivial transformations of 
concurrent systems can be considered as refinements [43,4,9]. The notion of  refinement deserves 
further theoretical study. 

Mainly invariance properties have been considered in this paper. Temporal logic has been used to 
specify and prove other kinds of program properties [34,35]. We have observed that when a refined 
version maintains a liveness property, the proof of this property is easily adapted, but this is not a 
general result. A refinement method taking into account the liveness properties has been proposed in 
[7], but it is restricted to atomicity refinements. Another weakness of the method proposed here is 
that it is sound but not complete [12]. More precisely, if the invariant of the refined version does not 
imply some wanted invariance property, one cannot deduce that this property does not hold. From 
the theoretical point of  view, completeness can be achieved by using predicate transformers like the 
"weakest safe invariant" introduced in [43], or the "weakest invariant" introduced in [29]. The problem 
is that these predicate transformers are not easily computed. However, this approach seems interesting 
for finite state systems since, in this case, weakest and strongest invariants can be computed in a 
mechanical way. 
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