
Projections of the Reachability Graph
and Environment Models,

two Approaches to Facilitate the Functional Analysis of
Systems of Cooperating Finite State Machines

Heiko Krumm
Institut f'tir Telematik, Universit~it Karlsruhe

Zirkel 2, Postfach 6980, D-7500 Karlsruhe 1, West Germany

Projections of the reachability graph reduce the storage costs of the computation and
support the evaluation. Secondly the specification of systems and their components is
completed by restrictions to the behaviour of their environments. Components can then be
analysed separately from each other, and in the analysis of a system components can be
replaced by reduced substitutes. The decision of the abstract equality of indeterministic
behaviours and the computation of reduced substitutes is based on the use of correspon-
ding deterministic acceptors.

1. Introduction
For the analysis of systems of cooperating finite state machines, mostly the so-called teacha-
bility graph is computed and evaluated [6,7,8,18]. It documents all - during possible executions
- reachable system states and transitions. When analysing systems modelled near to reality,
problems occur from the complexity of the teachability graph. The time and storage require-
ments of its computation as well as the effort for its inspection and evaluation can exceed
practical limits [1,9,11,12].
The first approach combines the computation of the teachability graph with the derivation of
projections of it and with an integrated evaluation supporting the inspection of large graphs. The
algorithm has reduced storage requirements and can be executed efficiently on a multiprocessor
machine.
The second approach proposes, generally to complete each specification of a component by a
so-called environment model. This contributes to the value of the specification as a starting
point for the design of the component's implementation and allows one to structure the analysis.
An algorithm is outlined, computing the so-called reduced substitute of the component, which
mostly is much less complex than the original component, but can replace the original
component in the analysis of the system.
The equivalence of components, i.e., the abstract equality of indeterministic behaviours, is
decided by the comparison of languages. Thus the standard algorithms for the minimization of
deterministic finite state machines can be applied.
Both approaches have been implemented in a prototypical analysis-tool running on a small
workstation. It has been successfully applied during some projects at the development of
distributed applications of computer networks.
In the following, chapter 2 introduces a very basic system's model, which easily can be adapted
to the different constructive specification techniques (e.g., CCS[15], ESTELLE[4], LOTOS[3],
Petri Nets [8]) commonly in use. Here also the characterisation of behaviours by languages is
outlined. Chapter 3 describes the computation and evaluation of projections of the reachability
graph. Chapter 4 concerns the concept of environment models.

2. Basic Model
Under consideration are systems, which consist of a finite set of components. To simplify the
introduction of the approaches, the following assumptions are made. A system is closed, i.e.,
there does not exist a system's interface to an environment outside, and the communication
between components always concerns exactly two parties.

90

2.1 C o m p o n e n t , B e h a v i o u r a nd L a n g u a g e

Each component is defined over a finite set of component states S and a finite set of event-types
A u {e}, consisting of the alphabet A and a special type e. One starting state so is defined.
Furthermore a transition-relation a is defned, consisting of triples of an actual state, an event-
type and a successor-state. There may be different triples containing the same pair of actual state
and event-type (indeterminism). The occurrence of E-transitions is restricted not to form cycles
(convergence).
The interpretation is as follows. In the course of time, a component performs steps, each step
changing the actual state to a succesor-state in correspondence with the transition-relation and
the type of events, occuring at the component's interface. The events are totally ordered in time
and to each event one state-transition is performed. When for an actual state a transition labelled
with e is defined, it can take place arbitrarily without reference to an interface event (sponta-
neous transition). To each state a subset of A u {E} can be assigned, the ready-set (cf. [16,17]).
It consists of all event-types, transitions are defined for from the state. The environment can
generate an event of the alphabet of the component only, if the type of the event is in the ready-
set of the actual state of the component.
To abstract from the internal representation of a component, referencing the concept of testing
equivalence [16], a component shall be characterized by the set of all experiments possible with
it. An experiment is a pair of words over A. The first one is called test-pattern, the second one
result and is always a starting sequence of the test-pattern. The meaning is, that the environment
starting an experiment at first will try to generate an event in accordance with the first character
of the test-pattern. If - due to the ready-set - the event cannot be generated, the experiment
stops. The result is the empty word. Otherwise the event is generated, noted down in the result,
and the experiment is continued in accordance with the second character of the test-pattern, and
so on, until either all events of the test-pattern have been created and noted down in the result
(successful experiment) or the experiment had to be stopped due to the actual character in the
test-pattern not being a member of a ready-set reachable (non-successful experiment).
To get a more concise means the set of experiments can be described by the language of the
component. The alphabet of the language is A enriched by an additional special character o~.
Each succesful experiment (w, w) is represented in the language by its test-pattern 'w'.
Furthermore a word 'w c co' represents the class of all non-successful experiments of the
template (w c u, w). To describe the abstract behaviour of a component in an unique and
minimal form, its indeterministic state-machine can be mapped into a deterministic finite state
acceptor for its language, which can be minimized applying the well-known algorithms for this
purpose. This is done in following steps:
- A termination state st, an abort state Sx, and a transition (Sx,O,st) are introduced additionally.

st and all members of S are the final states of the acceptor. The starting state still is so.
- For each actual state s ES, for which no e-transitions are defined, and each c eA, for which

no transitions (s,c,s') are defined, a transition (s,C,Sx) ist introduced, documenting that an
experiment non-successfully can be stopped. Now, the indeterministic finite state machine
has been transformed into a corresponding indeterministic fmite state acceptor.

- By the algorithm of Myhill-Biichi the indeterministic acceptor can be transformed into a cor-
responding deterministic one.

2.2 S y s t e m

The formal semantics of a system is its reachability graph. A node corresponds to a system state
and is a vector of the different actual component states. A directed edge corresponds to a system
step caused by the occurence of exactly one event. The graph documents all the system states
and transitions which can occur in the possible executions of the system.

91

2.3 Example
Fig. 1 shows a system acting in accordance to a simplification of the well-known Alternating-
Bit-Protocol [2]. The two components S and E are connected by an unreliable medium D' and
provide to the two user-components L and R a reliable communication service. A component is
specified by its transition list, the starting state is labelled by 0. The last two sections describe
the teachability graph (the ordering of the system state components is L, R, S, E, D').

component L component R
(0,rq, 1), (1,cn,0)

component S
(0,rq,1), (1,m0,2), (2,ql,1), (2,qg,1),
(2,q0,3), (3,cn,4), (4,rq,5), (5,ml,6),
(6,q0,5), (6,qg,5), (6,ql,7),(7,cn,0)

component D'

(0,in, I), (1,r2,0)
component E

(0,n0,1), (1,in,2), (2,re,3), (3,p0,4),
(4,n0,3), (4,ng,3), (4,nl,5), (5,in,6),
(6,re,7), (7,pl,0), (0,nl,7), (0,ng,7)

(0,m0,1), (0,m0,2), (0,ml,2), (0,ml,3), (1,n0,4), (2,ng,4), (3,nl,4),
(4,p0,5), (4,p0,6), (4,pl,6), (4,pl,7), (5,q0,0), (6,qg,0), (7,ql,0)

System States
0:(0,0,0,0,0), 1:(1,0,1,0,0), 2:(1,0,2,0,2), 3:(1,0,2,7,4), 4:(1,0,2,0,7), 5:(1,0,2,0,6),
6:(1,0,2,0,1), 7:(1,0,2,1,4), 8:(1,1,2,2,4), 9:(1,0,2,3,4), 10:(1,0,2,4,6), 11:(1,0,1,4,0),
12:(1,0,2,4,1), 13:(1,0,2,4,2), 14:(1,0,2,4,5), 15:(1,0,3,4,0), 16:(0,0,4,4,0),
17:(1,0,5,4,0), 18:(1,0,6,4,2), 19:(t,0,6,3,4), 20:(1,0,6,4,5), 21:(1,0,6,4,6),
22:(1,0,6,4,3), 23:(1,0,6,5,4), 24:(1,1,6,6,4), 25:(1,0,6,7,4), 26:(1,0,6,0,6),
27:(1,0,5,0,0), 28:(1,0,6,0,3), 29:(1,0,6,0,2), 30:(1,0,6,0,7), 31:(1,0,7,0,0)

System Transitions
(0,rq,1), (1,m0,2), (2,ng,3), (3,pl,4), (4,q1,1), (3,pl,5), (5,qg,1), (1,m0,6), (6,n0,7),
(7,in,8), (8,re,9), (9,p0,10), (10,qg,11), (11,m0,12), (12,n0,9), (11,m0,13), (13,ng,9),
(9,p0,14), (14,q0,15), (15,cn,16), (16,rq,17), (17,m1,18), (18,ng,19), (19,p0,20),
(20,q0,17), (19,p0,21), (21,qg,17), (17,ml,22), (22,nl,23), (23,in,24), (24,re,25),
(25,pl,26), (26,qg,27), (27,ml,28), (28,nl,25), (27,ml,29), (29,ng,25), (25,pl,30),

tqO~,q1,31), (31,cn,0) __- ~ .

Fig. 1: Example System

3. Projections and Integrated Evaluation
Instead of computing the complete reachability graph only a projection of it is computed. A
projection is defined by a scope, which is a subset of the alphabet of the system. The graph is
called topgraph and contains the system starting state and moreover only such states, which are
reached directly after the occurence of an event of the scope. To keep the analysis exhaustive,
intermediate nodes and transitions are computed and represented in so-called subgraphs. To a
subgraph one node of the topgraph serves as starting state. Moreover, it only contains the
system states reachable under the occurence of events of the complement of the scope.
Different subgraphs can be computed simultaneously and independently from each other. Thus
at one hand multiprocessor machines can be used efficiently. At the other hand, after the
computation and evaluation of a subgraph, the subgraph can be deleted from memory.
Therefore the memory requirements can be reduced in comparison with the computation of the
complete reachability graph. To document properties of the subgraphs which are relevant for the
system's analysis, the nodes of the topgraph are attributed by corresponding flags.

3.1 Example
Fig. 2 shows the topgraph and the subgraphs of the system of Fig. 1 for the scope {rq, cn, m0,

92

ml, q0, ql, qg }. Because the subgraphs only concern the complement of the scope, all of those
components can be ignored, the alphabet of which is fully contained in the scope.

Topgraph Nodes
0:(0,0,0,0,0), 1:(1,0,t,0,0), 2:(1,0,2,0,2), 6:(1,0,2,0,1), 11:(1,0,1,4,0), 12:(1,0,2,4,1),
13:(1,0,2,4,2), 15:(1,0,3,4,0), 16:(0,0,4,4,0), 17:(1,0,5,4,0), 18:(1,0,6,4,2),
22:(1,0,6,4,3), 27:(1,0,5,0,0), 28:(1,0,6,0,3), 29:(1,0,6,0,2), 31:(1,0,7,0,0)

Topgraph Transitions
(0,rq,1), (l,m0,2),(2,ql,1), (2,qg,1), (1,m0,6), (6,qg,11), (11,m0,12), (11,m0,13),
(12,qg, l 1), (13,qg,11), (6,q0,15), (12,q0,15), (13,q0,15), (15,cn,16), (16,rq,17),
(17,m1,18), (18,q0,17),(18,qg,17), (17,ml,22), (22,qg,27), (27,ml,28),(27,ml,29),
(28,qg,27), (29,qg,27), (22,ql,31), (28,ql,31), (29,ql,31), (31,cn,0)

Subgraph A
((-,0,-,0,2),ng,(-,0,-,7,4)),

Subgraph B
((-,0,-,4,1),n0,(-,0,-,3,4)),

Subgraph C
((-,0,-,0,1),n0,(-,0,-, 1,4)),
((-,0,-,3,4),p0,(-,0,-,4,5)),

Subgraph D
((-,0,-,4,3),ni,(-,0,-,5,4)),
((-,0,-,7,4),p 1,(-,0,-,0,6)),

Subgraph E
((-,0,-,0,3),n1,(-,0,-,7,4)),

Subgraph F

((-,0,-,7,4),p 1,(-,0,-,0,6)), ((-,0,-,7,4),p 1,(-,0,-,0,7))

((-,0,-,3,4),p0,(-,0,-,4,6)), ((-,0,-,3,4),p0,(-,0,-,4,5))

((-,0,-,1,4),in,(-,1,-,2,4)), ((-,1,-,2,4),re,(-,0,-,3,4)),
((-,0,-,3,4),p0,(-,0,-,4,6))

((-,0,-,5,4),in,(-, I,-,6,4)), ((-, 1,-,6,4),re,(-,0,-,7,4)),
((-,0,-,7,4),p 1,(-,0,-,0,7))

((-,0,-,7,4),p 1,(-,0,-,0,6)), ((-,0,-,7,4),p 1,(-,0,-,0,7))

((-,0,-,4,2),ng,(-,0,-,3,4)), ((-,0,-,3,4),p0,(-,0,-,4,5)), ((-,0,-,3,4),p0,(-,0,-,4,6))
~ ~ . ~ . :

Fig. 2: Projection to {rq, cn, m0, ml, q0, ql, qg}

The storage requirements are reduced now. Instead of 32 system states, the topgraph only
contains 16. The largest subgraph contains 6 nodes restricted to 3 components. Thus roughly a
reduction of (32-16-6"3/5)/32 -- 40% has been possible. With real examples and scopes of
interest reductions between 40% and 60% have been possible.
The time requirements are increased now, since some system states will be computed more than
once. In the prototypical implementation therefore subgraphs are deleted from memory only,
when no more storage is available. Then an acceleration is possible, since - due to the
component restriction of subgraphs - some subgraphs can be used more than once.
With respect to the execution of the algorithm on a multiprocessor machine, in the example the
use of two processors computing subgraphs in parallel will accelerate the computation.
Roughly, instead of 16 time units by use of one processor, the computation can be done in 9
time units, if each subgraph computation can be executed in one unit of time.
Variants of the algorithm studied also in the prototypical implementation use more than two
graph levels. A subgraph can reference to subsequent subgraphs, too, if the complement of the
scope is structured further. Since this structuring can be chosen with respect to the optimization
of the number of components of subgraph states, further reductions of the storage requirements
are possible. At practical examples we get space reductions up to 85%.

3.2 Evaluation
Although the result of the computation is a projection, all system states reachable and all
transitions executable have been computed. Therefore the general criterium 'All specification
constructs have to be of relevance for a system' can be decided easily by marking the constructs

93

during the computation. Moreover each subgraph is evaluated after its computation:
- Are there termination nodes, from which no transition is possible at all?
- Are there cycles within the subgraph? A cycle, which can be left by an event of the scope

already in its first node is classified as independent. A cycle, which never can be left by
events of the scope, is called quasi-terminating. Cycles, wich can be left after some steps are
called delaying.

Thereafter that state of the topgraph, which has opened the subgraph, is attributed by the set of
respective flags.
At the analysis of computer network communication protocols this has facilitated the evaluation
of projections by human inspection enormously. In different projects, all the design errors
detected, had been detected by the use of small projections and human inspection in conside-
ration of the flags. Besides of the delay and independency flags all others had signaled design
errors. The delay flag very often occured, signaling that the protocol progress may be delayed
forever, when the medium will disturb each further transfer. Then we added to the scope some
event-types of the alphabet of the medium to analyse the cycles in more detail. Independent
cycles occur in connection with time-out mechanisms.

Topgraph Nodes _ _ |
0 ~ ~ 2 , 2 , 4) , 9:(1,0,2,3,4) delay, 16:(0,0,4,4,0), [

[~ 6 4), 25:(1,0,6,7,4) delay
I Topgraph Transitions |

(0,rq,1), (1,in,8), (8,re,9), (9,cn,16), (16,rq,17), (17,in,24), (24,re,25), (25,cn,0) .)

Fig. 3: Projection to {rq, cn, in, re}

Fig. 3 shows the projection of the example system with respect to the scope of the event-types
of the service to be provided. There are four nodes, in which the progress can be delayed, if the
medium will disturb the transfer of messages forever. To abstract from this possible divergence
of the behaviour at the service-interface, additional assumptions based on performance
considerations have to be introduced. Projections, the scope of which also contains event-types
of the medium-interface, can help to prepare these considerations.

,~,dl..s 1 ~ " - v 1 .h,..A

,~,..,d.- S S ~ ~ ' - - V 1 .~_,,~ --,- S2 ~ l O ~ ' ' v 2 - a ~ . , ~ . , , ~ S 1 ~ ~ V 3
~------"'" 1 ~ ~ S3 ~ v 2 - ~ - - ~ S 2 ~ V 3 . t ~ I ~ 4 1 - - S 1 1 ~

-- ~ V 2 h . _ ~ ,~ . . . S 3 ~ - ~ - ' - - - . . _ _ . V 3 ~ S 2 ~ - - - ~
----~--~.~V3 ~ S 3 ~ - ' W

T

s ~ v ~ ({ c • v is in the alphabet of component c}

k J j ' - v ~ ~ { c: s is in the alphabet of component c }) = Ig

Fig.4: Concurrency Pattern

94

3.3 Concur rency Pa t te rns
If there are several concurrently running event-sequences possible in a system, the reachability
graph will document this by concurrency patterns. Fig. 4 shows such a pattern for the two
event sequences (sl, s2, s3) and (vl, v2, v3). I~t the event-types of the fn'st sequence be in the
scope of a projection and those of the second outside the scope. Now the algorithm can work
very inefficiently, since 12 nodes open a subgraph and from each subgraph-node a transition to
a node of the topgraph is possible.
The lower part of Fig. 4 shows, how this can be avoided under certain, but oftenly appearing
circumstances. The computation of a transition from a subgraph node to a topgraph node can be
skipped, if the resulting topgraph node will be computed also due to the tracing of a predecessor
of the node (at cycles one edge has to be ommitted in this consideration). If in the example the
condition is true for all pairs of members of the two event sequences only 4 nodes of the
topgraph and only 4 subgraphs have to be computed. At the variant of the algorithm, at which
more than two graph-levels are used, the scopes of deeper levels are chosen in a way, that the
condition always is true for event types of the scopes of graphs, the levels of which differ by
two or more.

4. Environment Models
The additional introduction of an environment-description into the specification of a component
states behavioural restrictions, each environment of the component is assumed to meet. Thus it
provides for the possibility of also noting down the designer's intentions about the general
properties of the environment as they appear to the component. This completes the specifi-
cation, moreover, it renders possible to decouple the analysis of the components of complex
systems, i.e., to analyse a subsystem separately from its specific environment and to analyse a
specific environment with respect to its conformance with the subsystem's environment-
conditions. When the specification is used as starting point for an implementation, the environ-
ment-description supports the design of efficient solutions, which are tailored to the restrictions
noted down there.
In the area of sequential programs the environment-model corresponds to the precondition of a
specification [10]. In the specification of concurrent systems by operational models one
commonly concentrates on the component itself and few approaches only propose the explicit
notion of environment conditions (e.g. [5,13,14]).

component S
(0,rq,1), (1,m0,2),
(2,ql,1), (2,qg,1),
(2,q0,3), (3,cn,4),
(4,rq,5), (5,ml,6),
(6,q0,5), (6,qg,5),
(6,ql,7),(7,cn,0)

environment of S
user model

(0,rq, 1), (1,cn,0)

medium model
(0,m0,1), (0,m0,2), (0, m0,3), (0, ml,1), (0, ml,2),
(0, ml,3), (I, q0, 0), (2,qg,0), (3,ql,0)

environment ready-sets of S
0: {rq,m0,ml }, 1: {cn,m0,ml }, 2: {cn,q0,ql,qg }, 3: {cn,m0,ml }, 4: {rq,m0,ml },
5: {cn,m0,ml }, 6: {cn,q0,ql,qg }, 7: { cn,m0,ml }

reduced substitute of S
(0',cn,0'), (0',rq, l'), (l',m0,1'), (l',qg, l'), (l ' ,ql,l ') , (l',q0,2'),
(2',cn,2'), (2',rq,3'), (3',ml,3'), (3',qg,3'), (3',q0,3'), (3',ql,0')

.

Fig. 5: Environment Model and Reduced Substitute of S

4.1 Example
Fig. 5 shows in the upper section the specification of the component S of the example of Fig. 1.
It contains a model of the environment, namely two concurrently running machines representing
the general left user and the general left interface to the medium. The medium as it is assumed to

95

appear to S is modeled in a very general way by means of indeterministic transitions. Although
the specification of S is minimal, with respect to the environment model it can be reduced
further. The reduced substitute shown in the lower part only contains 4 states instead of 8, and
at the analysis of the whole system the number of combinatorially possible states is divided by
two, facilitating the efficient representation of graph nodes.

4.2 Reduced Substitute
To compute the reduced substitute following steps are performed:
- The reachability graph of the specification, i.e., of the small system consisting of the

component S and its environment-model, is computed. The environment ready-set of a graph
node is the union of the actual ready-sets of the different evironment components.

- The environment ready-set of a state s of S is UnA, where U is the union of the environment
ready-sets of all nodes, which contain s as actual S-component in the state vector, and A is
the alphabet of S.

- In accordance with chapter 2 the deterministic acceptor for the component S is built, while the
environment ready-set of a state is respected. Transitions (s,C,Sx) are introduced for such
members c of the alphabet only, which are in the environment ready-set of s. Now the
language of the acceptor documents those experiments only, which can be performed by the
restricted environment.

- The acceptor can be minimized. Additionally two inequivalent states can be merged, if they
are equivalent only with respect to the characters for which at both states transitions are
defined.

A reduced substitute can replace an original component in the analysis of a system, if the
consistency of the system with respect to the environment model is given.

Specification of S

U

Specification of I

Closed System S'

Closed System r

Open System S"

Open System r '

Fig. 6: System Structures for the Environment Consistency Check

4.3 Environment Consistency
To analyse, whether a given system meets the restrictions of the environment model of a
component, one has to check, whether the set of experiments, the system can perform with a
component, is a subset of the experiments, the environment model can perform. Fig. 6 shows
the system structures used in the explanation of the two following criteria. We assume, that the
teachability graph of an open system can be computed, and a single finite state machine
representation of its interface behaviour, the general substitute, can be derived as well as its
language.
A sufficient condition for the environment consistency is, that the language of S" is a subset of
the language of I". Then in S' only those experiments with I will be possible, which also are
possible in r . To decide the consistency the reachability graphs of the systems S' and r can be
computed, and the two respective environment restricted acceptors of I can be deduced. The
corresponding languages exactly describe the sets of experiments possible in the two environ-
ments and can be compared with each other.

96

5. Conclusion
During the design of more complex systems of practical interest, i.e., distributed applications of
computer networks (e.g., Remote Operation Service, Filing-Service, File-Transfer), the
methods described have been applied. Their application has been supported by a respective
analysis tool, which performs the computation of projections and languages and the derivation
of reduced substitutes. The tool runs on a small workstation (2 Mbyte, 68020 CPU) and
therefore storage and computation time limitations heavily forced the modelling under
abstractions and the structuring of the analysis by defining subsystems, analysing them
separately, and replacing them by their reduced substitutes.
However, especially the structuring and the respective different checks of the environment
consistency turned out to be very useful. They supported the insight in and the understanding of
the mechanisms under development. Thus, design errors have been detected ve~ early.
Furthermore, the sum of the analysis results has given helpful hints when designing the
implementations. Especially the reduced substitute of a component can be valued as a very
compact starting point for the design of an efficient implementation.

References
[1] Aggarwaf, S.; Barbara, D.; Meth, K.; SPANNER: A Tool for the Specification, Analysis, and Evaluation of

Protocols; IE EE Transactions on Software Engineering 13,12(1987)1218-1237
[2] Bartlett, K.; Scanttebury, R.; Wilkonson, P.; A Note on Reliable Full Duplex Transmissions over Half-Duplex

Links; Communications of the ACM 12,5(1969)260-261
[3] Bolognesi, T.; Brinksma, E.; Introduction into the ISO Specification Language LOTOS; Computer Networks

and ISDN Systems 14(1987)25-59
[4] Budkowski, S.; Dembinski, P.; An Introduction to Estelle: A Specification Language for Distributed Systems;

Computer Networks and ISDN Systems 14(1987)3-23
[5] Burkhardt, H.; Eckert, H.; Prinoth, R.; Modelling of OSI-Communication Services and Protocols Using

Predicate~Transition Nets; in Protocol Specification, Testing, and Verification IV, Y. Yemini, R. Strom, S.
Yemini (eds.), North-Holland, Amsterdam (1985)165-192

[6] Cavalli, A.; Paul, E.; Exhaustive Analysis and Simulation for Distributed Systems, Both Sides of the Same
Coin; Distributed Computing 2(1988)213-225

[7] Danthine, A.; Protocol Representation with Finite State Models; in P. Green (ed.), Computer Network
Architectures and Protocols, Plenum Press, New York (1983)579-606

[8] Oiaz, M.; Modeling and Analysis of Communication and Cooperation Protocols using Petri-Net Based
Models; Computer Networks, 6(1982)419-441

[9] Fernandez, J.; Richier, J.; Voiron, J.; Verification of Protocol Specifications Using the Cesar System; in M.
Diaz (ed.), Protocol Specification, Testing, and Verification V, North-Holland, Amsterdam (1986) 7t-90

[I0] Hoare, C.; An Axiomatic Basis for Computer Programming; Communications of the ACM 12(t969)576-580
[11] Holzmann, G.; Automated Protocol Validation in Argos: Assertion Proving and Scatter Searching; IEEE

Transactions on Software Engineering 13,6(t987)683-696
[12] Holzmann, G.; On Limits and Possibilities of Automated Protocol Analysis; in Protocol Specification,

Testing, and Verification VII, H. Rudin, C. West (eds.), North-Holland, Amsterdam (1987)339-344
[13] Krumm, H.; Drobnik, 0.; Interactive Verification of Communication Software on the Basis of ClL;

Computer Communications Review 14,2(1984)92-99
[14] Krumm, H.; Drobnik, 0.; Problem-Oriented Logical Specifications of Commmunication Services and

Protocols; in Proc. of the 8th International Conference on Computer Communication(ICCC), P. KOhn (ed.),
Elsevier Science Publishers, (1986)474-478

[15] Milner, R.; A Calculus of Communicating Systems (CCS); Springer Verlag, Berlin (1980)
[16] Nicola de, R.; Hennessy, M.; Testing Equivalences for Processes; Theoretical Computer Science 34

(1984)83-133
[17] Olderog, E.-R.; Hoare, C.; Specification-Oriented Semantics for Communicating Processes; Acta

Informatica 23(1986)9-66
[t8] Rudin, H.; Tools for Protocols Driven by Formal Specifications; in K#ndig, A.; BOhrer, R,; O#hler, J.(eds.);

Embedded Systems; Springer Verlag, Berlin (1987) 127-152

