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1. Introduction 

There is an increasing proliferation of communication protocols, ranging from low level 

physical layer to the application layers. Consequently, more and more tools are being developed 

for specification and validation of protocols. Many of these tools are based on describing the 

protocols as a set finite state machines ([BM80],[RW83],[ABM88],[HK89].) Validation of such 

protocols is generally based on the following approach. The global states of the protocol 

reachable from an initial state are determined using the descriptions of the component machines 

that make up the protocol and the rules for their composition. The result of this procedure 

defines a graph, commonly referred to as the reachabUity graph. This directed graph has 

vertices that correspond to global states of the protocol, and edges that represent possible state 

transitions. Thus, paths in the directed graph describe possible state trajectories and can be used 

to answer questions about the dynamic behavior of the protocol. For realistic protocols, the size 

of the teachability graph may be extremely large, making its analysis difficult. Thus, some 

reduction techniques must be used to make the analysis possible. 

When the protocol is composed of many processes, the designer would often like to focus on 

a particular subset for analysis purposes. Consider, for instance, a protocol consisting of a 
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transmitter process, a receiver process, and processes describing the communication facilities. 

The designer might be interested in looking only at the joint moves of the transmitter and 

receiver processes, abstracted from the rest of the involved processes. I f  this is the case, some of 

the states in the reachability graph become equivalent, and can be merged into a single state, 

thereby making the analysis of  the protocol more manageable. 

Reduction techniques must be based on preserving certain properties of the original graph 

that are of  interest to the designer. A minimal property that one might wish to preserve is 

making sure that a path in the collapsed graph implies that an equivalent graph exists in the 

original graph. 

Consider the following procedure of  defining a smaller, collapsed graph from the original 

teachability graph. Let the protocol consist of  k processes. Process i has state space 

v i = { v l i ,  v2i . . . . .  vn~i}, where every vii denotes a local state of process i. A state of the 

reachability graph is a k-tuple s = (s 1, s2 ..... sk~ where si ~ V i. We call s a global state. Let us 

consider a particular subset of  processes whose behavior is of interest, I = {i 1, i2 ,  i3 . . . . .  iy} for 

some j <k. Focusing on I means making a projection of each global state s = (s 1, s2 ..... sk) in 

the reachability graph onto the elements in L i.e., a projected state ~ri(s) = {si~, si2 . . . . .  sit}. Two 

global states s ,  and s , ,  become equivalent if their projected states onto I are equal, that is, 

7¢I($t ) = nl(St t ) .  

By specifying/,  the designer also specifies a set of  equivalence classes, each one consisting 

of those global states that are equivalent under the projection. 

In addition to specifying the set of  equivalence classes for the vertices of  the graph, we must 

also specify the new set of edges. The natural way to do this is to include an edge in the 

collapsed graph between two nodes xl(s) and x1( s ' )  if there exist an edge from an element of  the 

preimage x~ 1 (s) to an element of  x~-I (s ' ) .  The set of  edges along with the set of  projected states 

defines the collapsed graph. 

Such a collapsing decreases the size of  the graph, but does not always preserve enough 

information for the analysis. It is not enough to define equivalence classes of states and proceed 
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to collapse them. Such an arbitrary procedure may lead to misleading information. For 

example, consider the graph of Figure 1.1.a. 

If we consider a projection onto the processes I = {1, 2, 3}, the equivalence classes are as 

follows: 

C ={{A}, {B}, {C}, {D,E}, {F}, {G}}. 

Collapsing nodes within the same equivalence class leads to the graph of Figure 1.3.b. 

(b) 

Figure 1.1 A misleading collapsing. 

However, in this graph we would infer that there is a way of getting from the macro-state 

(0, 0, 1)to the macro-state (1, 0, 1) whereas this is not the case in the original graph. That is, in 

the original graph, we cannot get from any state that collapses to (0, 0, 1) to any state that 

collapses to (1, 0, 1). 

This change in the structure of the graph may lead the designer to erroneous conclusions. 

Consequently, given a reachability graph and the projection, we still have to find the minimum 

partition of states within the same equivalence class that can be safely collapsed, i.e., without 

creating artificial paths. Unfortunately, as we prove later on, the problem of finding the largest 

subsets that can be collapsed safely is a very difficult one for which no efficient algorithm is 

likely. 
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The notion of protocol projection has been used before by Bochmann and Merlin [BM80] in 

the context of describing an operation for protocol synthesis. Lain and Shankar [LS84] describe 

a method of stepwise refinement to transform a protocol in to a series of smaller, single-function 

protocols called by them image protocols. However, their approach of collapsing differs from 

ours in the fact that a particular assertion about the protocol is used as the termination condition 

for the algorithms. In our approach, the collapsing is made based only in the graph properties 

and can be used subsequently to analyze the protocol under different assertions. Moreover, it is 

not clear in [LS84] what the complexity of the projecting algorithms is. In the next section we 

introduce two definitions of path preserving collapsing, which we shall call weak and strong path 

preserving collapsing. Although the first type of collapsing does not preserve all the properties 

of the original graph, it is still a useful tool for analysis. Moreover, since the weak collapsing is 

less restrictive, it is conceivable that the reduction in the size of the protocol achieved by this 

type of collapsing will be significantly larger than the one obtained by applying the strong 

collapsing. It can be shown that the conditions used in [LS84] to preserve liveness and safety 

assertions, imply that the image protocol is found by a strong path preserving collapsing 

[ABCG88]. We show in this paper that finding optimal collapsings under both definitions is an 

NP-Complete problem, and thus it is very unlikely that any efficient method exists. The 

equivalence of the method in [LS84] to strong path preserving collapsing implies that this 

complexity result applies to their method as well. That is, an efficient method of finding the 

smallest image protocol is very unlikely to exist. 

This paper analyzes the complexity of safely collapsing a reachability graph based on a 

protocol specification. We first give a formal statement of the problem in section 2, stating the 

two definitions for path preserving collapsing. In section 3 we show that this problem is NP- 

complete. Finally, some ideas about further research are given in section 4. 

2. Characterization of Collapsing 

As discussed in the introduction, in order to insure the preservation of graph properties of 

interest, some restrictions on the collapsing must be imposed. The following two definitions state 
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precisely the properties we are dealing with in this paper. 

Definition 2.1. A collapsing is weak path preserving if the following condition holds. There is a 

path from node A to node B in the collapsed graph if and only if there exists a path in the original 

graph from some node a to some node b such that a was collapsed to A and b was collapsed to B. 

[] 

Definition 2.2. A collapsing is strong path preserving if the following condition holds. There 

exists a path from node A to node B in the collapsed graph if and only if there exists a path in the 

original graph from every node a to every node b such that a was collapsed to A and b was 

collapsed to B. [] 

Preserving paths weakly allows us to answer questions about paths in the collapsed graph, 

being assured about their validity in the original reachability graph. Using that transformation, 

we do not concern ourselves with other types of questions, for instance questions posed as 

general temporal logic expressions, for which it is also crucial to preserve information such as 

the possibility of infinitely looping among the nodes belonging to the same equivalence class. 

Stronger restrictions are imposed over the collapsing by the strong path preserving property 

allowing, as we shall show, these questions to be answered in the collapsed graph. However, it 

is very likely that imposing stronger restrictions minimizes the gains of size reduction in the 

collapsing graph. In what follows, we use the term path preserving to refer to any of the two 

definitions indistinctly. We shall prefix the term with the words "weak"  or "strong" to refer to 

an specific type of path preserving collapsing. 

Definition 2.3. Let G = (V, E) be a simple directed graph and let rI  be a partition of V. (A 

partition of V is a set of mutually disjoint subsets of V whose union is V.) Let V' denote a set of 

nodes whose elements are in one-to-one correspondence with the subsets of H, and let rI(a) 

denote the node in V" that corresponds to the subset of rI  containing node a a V. We say that 

G '  =(V' ,  E ' )  is the collapsed graph of G with respect to Yl if, for any A, B a V', the edge (A, B) 

belongs to E '  if and only if there exist nodes a, b e V with H(a)=A and H(b)=B such that the 
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edge (a, b) belongs to E. 

Let COLLAPSE(G, H) denote the collapsed graph of G with respect to H. It includes an 

edge joining two macro-node if and only if two nodes of G, one belonging to each macro-node, 

are joined by such an edge (in the proper direction). Hence it is easy to see that 

COLLAPSE(G, H) can be constructed from G and H in time proportional to the number of edges 

in G. 

The graph COLLAPSE(G, H) is not necessarily path preserving. There is, however, a nice 

characterization of a weak path preserving collapse. Let CLOSURE(G) denote the transitive 

closure of G, which has an edge from a to b if and only if G contains a path from a to b. (See 

[AHU74], section 5.7, for details of how to compute transitive closure in polynomial time.) 

Then, as we shall prove, G" is a weak path preserving collapsed graph of G (with respect to H) if 

and only if 

CLOSURE(COl_LAPSE(G, H))=  COLLAPSE(CLOSURE(G), II) 

whenever this latter condition holds, we shall say that the collapsing is commutative. Figure 2.1 

shows two examples of collapsing; the first is path preserving and the second is not. 

CLOSURE/ NN~OLLAPSE CLOSUREp// 

c o  

~ LLAPSE 

X 
LOSURE 

Figure 2.1 
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We now prove the equivalence of the notions of weak path preserving and the commutativity 

of the CLOSURE and COLLAPSE functions. 

Theorem 2.1. The graph G '  = COLLAPSE(G, II) is weak path preserving if and only if 

CLOSURE(COLLAPSE(G, 17)) = COLLAPSE(CLOSURE(G), 17). 

Proof: An edge (A, B) belongs to CLOSURE(G') if and only if there exists a path in G" from 

node A to node B. An edge (A, B) belongs to COLLAPSE(CLOSURE(G), H) if and only if 

there exist nodes a, b e  V with I ' l(a)=A and r I (b)=B such that (a, b) is an edge of 

CLOSURE(G). The latter holds if and only if there is a path from a to b in G. Hence the 

condition that the operations of CLOSURE and COLLAPSE commute for G and 17 is equivalent 

to saying that there exists a path in G '  from A to B if and only if there exist nodes a, b ~ V with 

H(a)=A and I-l(b)=B such that G contains a path from a to b. But this is equivalent to the 

definition of a weak path preserving collapse, from which the theorem follows. [] 

Unfortunately, this characterization is not valid for strong path preserving collapsed graphs, 

as we can easily see in the first graph of Figure 2.1. There, the collapsing is not strong path 

preserving and yet the two operations are commutative. 

As we have shown in Figure 2.1, not every collapsed graph is path preserving. When G '  is 

not a path preserving collapsed graph of G with respect to II, the problem will be to find a 

refined partition I I '  of YI such that COLLAPSE(G, r I ' )  is path preserving. Note that the problem 

can always be solved since the partition that places each vertex of G in a singleton subset by 

itself gives a valid, though trivial, solution. 

A refined partition FI' of a partition I I  is formally defined to be any partition in which each 

element (subset) is contained in some element of YI. Any refined partition has cardinality at least 

as large as that of the original partition. 

In the task of finding a refined partition, it is desirable to look for one that is as similar as 

possible to the initial partition. Thus, we can state the following optimization problem: Given a 

directed graph G = (V, E) and a partition rI of v, find a refined partition 17" of I-I such that 
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COLLAPSE(G, H') is path preserving and the cardinality of H'  is as small as possible. 

3. Complexity Result 

In this section, we focus on proving that finding an optimal refined partition is an NP- 

Complete problem. 

The corresponding decision problem is formulated as follows. 

PATH PRESERVING REFINED PARTITION (PPRP) 

INSTANCE: 

A directed graph G = (V, E), a partition H of V, and an integer B such that [YI I < B < I V[, 

QUESTION: 

Is there a refined partition rI" of H with Irl ' l  <B such that COLLAPSE(G, 1-I") is path 

preserving? 

Note that the definition of PPRP has been given in general terms and applies to both types of 

path preserving collapsing. We shall use this definition to prove that in both instances, the 

problem is NP-Complete. 

In order to prove that the decision problem is in the family of NP-Complete problems, we 

will foUow the approach used in [GJ79]. 

Lemma 3.1. PPRP ~ NP. 

Proof: PPRP is easily seen to be in NP. A nondeterministic algorithm for it need only guess a 

refined partition YI' of H and check if I-l' has the proper cardinality and if COLLAPSE(G, H') is 

path preserving. The guessing step needs only nondeterministic polynomial time. Following the 

discussion presented above, the checking step can be computed in deterministic polynomial 

time. Thus, the first requirement for NP-Completeness is met. I-1 

For the second requirement, GRAPH K-COLORABILITY, known to belong to the family of 

NP-Complete problems [GJ79, pp. 191] is chosen as the problem to reduce to PPRP. The 

problem is as follows: 
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INSTANCE: Undirected graph G = (V, E), positive integer K < ] VI. 

QUESTION: Is G K-colorable, i.e., does there exist a function f • V ---) {1, 2 ..... K} such 

t ha t f  (u) ~ f  (v) whenever {u, v} ~ E? 

The transformation function that converts an instance of GRAPH K-COLORABILITY to an 

instance of PPRP is fairly straightforward. Let G = (~', E) be the undirected graph with 

V = {~ 1 ..... ~:n}. We transform this to a directed graph G = (V, E) where for each vertex vi in 1~, 

we create a set of three vertices vi, vi,  vi in V with direct edges from vi to vi and v~ to vi • 

There are 3n vertices in V, and 2n such direct edges. See Fig. 3.1. 

Yl v1 Yl 

v2 
r i r  

• • p  

Vn Vn Vn 

Figure 3.1 Vertices and direct edges in G. 

We next add a set of  cross edges as follows. For each edge that is not in E, i.e., {vi, "~j} ~ F., 

• • p •  • p r  

we add the cross edges (vl, v j),  (vj, v~), (vi, vj  ) and (v j, vi ). Them are four such cross edges 

added for each edge not in E. See Figure 3.2. 

vi vi vi 

Figure 3.2 Adding cross edges. 

We now consider the partition Yl in which v~, v~ .. . . .  vn belongs to the same subset and all 

other vertices belong to singleton subsets. Thus [HI  = 2 n + l .  If we let B = 2 n + K ,  the 
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transformation is completely defined. Notice that if two vertices in v[, v~ ..... v~ are collapsed, 

the transformation is both weak and strong path preserving. 

^ ^ 

Suppose the original graph (G, E) is K-colorable. Then the vertices corresponding to each 

color form an independent set; that is, for any u, w with f ( u ) = f ( w ) ,  there does not exist an 

edge {u, w}  in E. Consequently, the vertices in {v'l . . . . .  v'n} corresponding to this color can 

safely be collapsed without introducing any new paths. There will be at most K such macro- 

nodes in addition to the 2n singleton nodes, and thus a refined path preserving partition exists of 

size at mostB = 2n +K. 

Conversely, suppose a refined partition of V" of size at most B = 2n +K is possible. Note 

that any vertex in the sets {Vl . . . . .  v , }  and {V'l" . . . . .  v'n'} cannot be in a partition class with any 

other vertex, because they are all in singleton sets at H. Thus, only vertices in {V'l . . . . .  v'n} can 

form macro-nodes. Since 2n vertices must be singleton, there are at most K such macro-nodes. 

Now, collapsing the vertices onto the macro-nodes does not generate any new paths, so it must 

be that the vertices in each macro-node form an independent set. Consequently, the graph (G, E) 

is K-colorable. 

It is easy to see that the transformation that converts an instance of GRAPH K- 

COLORABILITY to an instance of PPRP is a polynomial transformation. We have arrived at 

the main result of this section. 

Theorem 3.1. PPRP belongs to the family of NP-Complete problems. 

Proof: By the arguments above. [] 

4. Conclusions 

We have presented the idea of collapsing reachability graphs to obtain more manageable 

graphs that preserve certain properties and are easier to analyze. We showed that the problem of 

finding an optimal path preserving collapse is NP-Complete under two definitions of collapsing 

while preserving path properties. In [ABCG88] we also show that even an approximation 

algorithm for finding a "good"  path preserving collapsed graph, with number of nodes 
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guaranteed to be within a factor of 2 of the minimum number of nodes, is unlikely to exist. In 

that paper we also discuss sufficiency conditions for the graph that make the collapsing always 

path preserving. 

Although the main result of this paper is discouraging, it must be kept in mind that in many 

cases the graphs will satisfy stronger conditions that may allow obtaining the optimal collapsed 

graph. Furthermore, heuristic techniques can produce useful collapsed graphs even when they 

may not correspond to the optimal solution. 
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