
Test ing Equiva lence as a

Rance Cleaveland
Computer Science Department

North Carolina State University
Box 8206

Raleigh, NC 27695
USA

Bis imula t ion Equivalence*

Matthew Hennessy
Computer Science Department

University of Sussex
Falmer, Brighton BN1 9QH

ENGLAND

A b s t r a c t

In this paper we show how the testing equivalences and preorders on transition
systems may be interpreted as instances of generalized bisimulation equivalences and
prebisimulation preorders. The characterization relies on defining transformations
on the transition systems in such a way that the testing relations on the original
systems correspond to (pre)bisimulation relations on the altered systems. Using
these results, it is possible to nse algorithms for determining the (pre)bisimulation
relations in the case of finite-state transition systems to compute the testing rela-
tions.

1 I n t r o d u c t i o n

A common approach to the verification of systems involves the use of "high-level" sys-
tems as specifications of lower-level ones. The higher-level system describes abstractly the
behaviour required of the implementation, while the lower-level one details the proposed
implementation. To establish that the proposed implementation satisfies its specification
it is then necessary to prove a relationship between the higher-level and lower-level pro-
cesses. Many relationships have been proposed in the literature as being suitable. They
are either equivalences, in which case one must show that the implementation provides
exactly the behaviour stipulated by the specification, or preorders, in which case one shows
that the implementation provides at least the behaviour required.

Within this relation-based framework the two most developed schools of thought are

the following.

1. Bisimulations [13, 15, 16] Equivalences and preorders are given in terms of recur-
sively defined relations called bisimulations and pnebisimulations, respectively. The
formulation is mathematically elegant and yields efficient algorithms for determin-
ing if finite-state processes are related [9, 14]. However, it is often the case that

*Research supported by British Science and Engineeering Research Council grant GC/D69464.

12

these relations are too discriminating; two processes may be deemed unrelated even
though there is no practical way of ascertaining this to be the case. It is also the

case that there is no smooth connection between the preorders and the equivalences.

. Testing/Failures [3, 5, 7] Equivalences and preorders are defined in terms of tests
which processes may or must satisfy. This notion is intuitively appealing and has

led to a well-developed mathematical theory of processes that ties together the

equivalences and preorders. However, no characterization of these equivalences has
led to an algorithmic solution for finite-state processes.

The object of this paper is to describe algorithms for checking the various test-

ing preorders and equivalences for finite-state processes. We do so by describing a

bisimulation/prebisimulation-based characterization of these relations that relies on a no-
tion of process transformation. As a consequence of our approach any implementation of

a bisimutation/prebisimulation checker (of which there are several) can be easily adapted

to check for the testing relations; in fact, the technique has been used in the Concur-
rency Workbench [2], a general-purpose tool for the verification of finite-state processes.

Moreover, although it is well-known that the problem of testing equivalence is PSPACE-
complete [9], the theoretical complexity appears not to be problematic in practice; our

experience with a variety of examples has been that, in addition to being semantically
desirable, the testing relations are a computationally viable means of verifying processes.

The remainder of the paper is organized as follows. Section 2 describes the model of
processes that we use and defines the various equivalences and preorders in terms of it.

Section 3 defines the process transformations that we then use in section 4 to characterize

the testing relations in terms of bisimulations and prebisimulations. Section 5 sketches
how these results may be used to automate the testing relations in the case of finite-state
processes, while section 6 presents our conclusions.

2 Processes , Equivalences and Preorders

Our first task is to define precisely the notion of process and the various process equiva-
lences and preorders that we examine in this paper. These definitions all rely on labeled
transition systems.

D e f i n i t i o n 2.1 A labeled transition system is a triple (P, Act, -@, where

1. P is a set of (process) states,

2. Act is a set of actions containing a distinguished silent action, T, and

3. --.CC_ P x Act x P is the transition relation.

Intuitively, P represents the set of possible computation states, Act lists the actions that

computations may consist of, and --* describes the state transitions that may result from

13

the execution of an action in a state. The action T represents an internal computat ion

step. We shall write p -% p' in lieu of (p, a,p') E--*, and we shall on occasion use p -% to

mean that there is a p' with p -% p' and p-~h if no such p' exists. For technical convenience

we shall also only consider finite-branching transition systems in this paper; formally, this

means tha t for any p E P, J{p' J 3a. p -% p' }1 < oo.
Given (P, Act, ~) , any p e P also defines a labeled transition system (Pp, Act,-~v),

where Pv C_ P consists of the states reachable from p via some finite sequence of transitions

and - % is the restriction of --* to Pp. In this way, p defines a process whose initial s ta te
it p and whose operational behaviour is described by --~p. Accordingly, we shall often

refer to elements of P as processes; moreover, if J -*v J < o0 then we shall say that p is

finite-state. Note that if [--+v [< c¢ then [PpJ < oo.

2.1 B i s imula t ions and Preb i s imula t ions

Let (P, Act, ---~) be an arbi trary labeled transition system. Bisimulation equivalence, ~ , is

an equivalence relation between elements of P that relates processes on the basis of their

behaviour. It is defined in terms of relations called bisimuIations. Here we shall define a

mild generalization of bisimulation equivalence.

D e f i n i t i o n 2.2 Let II C P x P be a relation. Then R is a II-bisimuIation if R C FI and
pRq implies the following.

1. p -% pt =~ 3@ q -% ql A pIRq'.

2. q -% q' ~ 3p'. p -% p' A p'Rq'.

Notice tha t if 1I = P x P then a II-bisimulation is a bisimulation in the usual sense

[12, 13, 15].

The relation "~n is defined in terms II-bisimulations in the same way that ~ is defined

in te rms of bisimulations.

D e f i n i t i o n 2.3 p "~n q if and only if there is a II-bisimulation R with pRq.

The relation "~rl is the largest II-bisimulation; moreover, if II is an equivalence relation,

then so is "m- Again, if II = P x P then ,vn coincides with ~ , the usual notion of

bisimulation equivalence.
The prebisimulation preorder, ~, is a behavioural preorder defined on processes that

is defined in terms of prebisimulations [16]. Let 1~ - P x Act be a predicate called the

divergence predicate; we shall write p~a in lieu of (p, a) Efr and p # a in lieu of -~(p~a).
We shall define a slight generalization of the usual notion.

D e f i n i t i o n 2.4 Let II C_ P x P and q) C_ P x Act. A relation R is a (II, ~}-prebisimuIati0n

if R C_ II and pRq implies the following.

1. (q, a) G q2 ~ [(p, a) E • A (p -% p' :=~ 3@ q -% q' A p'Rq')].

14

2. p.~a ::~ [q~.a A (q -% q' :::>- 3p'. p -% p' A p'Rq')].

If II = P x P and • = P x Act then a (II, @}-prebisimutation is a prebisimulation in the

usual sense. We may now define J~(n,¢/as follows.

De f in i t i on 2.5 PG(n,¢}q if and only if there is a (II, q~}-prebisimutation R with pRq.

Again, J~{II,*} is the largest {II, k0)-prebisimulation. Furthermore, if II is a preorder then

so is ~(n, ,) , for any ~. Note that if II = P x P and • = P x Act then G(rI,~) coincides
with J~.

2.2 The Testing Relations

The testing relations are defined on the basis of two preorders, <<m~u and <<m~t [3, 5].
These may be characterized in terms of the responses of processes to a collection of tests;
we shall however use an alternative characterization that relies on the following definitions.

De f in i t i on 2.6 Let s, s' E (A c t - {T})* be sequences of visible actions, and let a E Act.

1. ~ is defined inductively on the structure of s as follows.

(a) ~ = -%*, where -5+* is the transitive and reflexive closure of -G.
8 ! (b) ~ = ~ o -% o ~ , where o denotes relational composition.

2. L(p) = { s e (Act - {~-})* t 3p'. p d~ p' } is the language of p.

3. S(p) = { a e Aet l p -% }.

4. D(p,a) = {p' [p-% p '}; D(p) = U~eActD(p,a) .

5. The convergence relation p ~ s is defined inductively as follows.

(a) p ~ e i f and only i f there is no infinite sequence (P/}i>_o such that p _S~ po and

pi -% P~+I.

(b) p ~ as' i f and only i f p S e and p ~ p' implies pl ~ s'.

6. The acceptance set of p after s is defined as follows.

A(p, s) = { s(p') I p p' Ap'& }

Most of these notions are straightforward. Notice that our assumption about finite-
branching ensures that D(p) is always finite; it also implies that when p $ s , ,4(p,s) is a

finite set of finite sets. Also, p ~ s if it is impossible for p to perform an infinite sequence

of ~" actions during the "execution" of s; it does not imply that s ~ L(p). The acceptance

set A(p, s) represents the set of "action capabilities" of p after s. A set S is in ~4(p, s)

if it is possible for a state to be reached from p via s such that the only next possible

15

actions are exactly those in S. The fact that .A(p, s) may contain more than one such
set indicates that nondeterministie choices may occur during the execution of s; the more

sets .A(p, s) contains, the more nondeterministic p is in its execution of s.
We also define an inclusion relation on sets of sets of actions in the following way.

D e f i n i t i o n 2.7 Let A, B C 2 Act. Then A CC B if it is the case that:

VS E A. 3S' E B. S' c S.

This relation is used in conjunction with acceptance sets to capture a notion of "less

nondeterministic than".
We may now define < < ~ u and < < ~ s t as follows.

D e f i n i t i o n 2.8

1. p <<,~u q if L(p) C n(q).

2. p <<m~,,t q i fVs E (A c t - {r})*. p$s ~ (q.~s A A(q,s) CC A(p,s)) .

The <<m~u relation corresponds to language containment, while <<,~=,t relates processes
on the basis of their convergence behaviour, embodied in the predicate ~ s, and their
relative degrees of nondeterminism, which is represented by the relationship between

their acceptance sets. It is worth noting that in the case of strongly convergent processes
- namely, processes p such that for all s, p+s -- p < < , ~ t q implies that. q <<m~u P-

It also turns out that <<,~st can be defined with respect to "minimized" version of

acceptance sets. Consider the operator min on acceptance sets defined by

rain A = { S E A [- ~ S ' E A. S' C S }.

We then have the following result.

L e m m a 2.9 Let A, B C 2 Act.

1. A C C B if and only i f min A C C min B.

2. A CC B and B C C A if and only if rain A = rain B.

The other testing relations are defined as follows.

D e f i n i t i o n 2.10 The testing preorder, <<t, and the testing equivalences, =m~y,=m~

and =~, are defined by:

1. p <<t q if p < < ~ u q and p <<m~st q, and

2. p =i q if p <<~ q and q <<i P, for i E {may, must, t}.

16

3 Tgraphs, STgraphs and Dgraphs

The bisimulation/prebisimulation-based accounts of the testing relations rely on trans-
forming the transition systems in question in a suitable way. In this section we describe
the kinds of transition systems to be generated and transformations used to generate
them. We first define the notion of a deterministic transition system.

Def in i t ion 3.1 Let (P, Act, -+) be a labeled transition system. Then -+ is deterministic

i f -~= 0 and ID(p,a)l < 1 for each p E P a n d a E Act.

If --~ is deterministic then we shall sometimes say that the corresponding labeled transition
system is also deterministic.

Tgraphs are a particular class of labeled transition systems satisfying certain proper-
ties.

Def in i t ion 3.2 A labeled transition system (T, Act, -~) is a Tgraph if the following hold.

1. -~ is deterministic.

2. Each t E T is labeled by two pieces of information, t.acc and t.cIosed, with t.acc C_
2 Act and t.closed a boolean.

3. lt.accl < oz, VS E t.acc. ISI < ccz, and t .acc= min t.acc.

4. t.closed= true ~: '.. t .acc~ O.

5. t.ctosed = false ~ Vt' E D(t). t'.closed = false.

The definition of Tgraph should be compared with notion of acceptance tree in [4, 5].
Intuitively, t.acc is an acceptance set, while t.closed represents whether or not a node is
"convergent" (or closed, in the terminology of [4]). Notice that if t.closed holds, then
t.closed must hold of each predecessor of t along --~. On occasion, we shall say that a
Tgraph node t is closed if t.closed is true, and open otherwise.

Two variants of Tgraphs are also of interest.

Def in i t ion 3.3

1. Tgraph (T, Act,-+) is a strong Tgraph, or STgraph, if for each t E T, t.closed =

false ~ D(t) = O.

2. Tgraph (T, Act, -~) is a Dgraph i f for each t E T, t.closed = false.

17

3 .1 B u i l d i n g T g r a p h s

We now define a construction for generating Tgraphs from arbitrary labeled transition
systems; these Tgraphs turn out to enjoy certain "language equivalence" properties with
the graphs from which they are built. We first define the T-Closure of a set of states Q as
follows.

Q ~ = { p l S q c Q . q = ~ p }

Notice that Q c Q~ for any Q. Also, extend the definitions of D and ~ s to sets of states:

D(Q, a) = [.j D(q, a)
qEQ

Q,[s . ~ A qSs
qEQ

Now let E = (P, Act, --~} be a labeled transition system. The Tgraph T(E) = (T, Act, --*T)
is given as follows.

1. T = { (Q,b) E2 P × boolean l Q = Q~ A (QT e ~ b= false) }.

. For t = (Q,b) E T, define t.closed= b and

t.acc = ~ ¢ [min { S(q)] q E Q A q-~ }
if b.closed = false
otherwise

3. For tl = (Q1, bl) and t2 = (Q2, b2), tl -5,T t~ exactly when the following hold.

(a) a # T.

(b) (D(QI,a)) ~ = Q2.

(c) [bl = false ~ b~ = false] A [(b~ = true A b~ = false) ~ Q~ T el.

It is straightforward to verify that :T(E) is a Tgraph. The definition of $ ensures
that t.acc satisfies the finiteness properties required of Tgraphs for each t E T, while the
construction of --~T ensures that it is deterministic.

It is possible to alter this construction slightly to generate S T (E) and 79(/::), which
are an STgraph and Dgraph, respectively. The alterations are the following.

• $7-(£) Replace (3c) with bl = true A (b~ = false ~ Q~ T e).

• 7)(/:) Replace (1) with T = { (Q,false) [Q = Q~ }.

3 . 2 P r o p e r t i e s o f T g r a p h s

In order to establish the properties enjoyed by T(E), S T (E) and 7)(£:) with respect to
E, it is useful to make some definitions. Let p E P.

t(p) = ({ p y , p ~ e)

d(p) = ({p}~,false)

18

t(p) is meant to define the state in T (£) (and S T (£)) corresponding to p, while d(p) is
meant to define the state in 79(£) corresponding to p.

In deterministic graphs such ~:s Tgraphs, a sequence s E L(t) for a state t defines a
unique state t'. Accordingly, we shall abuse notation and say that, for s E L(t), D(t, s) is

this state. We also redefine the predicate $ s for Tgraphs in the following way.

t ~ e ¢==~ t.closed= true
! ! t~as ' ¢==V t .cIosed=trueA(t -2+t ' ~ t ~ s)

Let £ = (P, Act, -+). The first lemma we state establishes a "language equivalence"
property between p E P and its corresponding nodes in 7 (£) and 79(£).

L e m m a 3.4

1. L(p) = L(t(p)), where L(t(p)) is interpreted with respect to T (£) .

2. L(p) = L(d(p)), where L(d(p)) is interpreted with respect to 79(£).

In general, this property does not hold between p and its corresponding state in ST(C) .
We do have the folIowing.

L e m m a 3.5 Let s E (A c t - {r})*.

1. Assume that p~s and t(p) is in 32r(£) . Then s e L(p) if and only if s e L(t(p)).

2. p ~ s if and only if t(p) ~ s, where t(p) ~ s may be interpreted with respect to either
or ST(C) .

If p , s and s e n(p) then D(t (p) ,s) .aec = rain .4(p,s) .

4 Test ing via Bis imulat ions and Prebis imulat ions

In this section we prove our main results linking the testing relations on labeled tran-
sition systems with appropriate II-bisimulations and (I-I, ~)-prebisimulations on various

Tgraphs. Let £ = (P, Act,-~) be an arbitrary labeled transition system. We shall use
the following notation.

T (£) = (T, Act,-*T}

$ T (£) = (T, Act,-*ST)

7:)(£) = (D, Act, -*D)

We now turn our at tention to the preorders. To start with, we need to define the
convergence predicate g a to be used in the definition of prebisimulation on Tgraphs. We
use the following.

tJ)a .: :',. t.ctosed = true

Since this definition does not depend on a we shall abuse notation and write t~k

t9

T h e o r e m 4.1 Define II = { (t ,u) ! t.acc = O V u.acc CC t.acc}, and let p,q E P. Then
the following hold.

1. p <<,~st q i f and only ift(p)~(n,¢)t(q) in S T (Z) .

2. p <<t q i f and only i f t(p)~(, ,T×Act)t(q) in T (£) .

The may preorder has a somewhat simpler description in terms of Dgr~phs.

T h e o r e m 4.2 Let p,q E P. Then p <<,~y q i f and only i f d(p)~(n×D,D×Act)d(q) in

T h e Equivalence Relations

The characterizations of the equivalence relations are the following.

T h e o r e m 4.3 Let p, q E P, and define II = { (t ,u) E T × T I t .acc= u.acc}. Then the
following hold.

1. p =may q i f and only i f d(p) ~D×D d(q) in :D(Z).

2. p =,n~st q i f and only f i t (p) "~rI t(q) in S T (Z) .

3. p -=t q i f and only f i t (p) ~II t(q) in ~T(Z).

5 Dec id ing Testing for Fini te-State Processes

In section 2 we introduced the labeled transition systems corresponding to the process with
"start state" p taken from a larger transtion system. These were written (Pp, Act,--~p),
where each state in Pp is assumed to be reachable from p. In this section we consider the
problem of deciding the testing relations for such processes when I -~p I is finite.

We examine the equivalence relations first, since there are well-known algorithms for
computing bisimulation equivalence [9, 14]. These algorithms work in the following way,
for transition systems (Pp, Act,--+p) and (Pp,, Act,-~p,).

1. Form (Pp + Pp,, Act, --~p + --~p,), where + denotes disjoint union.

2. Starting with the universal relation (Pp+Pp,) x (Pp+Pp,), apply a relation refinement
procedure to generate the coarsest bisimulation.

3. Ifp and p' are related by this bisimulation then the transition systems are equivalent;
otherwise, they are not.

20

Assume:

E : (2 P x bool) --, Tstate is an environment (partial function), initially undefined,
mapping pairs comprising a set of states and a boolean to a Tgraph state;

newstate is a function that allocates a new Tgraph state, given an acceptance set
and a boolean.

Function build takes a transition system, a partially constructed Tgraph, a set of states
and a boolean and returns a pair consisting of a Tgraph and its "start state".

fun build ((P, Act,--@, (T, Act,--~T}, S C P, b): Tgraph x Tstate =
Construct ST;
if E((S ~, b)) exists then return ((T, Act,---~T}, E((S ", b)))
else let e = (b A Vp e S ' . p~e)

acc =if c then { S(p) I P C S r A p-~ } else O
t = newstate(acc, e)

in
E : = E[<S',c> t];
T := T U {t};
f o r e a c h a E { a E A c t - { r }] 3 p c S T . s - % } d o

let S, = D(S ~, a)
(1:, t') = build((P, Act, ~) , (T, Act, --*T), S~, c)

in -'+T := --+T U{ (t, a, t') } end;
return ((T, Act, -+T), t)

end;

fun T((Pp, Act,--*)) = build((Pp, Act,--+), (0, Act, 0), {p}, true);

Figure 1: A procedure for computing T

To use these algorithms to compute the testing equivalences, they first need to be mod-
ified to compute ILbisimulations. In the case when II is an equivalence relation, this is
straightforward - replace the reference to the universal relation in step (2) with a reference
to H. Note that for the testing equivalences, II is always an equivalence relation.

The other step in computing the equivalences involves defining procedures for comput-
ing appropriate Tgraphs; given a transition system (Pp, Act, --*), the Tgraphs in question
are the portions of T((P, Act,--*)), ST((P, Act,--*)), and ~D((P, Act,--*)) reachable from
t(p), t(p) and d(p), respectively, with "start states" t(p), t(p) and d(p). We shall abuse
notation slightly and refer to these Tgraphs as T((Pp, Act,-@), ST((Pp, Act,--+)) and
Z)((Pp, Act,--*)). Figure 1 sketches an algorithm for computing T((Pp, Act,-+)). The
method used is a variant of one presented in [8] for generating deterministic automata from

a

T

[]

(

/
{0}

a

"Start" nodes are circled.

a

{ {b, c}, {a, c} }

X
{0}

/

21

0'){{a}}
a

{0} {0}

Closed nodes are represented as filled circles, open nodes as
unfilled. Acceptance sets have been left off of open nodes.

Figure 2: Examples of the transition system transformations

nondeterministic ones. Minor variations on this procedure compute 3T((Pp, Act,--*}) and
~((Pp, Act, -~)). Figure 2 gives examples of the graphs produced by these transfor-
mations.

These transformations are in general PSPACE-complete, since the problem of com-
puting failures equivalence (which is t hesame as testing equivalence) is known to be
PSPACE-eomplete and the bisimulation algorithms are of polynomial complexity. Intu-
itively, the difficulty arises from the fact that a Tgraph might have a state corresponding
to each subset of states in the original graph and the fact that acceptance sets can theo-
retically have size exponential in the size of the action set. Practice, however, indicates
that Tgraphs in fact have fewer states than the transition systems from which they are
generated, owing to the fact that &-transitions are eollapsed. Moreover, acceptance sets
are small in practice, since the size of the acceptance set indicates the degree of nonde-
terminism present in the process and this is usually small. Our techniques have been
implemented in the Concurrency Workbench [2], and our experience for a variety of prob-
lems has been that computing testing equivalence takes about twice as long as computing

observational equivalence.

22

Computing the preorder relations can be performed in much the same way as calcu-
lating the equivalences. First, modify a "refinement-style" prebisimulation algorithm to
compute (II, gJ)-prebisimulations, and then apply the procedure to the appropriate deter-
ministic graphs. As these algorithms are not so well-known we shall say no more about
them. The interested reader is referred to [2].

6 C o n c l u s i o n s

In this paper we have presented a bisimulation/prebisimulation-based characterization of
the testing relations that relies on transformations of the underlying model of processes.
As a result, it is possible to use existing algorithms for computing bisimutations [9, 14]
and prebisimulations [2] in conjunction with appropriate transformation procedures to
compute the testing equivalences and preorders. Although the problem of computing
these relations is known to be PSPACE-complete, experience with the implementation
in the Concurrency Workbench [2] suggests that in practice they are computationally
well-behaved.

Other equivalences and preorders can also be characterized in terms of bisimulations
and prebisimulations on appropriately transformed labeled transition systems. For exam-
ple, observational equivalence and observational congruence [13] may both be defined in
this way, as can GSOS congruence [1] and the ~-bisimulation preorder and equivalence
[10]. This suggests that our technique of using general bisimutation and prebisimulation
algorithms on transformed transition systems may be applied to compute other relations,
in addition to the testing ones.

R e f e r e n c e s

[1] Bloom, B., S. Istrail and A. Meyer. "Bisimutation Can't Be Traced." Proceedings of
the ACM Symposium on Principles of Programming Languages, 1988.

[2] Cleaveland, R., J. Parrow and B. Steffen. "The Concurrency Workbench." To appear
in the Proceedings of the Workshop on the Automated Verification of Finite-State
Systems, Grenoble, 1989.

[3] DeNicola, R. and M. Hennessy. "Testing Equivalences for Processes." Theoretical
Computer Science 24, 1984, pp. 83-113.

[4] Hennessy, M. "Acceptance Trees." Journal of the ACM, v. 32, n. 4, October 1985,
pp. 896-928.

[5] Hennessy, M. Algebraic Theory of Processes. MIT Press, Cambridge, 1988.

[6] Hennessy, M. and R. Milner. "Algebraic Laws for Nondeterminism and Concurrency."
Journal of the ACM, v. 32, n. 1, January 1985, pp. 137-161.

23

[7] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall International,
London, 1985.

[8] Hopcroft, J. and J. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, 1979.

[9] Kanellakis, P.C. and S.A. Smolka. "CCS Expressions, Finite State Processes, and
Three Problems of Equivalence." Proceedings of the ACM Symposium on Principles
of Distributed Computing, 1983, pp. 228-240.

[10] Larsen, K. and A. Skou. "Bisimutation through Probabilistic Testing." Proceedings
of the ACM Symposium on Principles of Programming Languages, 1989.

[11] Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer Sci-
ence 92. Springer-Verlag, Berlin, t980.

[12] Milner, R. "Calculi for Synchrony and Asynchrony." Theoretical Computer Science,
v. 25, n. 3, July 1983, pp. 267-310.

[13] Milner, R. Communication and Concurrency. Prentice-Hall, t989.

[14] Paige, R. and R.E. Tarjan. "Three Partition Refinement Algorithms." SIAM Journal
of Computing, v. 16, n. 6, December 1987, pp. 973-989.

[15] Park, D. "Concurrency and Automata in Infinite Strings." Lecture Notes in Com-
puter Science 104, pp. 167-183. Springer-Verlag, Berlin, 1981.

[16] Walker, D. "Bisimulations and Divergence in CCS." Proceedings of the Third Annual
Symposium on Logic in Computer Science, pp. 186-192. Computer Society Press,
1988.

