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1 I n t r o d u c t i o n  
If we restrict our attention to finite state programs (variables and communication chan- 
nels if any range over finite domains), then the whole program can be represented as a 
(generally large) finite graph. Each transition of this state graph is valued with the atomic 
action which has just changed the state. Consequently, a finite s t a te  program can be 
viewed as a finite model over which temporal formulas can be evaluated. Checking that  a 
given finite model satisfies a given temporal formula is what one calls "model-checking". 

We consider the linear time version of temporal logic (LTL) and atomic propositions 
as actions [16]. Our terminology is no essential restriction and simplifies the transition 
to the automata  framework we use thereafter. 

Models for linear logic are totally ordered computations. We restrict our attention to 
finite computations. Extension to the infinite case will be discussed. 

Classical model-checking as implemented in EMC [2] or XESAR [14] (for a branching 
time temporal logic) is illustrated in the left part of figure 1. It is assumed that  the 
complete state graph is available before entering checking. This allows to use ei~cient 
fixpoint algorithms to evaluate formulas. The main limitation is the amount of memory 
needed to record the state graph. Because of the necessity, for the graph construction, 
to compare each new state with those already generated, the performance collapse is 
unavoidable, whatever coding and access techniques may be used. Avoiding the state 
explosion problem was discussed in [3] for a branching time logic. 

Our paper presents a first step to a complementary approach that  we call "on-line 
model-checking" and which tends to considerably decrease the state space needed. The 
basic idea is to check during the slate enumeration (see figure 1). For that  aim, the 
temporal logic specification must be executed [15]. The logic specification is translated 
into a finite automaton (here is the main algorithmical difficulty) which will value the 
system states during enumeration. Decision of validity or rejection can then be reached 
in finite t ime providing a large enough memory to store a number of states equal to the 
depth of the state graph. A related technique is formally described in [8]. 

In section 2 we present the considered temporal logic. In the third part, we recall an 
effective algorithm we designed to translate logic formulas into finite automata  when they 
are interpreted over finite computations. Section 4 exposes the model-checking algorithm 



Figure h A classical verifier and an on-line verifier 
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and its properties. We then discuss an extension to the infinite case for a particular (but 
rather large) class of formulas, called "deterministic". 

2 T h e  c o n s i d e r e d  T L  

Let E be a finite alphabet (the set of observable events, augmented with the invisible 
action 7-). The temporal formulas over E (~') are built up from the atomic propositions 
c~ 6 E using the boolean connectives -~, A, the unary temporal operator O ("next"),  
the binary temporal operator U ("until"), and brackets [13]. Some abbreviations are also 
considered : V (or), D (implies) and = are defined in the usual way, Vf 6 ~', C) f = "~O-~f 
(strong next), <>f _= T H f  (eventually) and o f  = -~<>-~f (always). 

Examples (E = {a, b, r}): ~1 = O(a ::~ C)(~aHb)) and ~o2 = Oa II Ob 
The formulas are interpreted over finite nonempty sequences a = a0...c% (n > 1) 

which length is [a  I- 
The satisfaction relation ~ between pairs (a, i) (where 0 < i <I cr 1) and formulas 

is inductively defined as follows : 

Ya E E, Y~,, ¢ 6 F ,  
(cr, i) ~ -[- always, (~r, i) ~ "-~ i f f  not ((~, i) ~ ~) 
(o 4i) ~o~ i f f  a i = ~ ,  ( e , i ) ~ A ¢  i f f  ((o 3i) ~ ) a n d ( ( o  4 i ) ~ ¢ )  
(o-,i)~O~, i f f  (i=l~l-1) or((~, i+l)~)  
(~r , i )~Lt¢  i f f  3j, i < j < l  a l ,  ((a,j) ~¢)and(Vk,  i < k < j ,  ( a , k ) ~ )  

We say that a computation ~ satisfies a formula ~ (~ ~ ~) ifr (~, 0) ~ v. we 
can easily extend the possible interpretations with the empty sequence A by considering 
A ~ ~ as defined by (A,-1)  ~ ~. 

A temporal formula ~ over E defines a set L(~p, E) of finite sequences s.t. : 

L ( ~ , E ) = { ~ c E * I ~ I  = ~ }  

Examples: L(~I,  E) = (b U 7-)* W (av*b(b U v)*)* and L(~2, E) = b + U E* ab + 
Let us now consider a finite transition system S = <  Q, E, 6, q0 > where Q is the 

finite set of states, E the alphabet of actions, 5 the transition relation and q0 the initial 
state. The associated finitary language over an alphabet E is the set of all the possible 
computations (¢ renames the invisible actions E - E into r) 

L(S, E) = {¢(~), ~ e E* t 5(qo, a) e Q} 
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A transition system satisfies ~ iff all its finite computations on E satisfy ~ : 

S k ~ o  i f f  V o ' E L ( S , E ) ,  a ~ o  ( i . e .  L ( S , E )  C_L(~,E)  

3 F r o m  T L  t o  f i n i t e  a u t o m a t a  
The theory of linear time logic was linked to the automata theory several years ago. We 
know that a language is TL-definable if and only if it is first-order definable, and that 
first-order definability can be characterized elegantly in terms of "star-free" languages 
(regular languages included in the closure of the finite word-sets under concatenation 
and boolean operations only) [9]. 

Examples (E* is an abbreviation for --g) : 

L(~I, E) = ~[S*a'~(E*bE*) U S*a-~(E*bS*)aE*] 
L(~2, E) = b-~(S*(a U r)S*)  U E* ab-~(S*(a U r)E*) 

The above proposition was first applied in [11] to show the possibility of synthesizing 
synchronization skeletons of protocols from their TL-specification. Since no efficient 
and programmable algorithm was known to us, we developed a new one to perform the 
translation of logic formulas into finite automata, based on the concept of derivatives (a 
la Brzozowski [1]). We present the main results; proofs and examples can be found in 
[4]. A similar technique is also used in [5]. 

3 . 1  D e r i v a t i v e s  o f  t e m p o r a l  f o r m u l a s  

A derivative of a formula ~ with respect to the finite sequence s is a formula Ds~ s.t. : 

Yt E E*, t ~ D , ~ s t k ~  

Satisfaction may then be characterized by the emplyness acceptation of a derivative : 

Vs E E*, V~ E TL ,  s ~ ~ < ~ A ~ D ~  

A derivative of qa with respect to a finite sequence o" can be found recursively : 

Va E E, D o ~  - D ~ D o ~  and DA~ =-- 

The derivative of ~ with respect to a sequence a of unit length can be found recur- 
sively : 

D ~ , T  = T 

D~ - _L(V~ ~ ~, a 4 ~) 
D~(~ A ¢) _= Dc,~ A D~¢ 
D~(~U¢) _-- -~(-~D~¢ ^ -~ (D~ A ~ A ~U¢)) 

Daa =- T 
D~, ~o  --- ~ D~,~o 
D~ 0 ~ - -~(-~ A,~) 
where ~ = -~(A~e=-~) 
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3 . 2  C o n s t r u c t i o n  o f  t h e  a u t o m a t o n  a c c e p t i n g  L ( ~ , E )  

Two temporal formulas are said boolean-equivalent (does not imply equivalence) if they 
are equivalent according to the boolean calculus only. 

Every formula ~ has only a finite number of non-boolean-equivalen~ derivatives. All 
the dislinct derivatives can be calculated considering sequences of increasing length. 

From all the previous propositions, we can calculate .A~ = (Q, E, 6, q0, F)  , the au- 
tomaton corresponding to the TL-formula ~: 

* The set of states Q is the finite set of the non-boolean-equivalent derivatives of ~, 

• The transition function is determined by the existence of a derivative 
V ¢ , ¢ ' E Q ,  V a E ~ ,  ¢ '=~f(¢,c~) ¢V 3 z E E * , ¢ = D a ~  A ¢ ' = D , ¢ ,  

• The initial state q0 is ~, and a state ¢ is a terminal state iff $ ~ ¢. 

In order to illustrate the derivation process, we give in figure 2 the automata  and 
derivatives of the examples ~l and ~2. 

Figure 2: A~l and , 4~  

a ~" b, r 

b 
b 

The TL-compiler has been implemented as a software package written in Pascal (2500 
lines) and ,with usual properties, produces automata for about fifty temporal operators 
formulas in a few seconds on a SUN workstation. TL formulas are represented by trees 
(or- and and-formulas are considered as n-ary).  Derivatives of some pure temporal 
sub-formulas are kept during the computation to avoid re-derivation of previous terms, 
since the derivation rules can produce common sub-trees. A conjonctive normal form is 
generated in order to improve the boolean-equivalence testing. 

4 Searching trans i t ions  and checking 
4.1 State searching 

According to our "on-line" approach, we try to search all the computations of the 
considered finite state system without recording the whole state space. This is possible if 
we detect the loops by using a depth-first strategy and keeping the states of the current 
computation path (the others may be replaced if necessary). We can then theoretically 
reach all the states using only a memory bounded with the state graph diameter. Let 
us note that  in general there does not exist a continuous function linking the memory 
size with the number of reached states [12] (as illustrated in section 4.3). Different 
replacement strategies can be applied in order to speed up the search. Holzmann studied 
replacement strategies in order to speed up the search [6] : he found that  random selection 
among the states to be deleted was the best management! 
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Figure 3: The model checker algorithm 
stack :---- 0; heap :-- 0; 
push( qo S , qo ~, enabledS ( qoS ) ); 
while stack ~ ~ do begin 

i f  top. enabled ~ ~ t h en  begin 
t := one_element_of(top.enabled); 
top.enabled := top.enabled - [t]; 
qS := 8S(top.stateS ' t); q~ := 8~(top.state ~, t); 
ir--,((qs, q~) e stack) then 

if-~((qS, qV) E heap) t hen  begin  
T~ := cnabled~(q~); Ts := enableda(qS); 
if-~ [Vx e Ts I (x e T~) ^ (~(q~ ,x)  e F)] t hen  error 
else push( q S, qV, Ts ) 
end 

end 
else begin (* top.enabled = ~ *) 

i f  full(heap) t hen  
replace ( random (heap), top. state s, top. state ~) 

else memorize(top.state s, top.state~); 
pop (* backtrack *) 
end; 

end; 
end; 

4 . 2  C h e c k i n g  

Let Ts C E and T~ C E be the sets of fireable transitions in a given state (so, qo) for the 
transition system S and the automaton associated to a temporal formula ta respectively. 
Since all the states of S are terminal states, the satisfaction relation can be reformulated 
as follows : 

S ~  i f f  T s C T ~  a n d V c ~ E T s ,  8(qo, c~)E F 

where q0, 6, F refer to the automaton A~. This condition can be evaluated during the 
search and then performs on-line checking. In the algorithm (see figure 3) we explicitely 
manage a heap (with random replacement) of already generated pairs (system state, 
au tomaton state) and a stack of triples (system state, automaton state, not yet fired 
transitions) of the current path. 

4 . 3  E x a m p l e  

The example is a very simplified connect-disconnect protocol (see figure 4) which 
was designed to provide an introduction to protocol validation [7]. Being concerned with 
finite systems, we will only refer to the part of the state graph over the line n -- constant 
where n is the size of the channel A - -~  B (the number of different states is then 

g = [-~] + 3(n + 1)). 
If we run the program with the formula true, which automaton is a single terminal 

state, we generate all the states of the system. For a given n, we can modulate the 
heap size HS to observe the variations in number of generated states NGS and in t ime 
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Figure 4: The connect-disconnect protocol and its infinite state graph 
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T according to that size (see figure 5). Those figures are only indications because the 
program has not been optimized (no particular coding of the states) and it is run on a 
very simple protocol. However we can make the following remark: when starting from 
HS "~ N, we decrease HS, NGS stays for a long time very close to N (before explosion) 
just because of the random replacement. So generation t ime is almost minimum and 
searching t ime decrease. In our example, the best results are obtained with a heap size 
near N Those observations can of course also be done with other formulas for which 
the number of generated states only increase when loops of the automaton include some 
of the state graph. 

Hence, with a given memory size, we can very efficiently check protocols which 
couldn't be analysed with methods requiring generation of all the different states and 
then checking properties. When the checked formula is not valid on the state graph, we 
don't  need to generate all the states, because we stop as soon as the formula becomes 
false. We think that those observations can be generalized for a lot of protocols because, 
even if the curves are not the same, they certainly have a similar form. 
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Figure 5: Number of generated states and t ime in function of heap size 
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5 Extens ion  to the  infinite computa t ions  
We give here some hints of the extension of our approach to some kinds of infinite 
computations. Considering a property given by a deterministic Biichi automata  (as 
advocated in [10]), an infinite sequence a is accepted if and only if it spells out infinitely 
often a terminM state. Since we only consider finite state systems, it follows that  the 
system satisfies the property if and only if every fireable transition of the system is also 
a transition of the Biichi automaton and if every elementary cycle of the state graph is 
vMued by a terminal state of the automaton.  The checking algorithm is basically the 
same as for the finite case except that  an error occurs when a loop is detected and all its 
states are valued by non-terminal states of the automaton.  

Figure 6: The irreducible non-deterministic Bfichi automaton of ~2 

b 

Application to temporal logic formulas is more disputable since a temporal  formula 
does not ever correspond to a deterministic Biichi automaton (see figure 6). If a formula ~ 
is deterministic, our translation algorithm gives the right deterministic Biichi automaton 
A~o. To efficiently decide the determinism of a formula is yet an open problem. 

6 Conclus ion  
Avoiding state space explosion in model-checking algorithms is a good challenge to im- 
prove the applicability of verification tools. We have presented, in that  context, an 
approach called on-line model-checking where satisfiability is checked during the state 
generation process. 

Though the entire validation has to be rerun for each new property, this approach is 
interesting since it decreases the state space needed. We also have shown that  for large 
graphs, surprisingly the on-line technique may be better in time than the classical model- 
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checking. Precise algorithms are given and they have been systematical ly experimented. 
Nevertheless, we have only dealt with a simple context, considering finite computa-  

tions and a basic linear temporal  logic. Future works could be to t ransport  the idea 
towards branching t ime logics (may be difficult) and to find efficient algori thms to check 
satisfiability of linear formulas on infinite computat ions (accessible). 
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