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Abst rac t  

In this paper we show that observation equivalence on CCS processes preserves tempo- 
ral properties (drawn from a very general temporal logic encompassing standard linear and 
branching time logics). Moreover, relative to a progress requirement, we show that CCS pro- 
cesses are live. But it is also very important to be able to verify that a process has or lacks a 
temporal property. In Section 3 we briefly discuss the idea of local model checking, checking 
that a particular fmitary process has a property. Finally in Section 4 we exhibit a correct 
model checker for a sublogic, the linear time mu-calculus, of the general temporal logic. 

1 Fair Transition Systems and CCS 

Operational semantics of programs and systems are commonly defined in terms of labelled transition 
systems, structures of the form (P,  {=%t a ~ Act})  where P is a set of processes (or states), Act  
a set of actions, and for a E Act,  =% is a transition relation on P :  p :=% p' expresses that  process 
p becomes p' by performing the action a. However, especially in the case of concurrent systems, 
what is of interest is their ongoing behaviour rather than individual allowable transitions. Central 
to this is the idea of a computation, or a run, understood as a maximal path through the transition 
system. A path through (P,  {=%1 a E Act})  is a finite or infinite sequence of the form 

po = ~  pl ~ . . .  

where each Pi E P .  A path is maximal if either it is infinite, or its final process is unable to perform 
any action. For uniformity, it is usual to guarantee that a maximal path has infinite length by 
assuming that  the union of the transition relations is total: for each p E P there are an a E Act  
and a q such that  p =% q. This practice is followed here. 

Not every maximal path through a transition system may count ms a run. For the notion of 
computation may be defined relative to fairness or liveness assumptions. Instead, some maximal 
paths are defined to be admissible while the rest are discounted. There are numerous techniques 
for delineating admissibility - -  see [1,2,3,4] for a sample. Here we shall extend transition systems 
with a Street t acceptance condition which takes into account actions as well as states. Generalizing 
[5], we call the resulting s t ructures/air  transition systems. 
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Defini t ion 1 A fair transition system is a triple T = (P, {=::%] a E Act}, q~) where 
(a) (P,  { ~ [  a E Act}) is a transition system, 
(b) Vp E P. 3a E Act. 3q E P. p =g~ q, 
(c) • C 2 ActxP x 2 ActxP. 

The acceptance condition ~J is therefore a binary relation on subsets of Act x P. A path 
~r = P0 ~ Pl = ~  --. through 7" is admissible if for each pair (X, Y) E ~,  

if ~ j. (ahpj+l) E X then o~ k. (ak,Pk+l) E Y. 

Notice that  neither P nor Act need be finite. Each fair transition system 7" determines a set of 
runs Z~-, the admissible computations through 7". We let Igor(p) be the set of runs in ~ -  whose 
initial process is p. In the sequel we shall only be interested in fair transition systems 7" with the 
property that ZT(P) is nonempty for each p E P. 

The operational semantics of Milner's CCS [6,7,8] are given as labelled transition systems. In 
fact there is more than one transition system associated with CCS depending on whether : not 
the silent action -r is observable. In both cases the set P of processes is the same, built from a 
constant 0 (nil), variables X,  and closed under various operations including action prefixing a., 
nondeterminism +, parallel t, recursion ~ixX.,  and restriction \a .  The action sets depend on a 
little structure. Let A be a set of atomic actions and let A be a set of co-actions disjoint from A and 
in bijection with it. The bijection (and its inverse) is -, so ~ (in A) and a (in A) are complementary 
actions. Complementary actions may synchronize, resulting in ~-, the silent action. When -r is 
viewed as observable the action set is A U X U {T}, and the transition relations % are given by a 
set of rules which include the following: 

a.p - -~p ,  
i fp  --% p' then p +  q --% p' and q + p  --% 1], 
i f p - ~ p '  t h e n p l q  - - ~ 1 ] ] q  and q lP ---% q I1], 

i fp  --% g and q - -~  q' then p I q ~ g I q', 
i fp[X := ~ixX.p] a p, then f±xX.p --% IY, 
i fp  - -~  p' and a ¢ {c,'~} then p\c ---% pP\c. 

There is no rule for the inactive process 0. Synchronization of complementary actions shows itself 
in the fourth rule. In the subsequent rule p[X := f±xX.p] denotes p with all free occurrences of X 
substituted with f±xX.p.  The fruit of this endeavour is the CCS transition system (P, {--%1 a E 
A U A U {7}}) where P is the set of closed process expressions. Bisimulation equivalence on this 
system is called strong equivalence [8]. 

When ~- is not observable then a different transition system is associated with CCS, the system 
(P, {:=~l a e Act}) where P is as above and Act is now the set AUAU{E}. The transition relations 
=:~ are defined using the relations --% for a E A UAU {~'}. First we have 

= ( _ z . y  

~r * ,1. 
where (-----~) is the reflexive and transitive closure of ---*. SeCondly, for a E A U A we have 

~ = ~ o - - ~ o ~  

where o is relational composition. So =A~ includes the absorption of finite sequences of silent actions 
before and after a. Bisimulation equivalence on this CCS transition system is denoted by ~-. and is 
known as observation equivalence or weak equivalence [8]. 
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Consider now runs of CCS processes (where ~- is unobservable). The following is a maximal 
path from a. p (with a e A U A): 

a . p ~ a . p ~ . . .  

even though this process makes no progress - -  it is hung, idling indefinitely. Therefore precluding 
it as a computation is natural. For each process p let 

Init(p) = {(a, q) I P = ~  q and a • e}. 

If (a, q) E Init(p) then as p becomes q by performing a it has then ceased ticking over. Let e(p) be 
the set of derivatives of p under e which may cease idling: 

e(p) = {(¢, q) t P ==~ q and Init(q) # 0}. 

More generally, associated with CCS is a fair transition system (P, { ~ 1  a ~ Act}, q~) whose 
acceptance condition is: 

= {(c(p), Init(p)) l P e P}. 

Thus • amounts to the liveness condition that processes eventually proceed if they can. The only 
paths precluded are those of the form 

p o - - - - ~ . . . ~ p ~ : = ~ . . . = ~ p , = ~ . . .  

where for infinitely many j (and hence for each j) Init(pj) ~ 0. Clearly each process gives rise to a 
run. This fair transition system is a principal object of our enquiry below. (There is refinement of 

to a preorder giving an explicit treatment of divergence, [9]; this allows a distinction between in- 
definite idling and infinite internal chatter. The appropriate logics which characterize this preorder 
are intuitionistic - -  see [1(}] for intuitionistic Hennessy-Milner logic.) 

2 General Temporal Logics 
Temporal logics are suitable for reasoning about the ongoing behaviour of systems. Standard 
propositional temporal (and modal) logics are covered by the following general temporal logic 
where Q ranges over atomic sentences, a over actions, and Z over propositional variables: 

A::= Q [ Z I-~A I A A A  I O.A I OA IVA [vZ.A. 

The operator Oa is a relativized next operator while O is its unrelativized counterpart. V is the 'for 
all paths' operator, an essential ingredient of a branching time logic. Finally, vZ. is the maximal 
fixpoint operator, binding free occurrences of Z in A. One restriction on uZ. A is that each free 
occurrence of Z in A lies within the scope of an even number of negations. Derived operators are 
defined in the familiar way: A V B is -~(~A A -~B); 3A is -~V-~A; and ttZ. A is -~uZ. -~A[Z := -,Z] 
where A[Z := -~Z] is the result of substituting -~Z for each free occurrence of Z in A. 

We interpret formulae of this logic (with actions drawn from the set Act) on fair transition 
systems T = (P, { ~ l  a E Act}, ~) where for each p E P, ~r(p)  is nonempty. A model is a pair 
iT, V) where T is such a fair transition system and V is a valuation assigning sets of processes to 
atomic propositions, and sets of paths in ~ -  to variables: V(Q) c P and V(Z) C ~7. We assume 
the customary updating notation: V[~/Z] is the valuation V ~ which agrees with V except on Z 
where V'(Z) = EL A little more notation: if cr is a maximal path P0 ~ Pl = ~  . . .  in E~r then 
a(0) is the initial process P0, a()~0) is the initial action a0, and for i > 0, a ~ is the i ~h suffix of a, 
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the maximal path (also in ET) P~ = ~  Pi+l ~ .... For each formula A we inductively define ~ A ~ ,  
the set of paths in E~r which satisfy A in the model M = (T, V). For ease of notation we dispense 
with the index T from ]] A ~v ~ and E~-: 

iQDv = {~ e E i ~(0) e V(Q)} 
IZ lv  = v ( z )  

[-,A]v = E-  [A[v 
~AAB~v = ]A~vN~B[v 

o,,a[v = {aEE[a  sE]A[v anda(AO)=a} 
MOAlv = { a e ~ t a  1clAIr} 
~VAIv = {a 6 E [Va' e E. if ~r'(0) = a(0) then a' e[lAHv} 

~uZ.A~v = U{ ~'C- E I ~''cllAnvI~,m}. 

The expected clause for the derived operator #Z. is: 

, Z . A  = ~{~ ,  c_ ~ t ~AlJvf~,mc r~,}. 

Temporal formulae have sets of paths as meanings (in a model). But for most purposes, paths 
are subordinate to processes. So a useful derived notion is the set of temporal properties which 
hold of a process p in the model .M = (T,V).  This we define as the set [plv~: 

]plvT= {AIA is closed and ~(p)  c_llAlvT}. 

Note here the restriction to dosed formulae as expressions of temporal properties. 
This logic is very general (and its satisfiability problem is just within the decidable boundary). 

It contains as sublogies standard linear time logics including Wolper's extended temporal logic, 
and the standard branching time logics CTL, CTL* and extended CTL*. Moreover it also contains 
modal logics - -  the mu-calculus, and hence Hennessy-Milner logic and propositional dynamic logic 
- -  where the modality [a] is V-~Oa-,. (It is common with some of these sublogics to distinguish 
syntactically between path and state formulae. We prefer a more general semantic definition: a 
state formula A has the property that for any model (T, V) 

c~ E]A~v ~ iff E~-(a(O)) c_]a]v T . 

A path formula fails this criterion. Hence, for instance, any boolean combination of formulae of 
the forms VA and 3A is a state formula.) 

It is also a very appropriate logic for CCS, especially as a fair transition system. For instance, 
the strong liveness property that a must happen infinitely often is given by the formula 

uZ. (#Y. Oatrue  V OY) A OZ 

(where t r ue  is an atomic proposition), which holds of the process f ixX.  ('r. X + a. b. X). Let CCS 
stand for of its own fair transition system. We say that the valuation V is ~-.-preserving provided 
that the atomic sentences cannot distinguish processes that are weakly equivalent: that is, if when- 
ever p ~ q then for any atomic proposition Q, p e V(Q) iff q e V(Q). Now a central theorem: that 
weak equivalence preserves temporal properties in the case of ~-preserving valuations. 

T h e o r e m  2 If V is ~.-preserving and p ~ q, then ~PltvCCS--[q~vCCS" 
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This means that weak equivalence preserves both liveness and safety properties. (An immediate 
corollary, if we wish to work with the congruence ~-.¢ [6,8] instead of ~, is the result where ~c replaces 

throughout Theorem 2.) The proof of Theorem 2 is a little delicate, and proceeds via a more 
general result proved in [11] that extended bisimulation equivalence on any fair transition system 
preserves temporal properties. But extended bisimulation equivalence on the CCS fair transition 
system coincides with ~. An additional twist is that temporal properties are also preserved by 
on the different CCS fair transition system whose acceptance condition is the empty set - -  where 
all maximal paths are admissible. But then no process has any interesting liveness properties: 
for instance, the process a. q fails to have the property 'eventually a must happen' because of the 
admissible idling computation a. q :=~ a. q :=~ . . . .  

It has been claimed, contrary to the results here, that ~ does not preserve temporal properties. 
The CCS T-law 

a.(p+T.q) ~a.(p+ 7-.q)+a.q 

is cited as showing this: the idea is that the left hand side satisfies eventually p+T. q unlike the right 
hand side because of the summand a. q (assuming of course that q and p + a. q are not equivalent). 
But the problem with this analysis is that the notion of path is that given by the different CCS 
transition system when I- is observable. (This is not to deny that there are interesting abstractions 
of strong equivalence such as stuttering equivalences which are finer than weak equivalence.) 

3 Local Model Checking 

A major concern, given the generality of this temporal logic, is its local model checking problem: 
given a finitary model .h4 = (T, V), does A belong to ~p]~? A model is finitary if for each process 
p, the set {q I P(UaeAa =~)*q} is finite. (CCS restricted to the set of processes where I is not 
within the scope of a f ixX. is finitary.) Notice that the description of the model checking problem 
here is whether a particular process has or lacks a temporal property even though the semantics of 
the general temporal logic is given in terms of paths (which are of secondary interest for practical 
purposes). Moreover, unlike standard accounts of model checking we are not interested in all the 
states or processes of the model with a given property. 

The logical structure of temporal formulae directs the model checker presented below - -  each 
rule is a connective elimination rule or a fixpoint unrolling rule. However in the case of CCS, there 
is also the further question of to what extent model checking can be guided by the algebraic theory 
of processes. For there are two structural dimensions, the algebraic structure of processes and the 
logical structure of formulae. A simple example of utilizing process structure in model checking is 
sanctioned by the soundness of the following rules when a # c: 

30aA 6~p~ 30~A 6~q~ 
30,A eip + qlrv 30aA eUp + qU~ 

Conseqfiently, if our goal is to discover whether p + q has the property 30,A it suffices to discover 
if either p or q has it. (For sound and complete sets of such structural rules for CCS in the very 
restricted case of Hennessy-Milner logic see [10].) Such rules provide a basis for avoiding the 'state 
explosion problem' [12]. More generally, another technique is to appeal to Theorem 2 (assuming V 
is ~-preserving) which licences the following rule: 

A 6~p~ T p ~ q 

A 6[]qR~ 
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Use of this rule is aided by the existence of a minimization algorithm for CCS (which has been 
automated in the Concurrency Workbench, a toolkit for analysing concurrent systems [13]) that 
produces a 'smallest' process p from the finitary process q with p ~ q. (As it stands, this rule is 
too coarse - -  finer analyses may appeal to relativized equivalences ~A, meaning equivalence up to 
A, or to equivalences relative to process contexts as in [14].) 

4 L o c a l  m o d e l  c h e c k i n g  i n  t h e  l i n e a r  t i m e  m u - c a l c u l u s  

In [15] we present a model checker for a sublogic, the modal mu-calculus, of the general logic of 
the previous section. An equivalent version of it has been implemented by Cleaveland [16] in the 
Concurrency Workbench. The crux of the method of model checking is a form of fixpoint induction 
(inspired by [17]). This is in contrast to Emerson and Lei [18] who use approximation techniques 
for determining whether or not a process (state) p has a fixpoint property - -  then one has to 
determine all the processes with that property and then check if p is in that set. Hence, we termed 
our model checker local, because it just tests whether a particular process p has a property A using 
the structure of A and the processes local to p in the model. Here we provide a local model checker 
for the linear time mu-calculus, the sublogic without the V operator (introduced in [19]; and see 
also [20]). In later work we hope to include the V operator too. Approximation techniques are not 
applicable. For instance consider the model A4 = (T, V) given by 

a ~_¢ Q 

where V(Q) = {q} and • = {({(a,p)}, •)}. Clearly p has the property 'eventually Q' since the path 
(p ~ p)~ is inadmissible. That is, #Y.Q V OY Elp[~. But for all n >_ O, (#Y. Q v  OF) '~ ¢~Pi~ 
where for any A, (aY. A)0 = false  and (~Y. A)-+I = A[Y := (aY. A)']. 

4.1 T h e  t a b l e a u  r u l e s  

First we extend the general logic of the previous section to include propositional constants and 
definition lists. Assume a family of propositional constants ranged over by U. Associated with 
a constant U is a declaration of the form U = A where A is a closed formula, possibly con- 
taining previously declared constant symbols. A definition list is a sequence A of declarations 
U1 = A1,. . .  ,U~ = A,~ such that Ui ~ Uj whenever i ¢ j and such that each constant occurring 
in Ai is one of U1, . . . ,  Ui-1. This means that a prefix of a definition list is itself a definition list. 
When A as above is such a list we let dom(A) = {U1,... ,  U,} and A(Ui) = Ai. Moreover, if A is 
a definition list, U ¢ dora(A) and each constant occurring in A is in dora(A), then A .  U = A is 
the definition list which is the result of appending U = A to A. A definition list A is adequate for 
B if every constant occurring in B is declared in A, and A is adequate for a set F of formulae if 
it is adequate for each B in F. In this circumstance we let Ba, resp. FA, be the formula B, resp. 
set of formulae P, in the 'environment' A (see Definition 3). The interpretation of formulae is now 
extended to formulae relative to adequate definition lists by, in effect, treating constants as variables. 
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Definit ion 3 If A : U 1 = AI , . . . ,  [In = As is adequate for B and F, and V 0 = V and V~+ 1 = 
Vi[~A'+I ~v~/Ui+l], then 

[Balv =~ ~Blv. 
Nr lv =d± U{IB lvl B e r}. 

The reason for interpreting sets of formulae disjunctively will become clear below. This inter- 
pretation accords with the expected meaning of Ba and 1~ in terms of syntactic substitution. We 
define A*(B), resp. A*(F), to be the result of replacing all constants in B, resp. F, by their defini- 
tions as given in A: if A is empty then A*(B) = B, and (A- U,, = A,)*(B) = A*(B[Un := A~]); 

= I B • r} .  

L e m m a  4 ~ Bz~ ~v=]l A*(B)Iv and ] Fa ]v=] A*(F)Iv" 

Suppose A4 = (~r, V) is the finitary model under consideration. The local model checker is a 
tableau system centred on sequents of the form p t-~ F where F is a finite set of closed linear time 
mu-calculus formulae, proof-theoretic analogues of 

r.7(p) c_ I [ .  

The set r is understood disjunctively (see Definition 3). The reason is that although p may have 
the temporal property B V C, this does not imply that p has the property B or that p has the 
property C (for example, B might be 'eventually Q' and C 'eventually R'). 

As is common in tableau systems, the rules are inverse natural deduction type rules. Each rule 
is of the form 

r 

Pl t-~ F1 -.. Pkt-~ k Fk A1 

where k > 0, possibly with side-conditions (and side labels). The premise sequent p F ~  F is the 
goal to be achieved while the consequents are the subgoals, which are determined by the structure 
of the model local to p, the definition list A, and the structure of the formulae in F. Often in the 
sequel the index A~ is dropped from the sequents. In the rules we follow the usual convention of 
writing F, A for F U {A}. 

A tableau for p ~-2~ A is a maximal proof tree whose root is labelled with the sequent p I-~ A 
(where we omit the definition list when, as here, it is empty). The sequents labelling the immediate 
successors of a node labelled p ~-~ A are determined by one of the rules. The rules apply only to 
nodes which are not leaves. 

Defini t ion 5 A node labelled p ~-~ F is a leaf if one of the following holds: 
(i) r = 0, 
(ii) t r ue  E F, 
(iii) Q e r and p E V.~(Q), 
(iv) -~Q e r and p ¢ V]~(Q), or 
(v) there is a node above it labelled p t-~ F (for some A'). 

According to Definition 3, if a leaf fulfills one of the conditions (ii), (iii) or (iv) then it is true, 
i.e. E~r(p) C_~ Fa ~v ~. We call such a leaf successful. If it fulfills (i) then it is false and we call it 
unsuccessful. Otherwise it is labelled by a sequent p t-~ F and above it there is a node labelled by 
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a very similar sequent p ~-~ F. We call such a leaf a preterminal arid the associated similar node 
above it its companion. The definition of a successful preterminal is very delicate, and so is delayed 
until later. 

Now for the rules. One technicality is the use of the substitution B ( Z  := C) which is the result 
of substituting t r u e  for all free unguarded occurrences of Z (i.e. those not within the scope of a 
O or a O~ operator) in B, and substituting C for all free guarded occurrences of Z. For brevity 
we omit the rules for Oa and ~O~ which are straightforward. In the O-rule below, OF is the set of 
next formulae {OA I A E F}. The range of A, rng(A), is {A I for some U, A(U) = A}. 

p % r, Q p r, ?Q 
pl-~ F pt- a F 

p t- A F, - ~ t r u e  P ~'t, F, -~-~A 

p F a r  p F A F, A 

p ~-~ F, A h B p l-a F, -~(A A B) 
p t- A F, A p F a F, B p t-~ F, -~A, "~B 

O-rule 0-4 P t-a OF 
p l t - a  F • , . 

where {(a l ,P l ) , . . .  , (ak,pk)} = {(a, q) I P = ~  q}, 

p F~ F, -~OA 
p F a F, O-~A 

Pk FA F 

p t- a F, vZ. A A(U) = vZ. A P I-A F, -~vZ. A 
P~-A F, U pFa  F, U 

A ( U )  = 

p F~ F, ~Z. A p F A F, -~Z.  A 
U ¢ rng(A) U ¢ r~g(A) 

p t-a, F, U p F~, F, U 

where A'  = A -  U = vZ. A (resp. A .  U = -~,Z. A), 

p t-~ r ,  u A(U) = vZ. A P FA F, U A(U) = -~vZ. A 
p r , A ( Z  := U) P r,- A(Z := 

The rules for atomic formulae and booleans are straightforward as is the O-rule. Constants 
are introduced or reintroduced in the case of fixpoint formulae while the rules for constants unroll 
the fixpoints they abbreviate. The next (easy) theorem states that any tableau with root labelled 
p P-~ A is finite when .h4 is finitary. 

T h e o r e m  6 Every tableau for p ~-~ A is finite. 
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4 .2  D e f i n i t i o n  o f  a s u c c e s s f u l  t a b l e a u  

A tableau is successful if all its leaves are successful. Above we saw examples of such leaves - -  
for instance a node labelled p ~-am F, Q with p e V~(Q). The outstanding definition is that of a 
successful preterminal which we now present. 

With a given formula A we associate a finite directed graph G(A) whose nodes are labelled 
with finite sets of formulae. This graph has the property that if (Pl ~'~ F1,. . .  ,p,~ t-am rn) is any 
path through any tableau with root formula A, then (F1,. . . ,  F,)  is a path through G'~A). (So the 
root of G(A) is labelled {A}.) The graph G(A) is constructed by examining how sets of formulae 
evolve under applications of the rules. Rather than describing the construction in full generality 
we illustrate it with two examples. 

1. Let A --- vZ. Q A (OZ V OOZ). Then choosing a constant U and setting A(U) = A, G(A) 
(ommiting set braces) is 

A 

\ \o 

2. Let B - •Z. #Y. O((Q A Z) V Y). Then choosing constants V and W and setting A = (V = 
B, W = ~Y. O((Q A v)  v Y)), a(B) is 
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B 

/ 
,r.  O((0~IA V) V r) 

w 

Note that  since the rules guarantee that no definition list associates two different constants 
with the same formula we are free to choose the constants to be used in building a tableau when 
constructing these graphs. 

Suppose that  there is an edge from F to F' in such a graph G. As this edge corresponds to the 
application of one of the rules we can associate with each formula in F'  at least one formula in F 
of which it is an immediate descendent. For example if P is F1,A A B and F' is F1,A, then A in F' 
is an immediate descendent of A A B in F, and also of itself if A E F 1. Every formula in FI is a 
descendent of itself. Completing this definition for the remaining rules in the obvious way, given a 
path (F1, . . .  ,F , )  through G and formulae AI in F 1 and A~ in Fn, we say that  A n is a descendent 
of A1 if there are Ai in Pi (i = 2 , . . .  n - 1) such that Ai+l is an immediate descendent of Ai for 
l < i < n - 1 .  

The next ingredient required for the definition of a successful preterminal is the notion of a 
constant being active in a formula. Given a formula A, a definition list A and a constant U in 
dom(A), we say that U is active in A if either U occurs in A or there is a constant V which occurs 
in A and is such that U is active in A(V).  

Now fix a tableau with root p ~-M A say. An extended path from a node n to a node n' is a 
sequence tr = (n l , . . .  ,nk} of nodes with n = nl and n '  = n k such that  for eazh i, either ni+ 1 is an 
immediate successor of n i in the tableau, or n i is the immediate predecessor of a preterminal and 
ni+l is the companion of that preterminal. Associated with such an extended path ~r is a sequence 
P0 =g~ Pl =gg . . -  ~g=7~ Pm of transitions in the model M arising from the applications of the O-rule 
on r (note that  P0 = P,~). We call this sequence trans(Ir). 

Now suppose that ~r = (P0 t-a 0 F0, ' -"  ,P,~ Faro Fro} is an extended path from n to n '  (so that 
P0 =Pm and F 0 = Fro). The associated path # is the path (P0, . . . ,  P,~) through G(A) obtained by 
deleting from ~r everything but the sets of formulae. We say that ~ is. good if there are n > 0 and 
formulae B0 , . . .  Bran such that B 0 = B,~ ,  Bj= E Pj for 0 < j < m, and 
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1. Bi+l is an immediate descendent of B~ for 0 < i < m, and 

2. there is U such that A0(U ) = vZ. C for some Z, C, U is active in each B~, and for some j ,  
Bj =U. 

Finally, a preterminal n r is successful if for every extended path ~r from the companion n of n t 
to n' such that (trans(~r)) ~ is an admissible path through M,  then ~ is good. 

We then have the following result. 

T h e o r e m  7 p F "~ A has a successful tableau iff A E[p]v ~. 

Due to the simplicity of the termination condition the definition of successful preterminal is 
very complicated. It may be possible to find a simpler definition of successful termination. 

4 .3  T w o  e x a m p l e s  

Finally we consider two examples. Consider first the earlier example model A~ 

a,, a~ 

In this example p has the property 'eventually Q'. This is shown by the following successful tableau 
where A(U) = #Y. Q v OY: 

pF #Y.QV OY 

pF~ U 

pF a Q v  OU 

pF~ Q, OU 

p F A OU 
o,, a., 

pFz~ U qF~ U 

qbA Q v  OU 

q ~-a Q, OU 

The leaf labelled p b- a U is a preterminal. In this case there is just one inmimissible cycle (p = ~  p)% 
Hence this preterminal is successful. 

The second example is the CCS case mentioned earlier. We show that the process 
f ixX.  T. X + a. b. X in the case of fair CCS has the property 'infinitely often a happens'. This 
process is p in the following transition system. 
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Q , , , - ,  O /e# 

In the tableau below A = (V = vZ. (#Y. O~true Y OY) A OZ), and A' = A.W =/zY. O~true V OY. 

p [- uZ. (#Y. Oatrue V OY) A OZ 

p k a #Y. OatrUe V OY 

p b A, W 

P I-A, Oatrue V O W  

P~-A V 

P ~-A ( trY" O~true V OY) A OV 

E, 

o, E 
p b A OV 

q k  A V pk- A V 

q ~-A (trY. Oatrue V OY) A OV 

P ~-A, Oatrue, O W  q F" A trY. Oatrue V OY q ~-a OV 
e ~ ~  

p t- A, W q t- A, t rue ,  W q ~-A, W q I- A V P [-A V 

q [-A' Oatrue V O W  

q ~'a, O~true, OW 

qt- A, W P~-a, W 

P ~-A, Oatrue Y O W  

P ~-A' Oatrue, OW 
tt 

P ~-A, W q t-A, t rue ,  W 
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