
MEC : a system for constructing and
transition systems

A n d r 6 A r n o l d

L a b o r a t o i r e d ' I n f o r m a t i q u e *

U n i v e r s i t 6 B o r d e a u x I

analysing

A b s t r a c t

MEC is a tool for constructing and analysing transition systems modelizing pro-
cesses and systems of communicating processes.

From representations of processes by transition systems and from a representation
of the interactions between the processes of a system by the set of all allowed global
actions, MEC builds a transition system representing the global system of processes
as the synchronized product of the component processes.

Such transition systems can be checked by computing sets of states and sets
of transitions verifying properties given by the user of MEC. These properties are
expressed in a language allowing definitions of new logical operators as least fixed
points of systems of equations; thus all properties expressed in most of the branching-
time temporal logic can be expressed in this language too.

MEC can handle transition systems with some hundred thousands states and
transitions. Constructions of transition systems by synchronized products and com-
putations of sets of states and transitions are performed in time linear with respect
to the size of the transition system.

I n t r o d u c t i o n

The not ion of transition system plays an i m p o r t a n t role for describing and s tudying
processes and sys tems of communica t ing processes. A simple way to represent pro-
cesses, in t roduced for instance in [10] and widely used in m a n y works on semant ics and
verification of processes, is to consider tha t a process is a set of states and tha t an
action or an event makes the current s ta te of the process to change; thus the possible
e l emen ta ry behaviours of the process are represented by transitions: each t ransi t ion
contains the current s ta te of the process, the new s ta te it enters and the n a m e of the
act ion or event which caused this change. Transi t ion systems are also used to describe
sys tems of communica t ing processes, and not only individual processes; the s ta tes of
the sys tem are the tuples of s ta tes of its components and the t ransi t ions of the systems

* Unitd de Recherche associde au Centre National de la Recherche Scientifique n ° 726
tWork supported by the French Research Projec~ C 8

118

are tuples of transitions of the components, provided these transitions are allowed - or
obliged - to be executed simultaneously. Arnold and Nivat [12,3,1] have named this
construction, which is implemented in MEC, synchronization product.

Once a system of processes is represented as a transition system, one can extract,
from this transition system, some informations about the behaviour of the system of
processes it represents. It is what we call analysis of a transition system and it amounts
to computing the set of states or the set of transitions which satisfy some property of
interest when looking at the behaviour of the system. For instance it is easy to check if
the transition system has "deadlocks", i.e. states in which no transition is executable, or
states in which every executable transition leads to a deadlock; a very simple algorithm
can give the set of all these states. Thus an analyser is simply a tool which computes
the set of all states or of all transitions of a given transition system satisfying some given
property. The main feature of such an analyser is obviously the family of properties of
states and transitions it can deal with.

In the systems Cesar [14] and eme [6], properties of states are expressed by formulas
of branching time temporal logics. Given a formula F and a transition system .A, these
systems compute the set F~t of states of A satisfying F (or, at least, decide if the "initial
state" of .A belongs to F.a). In MEC we adopt a slightly different point of view, in some
sense more algebraic than logical [7]. Let w be some logical operator and let F =
w(F1,... ,Fn) be a formula. For a transition system .A, the set F.a of states satisfying
.4 depends on the sets (F~).a of states satisfying Fi, thus Fct = w~((F1).4,..., (Fn)~t),
where w~t is an operator defined on the cartesian product of the powerset of states
with the powerset of states as a range. Then formulas can be considered as expressions
which have to be evaluated, in a way very similar to what happens in programming
languages with arithmetic or boolean expressions. Thus the language used in MEC
to express properties consists in variables and constants ranging over the powerset of
states and on the powerset of transitions, and of sorted operators; the basic mechanism
implemented in MEC is the execution of assignments variable := expression, exactly
like in programming languages.

It remains to define the basic operators which can be used to build expressions.
We can take the operators of branching time temporal logics (which are computable
in linear time with respect to the size of the transition system) but, also, any other
kind of operator which is easily computable. For instance in MEC we use the operator
which associates with a set of states the union of the strongly connected components
intersecting this set; although this operator is not really a logical operator, it is as easy
to compute as the other ones, because of the Tarjan's algorithm [16] which is linear too.

Another feature of MEC is that the set of basic operators used to build expressions
can be extended, in the same way that the set of operators in arithmetic expressions
can be extended, in some programming languages, by defining new functions (especially
recursive functions). It is well known that temporal logic operators can be characterized
as least fixed points of equations [15,8,6], and this observation has led to the definition of
the g-calculus as an extension of branching time temporal logics [13,11]. MEC provides
for the definition of new operators characterized as least fixed points of systems of
equations [7] and then its expressive power is at least as powerful as the expressive
power of alternation-depth-one/z-calculus defined by Emerson and Lei [9]. Indeed these
new operators defined by systems of equations are still computable in linear time, like the
basic ones, because of the Arnold-CrubilM's algorithm [2] to solve fixed point equations.

119

1 T r a n s i t i o n s y s t e m s

1.1 Labelled transit ion sys tems

A labelled transition system over an a lphabe t A of actions or events is a tuple ,4 =
< S , T , a , 15,,,k > where

• S is a finite set of states,

• T is a finite set of transitions,

• a , /3 : T ~ S are the mapp ings which associate with every t ransi t ion t its source
8tare a(t) and its target state fl(t),

• ,k : T ~ A labels a t rans i t ion t by the act ion or event ~(t) which causes this
t ransi t ion.

We assume tha t there never exist two different t ransi t ions with the same label be-
tween the same two states , i.e. the m a p p i n g < a , A,/5 >: T ~ S x A x S is injective.

1.2 Parametr ized transit ion sys tems

A pa rame t r i zed t rans i t ion sys tem is a labelled t ransi t ion sys tem given with some sets
of designed s ta tes and some sets of designed transist ions, called paramete rs . The role of
these p a r a m e t e r s is to give some addit ional informations on the t ransi t ion system; it is
the case when some s ta tes play a special role or when some transi t ions play a special role
which is not specified by the label of the transi t ion. Some example of such si tuations
will be given below.

E x a m p l e 1. Let us consider a boolean variable. I t has two states, denoted by 0 and
1, according to the current value (0 or 1) of the variable. The set A of actions per formed
by such a boolean variable contains

t o O which means tha t the variable is set to 0,

t o l which means tha t the variable is set to 1,

i s 0 which tests whether the value of the variable is 0,

i s l which tests whether the value of the variable is 1,

e which does nothing.

The first two actions modi fy the value of the variable, i.e. its s tate, in an obvious
way. T h e two tests can be executed only if the variable has the tes ted value, and this
value is not modified. The last action, when executed, does not change the value of the
variable. As we shall see la ter on, (example 3), this null action is a way to express the
possibi l i ty of occurrence of events which does not modify the s ta te of the variable. The
t rans i t ion sys tem represent ing this variable is given in figure 1, in the input fo rmat of
MEC.

transition_system b < width =

0 I - e -> 0 ,

toO -> 0 ,

tol - > i ,

isO -> 0 ;

1 I - e - > 1 ,
toO -> 0 ,

to1 -> I ,

isl -> 1 ;

< initial = { 0 } >.

120

0 > ;

Figure 1: The transit ion system for a boolean variable in MEC

In this figure one can notice the last line < i n i t i a l = { 0 } >. which defines a
parameter , named "initial", reduced to a single state, 0. This parameter is used to say
that the state 0 has some special property, indeed it is the initial state of the transi t ion
system: the initial value of the variable, before any action is performed, is 0.

E x a m p l e 2. Let us now consider the Peterson 's a lgori thm for mutual exclusion of
two processes. This algori thm uses three shared boolean variables, f l a g [0] , f l a g [l] ,
and t u r n , all three initialised to 0. Each one of the two processes executes the program
given in figure 2 where me is equal to 0 and o t h e r is equal t o 1 for the first process,
and me is equal to 1 and o t h e r is equal to 0 for the second one. This p rogram can also
be represented by a t ransi t ion system, states of which are the locations in the program
and transit ions between locations are labelled by elementary actions performed in the
execution of the program. We also consider a special action e which does not change the
state, which means that a process can stay idle at every moment . The MEC description
of this t ransi t ion system is given in figure 3.

In this t ransi t ion system there are three s ta te parameters:

i n i t i a l which indicates the start ing location,

cs which indicates the location where the process is in its critical section,

ncs which indicates the location where the process is not in its critical section.

There is also a t ransi t ion parameter: it is the set of all transit ions marked as having
the proper ty rob. These transitions are those executed by the processes when it tries
to enter its critical section.

Indeed this t ransi t ion system is obta ined by interpret ing the command WAIT(. . .
0K . . .) in the following way: this command can be executed only if one of the two

proc(me , other) =

while true do

begin

{NCS}
{mutexbegin}

{CS}

{mutexend}

end

121

O: ... ;

flag[me] := 1 ;

I: turn = me ;

2: WAIT (flag[other] = 0

3: ... ;

flag [me] : = 0 ;

OR turn = other) ;

Figure 2: The Peterson algorithm

transition_system proc < width = 0 >;

I- e

my_flag_to_l

I- e

turn_to_me

2 I- e

->0 ,

-> I <property=(mb)>;

-> 1 <property=(mb)>,

-> 2 <property--(mb)>;

-> 2 <property--(mb)>,

is_other_flag_O -> 3 <property=(mb)>,

is_turn_other -> 3 <property=(mb)>;

3 I - e - > 3 ,
my_flag_to_O -> 0 ;

< initial = { 0 } ; cs = { 3 } ; ncs = { 0 } >.

Figure 3: The transition system for a process in MEC

122

conditions is satisfied; in this case the execution of the process reaches the critical sec-
tion. It looks like idle waiting. Another in terpre ta t ion of this c o m m a n d (busy waiting)
could be: the process tests the first condition; if it is t rue it reaches the critical section,
otherwise it tests the second condition; if it is true it reaches the critical section, other-
wise it executes WAIT again. This in terpre ta t ion will yield another t ransi t ion system.

2 Synchronized systems

Let us consider n t ransi t ion systems .4i over the a lphabets A~ of actions, for i = 1 , . . . , n.
Let us assume tha t these t ransi t ion sys tems represent processes and shared objects
const i tu t ing a sys tem of interact ing processes.(For simplicity, f rom now on, we shall also
call processes the shared objects since they are also represented by t ransi t ion systems).
T h a t means tha t some action in some process can be executed only s imultaneously
with some other action in some other process, or, on the opposite , cannot be executed
s imul taneously with some other action of some other process. Let us call global action
a vector < a l , . . . , an > where a~ belongs to Ai. Such a global act ion is executed when
the actions ai are s imul taneously executed by the n processes. Thus the interact ions
between the processes of a sys tem can be represented by the set of all global actions
which are allowed to be executed and in [3], it is advocated tha t this kind of specification
of the interact ions between the processes of the processes of a sys tem is general enough
to formalise most of the concurrent sys tems of processes.

2.1 Synchronization c o n s t r a i n t s

As explained above, the interact ions between the processes ¢41 of a sys tem are repre-
sented by a subset [of AI x - . . x An, called a synchronization constraint.

E x a m p l e 3. Let us consider again Pe te rson ' s mutua l exclusion a lgor i thm for two
processes. It is a represented by a sys tem containing two t ransi t ion sys tems p r o c
described in figure 3 and three boolean variables b described in figure 1. T h e second
line of figure 4 gives the list of the t ransi t ion systems of this system. The o ther lines
are the elements of the synchronizat ion constraint; these elements are just those we get
when obeying the following rules. (Here we temporar i ly come back to the distinction
between processes and variables).

1. \Ve assume this sys tem runs on a single processor; therefore the two processes can-
not execute s imultaneously a non null action; moreover the two processes cannot
be idle simultaneously.

2. Each act ion pe r fo rmed by a process consists in set t ing or test ing a variable. When
a process executes such an action, the corresponding variable executes the corre-
sponding action and the other variables execute the null action.

2.2 Synchronized product

Given a vector < A t , . . . , A n > of t ransi t ion systems, each ~4~ = < S~,Ti, ai, fli,~i >
over the a lphabe t A~, the free product of < A1 , . . . , A s > is the t ransi t ion sys tem

123

synchronizationsystem peterson

< width = 5 ; list = (proc,proc,b,b,b) > ;

(my_flag_to_O .e .toO .e .e) ;

(my_flag_to_l .e .tol .e .e) ;

(e .my_flag_to_O .e .too .e) ;

(e .my_flag_to_l .e .tol .e) ;

(turn_to_me .e .e .e .toO) ;

(e .turn_to_me .e .e .to1) ;

(is_other_flag_O .e .e .isO .e) ;

(e .is_other_flag_O .isO .e .e) ;

(is_turn_other .e .e .e .is1) ;

(e .is_turn_other .e .e .isO)

Figure 4: The system representing Peterson 's algori thm

< S, T, c~, fl,)~ > over A1 x . . . x AN defined by

S = S l x . . . x S , , ,

T = T l x . . . x T , , ,

= < >,

= < > ,

: , (t , , . . . , t , ,) = < > .

In some sense, the free product represents the evolution of the vector of transit ion
systems when no constraint is set on the actions which can be performed simultane-
ously. In case of a synchronizat ion constraint some transit ions of this free product
will never appear : those which are labelled by a vector of actions not allowed by the
synchronizat ion constraint. Hence we have the following definition.

Given a vector < M1 , . . . , M,~ > of transit ion systems, each .Ai over the alphabet A~,
and a synchronizat ion constraint I included in A1 × . . . x A,~, the synchronized product
of < .A1,... ,.A,~ > with respect to I is the transit ion system < S, Tl, a,t~,:k > over
A1 x .-- × An where

• < S ,T ,a , fl,)~ > is the free product of .A1,... ,.As;

• Tx is the set of transi t ions t = < t l , . . . , tn > of T having their label A(t) =
< A l (t l) , . . . , A n (t , ,) > i n I .

Indeed the synchronized product computed by MEC is only a sub-transi t ion system
of the synchronized system defined above. Each transit ion system A~ = < Si, Ti, a~, ~ , Ai >
which is a component of a synchronization system is assumed to have a parameter
i x x i t i a l , as it is the case for the transi t ion systems described in examples 1 and 2.
This pa rame te r defines a subset initiall of Si and the parameter i n i t i a l of the product

124

is defined as the subset init ial = initial1 x . . . x initialn. The set of global states of
the synchronized product of MEC is the set Reach(in i t ia l) of global states which can
be reached from ini t ial , i.e. the states of init ial and the targets of paths having their
sources in init ial . The set of global transitions of the synchronized product of MEC is
the set of global transitions having both their sources and their targets in Reach(ini t ial) .

E x a m p l e 4. The synchronized product, computed by MEC, of the synchronization
system pe te rson given in figure 4 is given in figure 5. It was obtained by executing the
MEC command sync (pe t e r son , r e s) ; where res is the name given to the product.

3 E lementary c o m p u t a t i o n s

The general form of a computation command in MEC is

variable := expression;

the ezpression is evaluated and its value is assigned to the variable. The value of an
expression is either a set of states or a set of transitions.

3 .1 S e t v a r i a b l e s

Variables used by MEC are of two different sorts according to the kind of set they can
be assigned. A variable is implicitely declared when it appears for the first time in the
left hand part of an assignment command and its sort is the sort of the expression (if
the sort of the expresssion can be unambiguously determined, otherwise the assignment
is rejected). Every declared variable is displayed on the terminal with the number of
objects (states or transitions) of its value. Parameters are considered as variables with
an initial value.

3.2 Expressions
Expressions are built up from variables and operators. Among these operators are
set-theoretical (or boolean) operators union, intersection, and difference as well as the
constants "empty", denoted by { }, and "all", denoted by *.

Some others operators are primitive and will be described below. New operators can
be defined by the users and this will be explained in the next section.

Finally there are some other ways to define sets of states and sets of transitions. We
will not list all these ways here and we refer to the user manual [4].

E x a m p l e 5. Let us consider the transition system res of figure 3 constructed by
MEC, which will be our running example from now on.

First of all we want to know if the mutua l exclusion property is verified, i.e. if the
two processes can be or not both together in their critical section. Let us remind that
the set of states in which a process is in its critical section is defined by the parameter
cs as shown in figure 2. Therefore we have just to know whether there are (global)
states in which

125

transition_system res < width = 5> ;

e(O.O.O.O.O) - (e.my_flag_to_l.s.tol.e) -> e(O.l.O.l.O) ,
(my_flag_to_l.e.tol.e.e) -> e(l.O.l.O.O)

e(l.O.1.0.O) - (e.my_flag_to_l.e.tol.e) -> e(1.1.I.1.0) ,
(turn_to_me. e. e.e.toO) -> e(2.0.I.0.0)

e(2.0.1.0o0) - (e.my_flag_to_loe.tol.e) -> e(2.1.1.1.O) ,

(is_other_fla.e.e.isO.e) -> e(3.0.1 0.0)

e(3.0.1.O.O) - (e.my_flag_to_l.e.tol.e) -> e(3.1.1 1.0) ,
(my_flag_to_O.e.toO.e.e) -> e(O.O.O 0.0)

e(O.l.O.l.O) - (e.turn_to_me.e.e.tol) -> e(0.2.0 1.1) ,

(my_flag_to_l.e.tol.e.e) -> e(l.lol 1.0)

e(l.l.l.l.O) - (e.turn_to_me.e.e.tol) -> e(1.2.1 I.I) ,
(turn_to_me.e.e.e.toO) -> e(2.1.1 1.0)

e(2.1.1.1.O) - (e.turn_to_me.s.e.tol) -> e(2.2.1.i.I) ;

e(3.1.1.1.O) - (e.turn_to_me.e.e.tol) -> e(3.2.1.I.I) ,

(my_flag_to_O.e.toO.e.e) -> e(O.l.O.l.O) ;
e(2.2.1.I.0) I- (e.is_turn_othe.e.e.isO) -> e(2.3.1.I.0) ;

e(2.3.1.i.0) I- (e.my_flag_to_O.e.toO.e) -> e(2.0.1.O.O) ;

e(O.O.O.O.l) I-(e.my_flag_to_l.e.tol.e)-> e(O.l.O.l.l) ,
(my_flag_to_l.e.tol.e.e) -> e(l.O.l.O.i) ;

e(l.O.l.O.l) I- (e.my_flag_to_l.e.tol.e) -> e(l.l.l.1.1) ,
(turn_to_me.e.e.e.toO)-> e(2.0.1.0.0) ;

e(0.1.0.1.1) I-(e.turn_to_me.e.e.tol)-> e(0.2.0.1.1) ,

(my_flag_to 1.eotol.e.e) -> e(1.1.1.1.1) ;
e(0.2.0.1.1) I- (e.is_other_fla.isO.e.e) -> e(0.3.0.1.1) ,

(my_flag_to 1.e.tol.e.e) -> e(1.2.1.1.1) ;
e(0.3.0.1.1) I-(e.my_flag_to_O.e.toO.e)-> e(O.O.O.O.1) ,

(my_flag_to_l.e.tol.e.e) -> e(l.3.1 1.1) ;
e(1.1.1.1.1) I- (e.turn_to_me.e.e.tol) -> e(l.2.1 1.1) ,

(turn_to_me.e.e.e.toO) -> e(2.1.1 1.0) ;
e(1.2.1.1.1) I- (turn_to_me.e.e.e.toO) -> e(2.2.1 1.0) ;
e(2.2.1.1.1) I- (is_turn_othe.e.e.e.isl) -> e(3.2.1 1.1) ;

e(3.2.1.1.1) I- (my_flag_to_O.e.toO.e.e) -> e(0.2.0 1.1) ;
e(1.3.1.1.1) I-(e.my_flag_to_O.e.toO.e)-> e(1.0.1.0.1) ,

(turn_to_me.e.e.e.toO) -> e(2.3.1.1.0);
< initial = { e(O.O.O.O.O) } >.

Figure 5: A synchronized product

126

(i) the first component is in the value of cs in the first t ransit ion system of the
synchronization system p e t e r s o n ,

(ii) the second component is in the value of cs in the second transi t ion system of the
synchronization system p e t e r s o n .

The sets of states satisfying (i) and (ii) are respectively denoted by c s [1] and cs [2];
hence the set of states not satisfying the mutual exclusion proper ty is defined and /o r
computed by the assigmnent nok := cs [1] / \ c s [2] ;

After execution of this command, it appears on the screen tha t the value of nok is
a set of states which has 0 element. []

3.3 Primit ive operators

Let us denote by a and ~- the sorts "set of states" and "set of transit ions". We can use
the following opera tors s r c of sort v ~ a, t g t of sort 7- --* a, r s r c of sort cr ---, T, r t g t
of sort a --* ~'. Th e in terpreta t ion of these operators is as follows, for a given transit ion
system < S, T, ~, fl, A >: If Q is a set of states included in S and R a set of transit ions
included in T, then

src(R) = {ol(t) l t 6 R } ,
tg t (R) = {•(t) l t e R } ,

r t g t (e) = e e } .

In other words s r c (R) and t g t (R) are respectively the sets of sources and targets of
transitions in R and r s r c (Q) and r t g t (Q) are their reciprocals : the sets of transitions
having their source and their target in Q.

E x a m p l e 6. If Q is a set of states, the set Pred(Q) is the set of all states which are
the source of a t ransi t ion whose target is in Q. If q is a variable whose value is Q,
Pred(Q) is the value of the expression s r c (r t g t (Q)).

In a similar way Succ(Q) is the value of the expression t g t (r s r c (Q)) .
If T denotes a set T of transitions, the expression s r c (T / \ r t g t (Q)) evaluates to the

set of sources of transit ions in T having their target in Q and t g t (T / \ r s r c (Q)) to the
set of targets of transit ions in T having their source in Q. []

We also use the binary operator l oop of sort v~- --~ v defined by t 6 loop(R , R') if
and only if t belongs to a pa th p such that

(i) the source of p is equal to its target ,

(ii) every t ransi t ion of p is in R',

(iii) some transi t ion o f p is in R,

In o ther words, a t ransi t ion t is in loop(R , R') if it belongs to some loop in R' containing
some transit ion in R.

127

E x a m p l e 7. Let us now look for a firelock in the transit ion system r e s .
Roughly speaking there is a livelock if there is an infinite execut ion where

(i) bo th processes are always in their "mutexbegin" , and

(ii) none of the processes remains "inactive" forever.

Condi t ion (i) means tha t bo th processes are t rying to enter their critical section
and never succeed; condition (ii) means that bo th processes are really t rying to enter
their critical section : if one of the processes stays idle forever surely it will not enter
its critical section and could even prevent the other process to enter.

Since the only waiting action is denoted by e, a process is active during a transit ion t
if the corresponding component of the label of this transit ion is not equM to e. Therefore
the sets of transit ions in which the first and the second processes are active are computed
by activel := !label[l] # "e"; and active2 := !label[2] # "e"; The set of

t ransi t ions in which both processes are in their "mutexbegin" is computed by l l :=
mb [1] / \m b [2] ;

If there is a liveloek, there is a "loop" p such that

(i) all its transit ions are in l l ;

(it) it has an infinite number of transit ions in a c t i v e l ;

(iii) it has an infinite number of transit ions in a c t i v e 2 .

The set l l 0 of transit ions belonging to a loop satisfying (i) is computed by
110 := lo0p (* , 11) ; the set 111 of transitions belonging to a loop satisfying (i) and (it)
is computed by 111 : = loop (a c t i v e l , 110) ; finally the set 112 of transit ions belonging
to a loop satisfying (i),(ii) and (iii) is computed by 112 := l o o p (a c t i v e 2 , 1 1 t) ; Here
again this set is empty, tD

4 T h e d e f i n i t i o n o f n e w o p e r a t o r s

4.1 Preliminary example
Let us consider some given transit ion system .A. Let us consider the set Reach(initial)
which was used in the definition of the synchronized product (cf. 2.2). Indeed for every
set Q of states one can define the set Reach(Q) containing Q and the targets of paths
having their source in Q. Thus Reach can be considered as an opera tor of sort a --* a
and one c a n think of adding it to the primitive operators.

But we can also remark that this operator can be formally defined in the following
way. Let us consider the opera tor Succ defined in example 6. We have the following
equMity:

Reach(Q) = Q u S cc(Reach(Q)) (1)

We have even more: not only Reach(Q) is a solution of the equat ion

x = Q u S cc(X) (2)

128

but it is the least set of states (for inclusion) satisfying this equation.
Therefore we can give Reach the following definition: for every set Q of states,

Reach(Q) is the least solution of (2). This definition is expressed in MEC by

function reach(Q : state) return X: state ;

begin

X = Q \/ tgt(rsrc(X))

end.

Once this function is defined, the operator r e a c h can be used in expressions exactly like
primitive operators; its sort is a -+ a, as expressed by the first line of the definition.

4.2 Systems of equations

We are now going to formally define the systems of equations which can be used to
define new operators in MEC.

B a s i c o p e r a t o r s Let D be the heterogenous algebraic signature with two sorts, a
and ~', containing the following operators [7] :

0~, 1~, 0~, 1~ : constants of sorts a and 7-;

tA~, N~, - ~ : binary operators of sort act ~ c~;

U,, N~, - , : b inary operators of sort ~-r ~ ~';

8rc, tgt : b inary operators of sort r ~ c~;

rsrc, rtgt : b inary operators of sort cr ~ v.

If ,4 ---< S, T, a , fl, A > is a t ransi t ion system, it is given a D-s t ruc ture in the following
way :

• The set of elements of sort (resp. is p(S) (resp.

• The interpretat ions of the operators in a t ransi t ion system .4 have been previously
defined.

All these operators , but - ~ and - , , have monotonic interpretat ions with respect
to set inclusion.

S i g n e d t e r m s Let X~ = { x l , . . . , x~} and Y,~ -- {Yl , . . . , y,,} be two sets of variables
of sort a and v. We can build terms with these variables and the operators of D. If t is
such a term, its in terpreta t ion t~t will be a mapping from p (S) ~ x p (T) m into p (S) or
p (T) according to the sort of this term.

Since the in terpreta t ion of a difference opera tor is not monotonic, the interpreta t ion
of a term is not necessarily monotonic. However we can consider that the interpreta t ion
of a difference becomes monotonic if its first argument is ordered by inclusion and its
second argument is ordered by the inverse relation : containment.

This led us to consider two kinds of order on p (S) and p(T) , inclusion and contain-
ment. We shall denote these powersets by p+(S) and p+(T) (resp. p - (S) and p - (T))

129

when we wish to make clear tha t they are ordered by inclusion (resp. containment) .
For each sort , we consider two kinds of variables : positive variables ranging over a
powerset ordered by inclusion and negative variables ranging over a powerset ordered
by conta inment . Let X + and X - be two sets of positive and negative variables of sort
a, Y+ and Y - two sets of positive and negative variables of sort r and Z~ et Z~. two set
of "parameters" , which will be interpreted as arb i t rary sets.

We inductively define the sets of positive and negative terms of sort or, T + et T,- ,
and of positive and negative terms of r , 7-+ and T,- by

, X + c T + , X - c T - ~ - , Y + c T + , Y - c T - ~ - ;

• {Op, lp}UZpc~+n~- ; (p=a,r);

• if tl and ta belong to 7-pc then tl Up t2, tl A e t2 belong to 7-p¢; (p -- a, r ; (= +, -) ;

• if t belongs to 7 " / t h e n arc(t) mid tgt(t) belong to 7"J; ((= + , -) ;

• if t belongs to 7-~ then rare(t) and rtgt(t) belong to 7-/; (~ = + , -) ;

• if t~ belongs to 7-p¢ and t2 belongs to ~¢' then tl - e t2 belongs to 7-pC; (p = a, r ;
< q,q' > : < +,-- >, < - , + >) ;

If t is a te rm of 7-p~ its in terpreta t ion t.4 is then monotonic or ant imonotonic (accord-
ing to the value of ¢) when the values of variables in Z are fixed and values of other
variables are ordered according to their sign.

E x a m p l e 8. If Z~ is a parameter of sort r , Z , a parameter of sort a , X+ a positive
variable of sort a and Y_ a negative variable of sort r , then Z, A~. rtgt(l~ -~ X+) is a
negative t e rm of sort r and Z~ U~ (1, - - r arc(Y_)) is a positive te rm of sort a. El

Systems of equations Let us consider the following sets of variables :

x + { x , +, + = . . . , X , L

x - = { x ~ , . . . , x ~ } ,

y + = {YI+ , . . . ,Y+} ,

y - = {Y~-,.. . ,Y,~,},

z , = { z , , . . . , z p } ,

z~ = { z l , . . . , z ; , } ,

We consider the sets of terms T + , T~-,7-r+,T~- built with these variables.

A system of equations E is

{ x ? = u~+ll < i < n} u {x~- = u~l l < i < ~'}
{Y~+=v+l l < i < m } u {Y£=v['ll<i<m'}.

where u + e 7" 2 , u~" E 7"a-, v + e 7 + , v~" e 7-r-"

U

130

With a system of equations E and a transit ion system ,4 we associate the ordered set

DI = p+(S)" x p-(S) w x p+(T) ~ x p-(T) m'

and the set

D2 = p (S) p x p (T) /

ordered by the empty order. Then ~ defines a mapping

EA : DI x D2 ,~ D1

This mapping is monotonic with respect to the order defined componentwise on D1 and
D1 x D2. Thus it has a least fixed point #EA : D2) D1.

Now if we choose one of the signed variables, by composing #~.a with the project ion
of D1 on its component associated with this variable, we get a mapping from D2 in p (S)
or p(T) , according to the sort of the variable. Thus we can assume tha t a new operator
is defined by :

• the list of sorted parameters ,

• the list of sorted and signed variables,

• the selected variable defining the result,

• the list of equations, one for each variables.

The interpreta t ion of such an opera tor in any transi t ion system will be the mapping
defined above.

E x a m p l e 9. Let us consider the two terms of the example 8. The parameters they
contains are Zr and Z~, and the variables are X+ and Y_. Let us consider the two
equations

x + = - .

Y- = m n . x +)

For every transit ion system ,4 this defines a mapping from p (T) × p (S) in p (S) × p(T);
if we choose X+ as principal variable we get a mapping from p (T) × p (S) in p(S) .

Let us call u n a v o i d a b l e this opera tor for some reasons which will be explained
below. In MEC its definition will be wri t ten

function unavoidable(Zt :trans ; Zs : state) return X: state;
vat Y:_trans
begin

X = Zs \/ (* - src(Y));
Y = Zt /\ rtgt(* - X)
end.

Let us remark that negative variables are specified by an "underscore" preceding their
sort.

131

The name "unavoidable" given to this operator comes from the following property.
Let A be any transition system, Q some set of states and R some set of transitions. Then
a state s belongs to unavoidable(R, Q) if and only if every maximal path in .A (i.e. an
infinite path or a finite path whose last state has no successor in ,4) originated in s and
containing only transitions in R contains a state in Q. In particular unavoidable(T, 0)
is the set of states s such that every maximal path originated in s is finite. This can
be considered as a definition of "deadlocking" states, since once in such a state it is
impossible to start an infinite computation.

C o m p u t a t i o n of least f ixed po in t s If an expression contains an operator defined
by a system of equation it remains to evaluate this expression. This amounts to com-
puting the value of op(Z~,.. . Z~) when the values of Z1 , . . . , Z~ are known and thus
to computing the least fixed point of the equations defining op when the parameters
occuring in these equations are given. This can be done in time linear with respect to
the size of the transition system (i.e. number of states and number of transitions, using
an algorithm described in [2]). Thus all computations performed by MEC are done in
a time linear with the size of the transition system.

5 A n e x a m p l e of u s e

MEC has been used to check some mutual exclusion algorithms. It allowed to discover
that Burns's algorithms [5] contained livelocks in the case of four processes.

The transition system obtained by synchronizing four processes, four boolean flags
and a "turn" variable, representing the symmetrical Burns's algorithm with four pro-
cesses has 65 016 states, 260 064 transitions stored in about 13 Mbytes of memory. On
a Sun 3/60, it takes 20 minutes of CPU to construct this product and 11 minutes to
compute unavoidable using the linear algorithm of Arnold and Crubill~.

R e f e r e n c e s

[1] A. Arnold. Transition systems and concurrent processes. In Mathematical problems
in Computation theory (Banach Center Publications, vol. P1), 1987.

[2] A. Arnold and P. Crubill6. A linear algorithm to solve fixed point equations on
transition systems. Inf. Process. Left., 29:57-66, 1988.

[3] A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET "Les
Mathgmatiques de l'Informatique", pages 35-68, 1982.

[4] D. B6gay. Mode d'emploi MEC. Technical Report 1-8915, Universit~ Bordeaux I,
1989.

[5] J. E. Burns. Symmetry in systems of asynchronous processes. In Proc. 22nd Annual
Syrup. on Foundations of Computer Science, pages 169-174, 1981.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite
state concurrent systems using temporal logics specifications. ACM Trans. Prog.
Lang. Syst., 8:244-263, 1986.

132

[7] A. Dicky. An algebraic and algorithmic method for analysing transition systems.
Theoretical Comput. Sci., 46:285-303, 1986.

[8] E. A. Emerson and E. C. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In J. de Bakker and J. van Leeuwen, editors, 7th Int. Coll.
on Automata, Languages and Programming, pages 169-181, Lect. Notes. Comput.
Sci. 85, 1980.

[9] E. A. Emerson and C.-L. Let. Efficient model checking in fragments of the propo-
sitional/z-calculus. In Symp. on Logic in Comput. Sci., pages 267-278, 1986.

[10] R. M. Keller. Formal verification of parallel programs. Commun. ACM, 19:371-
384, 1976.

[11] D. Kozen. Results on the propositional #-calculus. Theoretical Comput. Sci.,
27:333-354, 1983.

[12] M. Nivat. Sur la synchronisation des processus. Revue Technique Thomson-CSF,
11:899-919, 1979.

[13] V. Pratt . A decidable/~-calculus. In Proc. 2Pnd Syrup. on Foundations of Comput.
Set., pages 421-427, 1981.

[14] J.-P. Queille. Le syst~me CESAR: Description, spdcification et analyse des appli-
cations rdparties. PhD thesis, I.N.P., Grenoble, 1982.

[15] J. Sifakis. Global and local invariants in transition systems. Technical Report 274,
IMAG, Grenoble, 1981.

[16] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput.,
1:146-160, 1972.

