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Verification Tools 

A b s t r a c t  

We present here two software tools, AUTO and AUTOGRAPH. Both originated directly from 
the basic theory of process calculi. Both were experimented on well-known problems to enhance 
their accordance to users expectations. 

AUTO is a verification tool for process terms with finite automata representation. It com- 
putes minimal normal forms along a variety of user parameterized semantics, including some 
taking into account partial observation and abstraction. It checks for bisimulation equivalence 
(on the normal forms), and allows powerful diagnostics methods in case of failure. 

AUTOGRAPH is a graphical, non syntactic system for manipulation of process algebraic 
terms as intuitively appealing drawings. It allows graphical editing by the user, but also visual 
support for display of information recovered from analysis with AUTO. 

1 I n t r o d u c t i o n  

The theory of process calculi as started with C C S [Mil 80] resulted in a number  of verifica- 
t ion tools designs, mostly in the case of terms with finitary representation (finite automata) 
[CPS 89,BOC 88,GLZ 89]. Par t  of these at tempts  was AUTO[Ver 87b,LMV 87a], which originated 
as a (strong- and weak-) bisimulation congruence checker on terms of the MEIJE algebra [Bou 85]. 

Such tools can easily build large t ransi t ion systems and check two of them for bisimulation, 
on a scale unmanageable  by a human  operator [Ver 86,Vet 88]. In addition the complexity of the 
growth of these systems can be cut down to some extent by using the congruence properties in 
order to reduce subterms first, before setting them in parallel. This is especially true for the weak 
congruence. Specific algorithms were studied, which are now fairly established. Such algorithms 
proceed along the following line: first devise a normal form of some kind by reducing each term 
individually, then perform the so-called partitioning algorithm to equate both  terms to be proven 
bisimilar. 
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This approach was pushed further in AUTO [SV 89], under the teachings of practice. Reductions 
to quotients of automata under various semantical criteria showed to be a promising way of analysis. 
A syntactical formalism for defining those reductions was then in order. We shall present here the 
state of the art in AUTO in this domain. 

Along with the original definition of the MI~IJE algebra in [Bou 85] came the notion of abstract 
actions and abstraction criteria, which are a powerful mechanism for defining levels of atomicity 
with different granularity, and actually move away from low-level details of basic concrete actions. 
It is a quite natural generalization of the ideas behind weak bisimulation, giving the user the 
possibility to decide himself on what is to be considered a relevant "experiment" performed on the 
system. Similar ideas may be found in [HeMi 85,Par 79]. Although we shall further elaborate on 
this later on, we can just say here that an abstract action is a set (usually regular) of concrete 
action sequences, to be thought of as "having the same meaning", as long as this sort of experiment 
is considered on the system. 

One point of success is that in general abstracted transition systems are reduced drastically 
in size. They can be considered as characteristic of a partial vision of the system. This is to be 
contrasted with a temporal logic approach where statements are already imposed before checking, 
so that one does not get much out of an answer "no". When defining relevant abstract actions, the 
user usually provides (sets of) sequences with particular meaning which should appear, as well as 
others which  shou ld  not .  The presence of undesired actions in the quotient abstracted automaton 
indicates at once in which conditions they may take place, which is unvaluable information while 
"debugging" a system. Experiments were conducted in [Lec 89]. 

Use of AUTO quickly showed that editing of process terms was error-prone, due to misspelling 
of signal names and other deceptive mistakes that could obscure the communication abilities. 
This was the price to pay for writing terms in such a low-level formalism.Then a graphical rep- 
resentation of terms was wanted both as more flexible and more immediate than a textual one. 
Communications could be traced with lines joining ports, instead of using the lengthy notations 
of renaming and restriction operators, which induced most mistakes. Parallel operators could also 
be easily generalized to more than two processes for instance. Representation followed the lines of 
flowgraphs [Mil 79]. 

The graphical system was named AUTOGRAPH [RS 89]. It was not fully integrated with AUTO 
so that both can be used to a large extent independently. In particular, AUTOGRAPH's output 
may easily be turned to any process calculus manipulation system. 

In fact the future of AUTOGRAPH resides not so much in graphical edition, as full languages tend 
to be far more complex than simple process algebras, but rather in graphical support of programs 
skeletons, including only their process structures, on which to visualize results of manipulation 
analysis from verifcation systems. This is nowadays our main direction of effort. 

2 A short  desc r ip t ion  of AUTOGRAPH 

AUTOGRAPH is a graphical system, fully endowed with multi-window facilities. Functions are 
applied through a mouse button after selection of a menu in a menu bar. We shall not detail 
AUTOGRAPH general functionalities here, but rather focus on the nature of edited objects as welt 
as functions specifically dedicated to visualizations of interesting results. Examples of typical 
AUTOGRAPHic drawings are pictured in the sequel. Let us just mention here that pictures may be 
printed on paper (and in reports!). AUTOGRAPH generates then a specific Postscript translation 
which makes drawings look much nicer than on the screen (and which separates object types more 
distinctly too). 

AUTOGRAPH knows two main types of editable objects: 

Ne tworks  
They represent terms and subterms, and are drawn as rectangular boxes. They usually 



bear ports on their border, which are tied together with straight or broken lines to indicate 
communications. A communication is called internal if it does not pervade to the father box. 
Communications need not be named so that all matters of renamings and restrictions are 
left to the system. The only pertinent names that are required upon signals communications 
are the port names of innermost boxes, as well as communication names (eventually on the 
drawn lines) at the outermost level. These may not be guessed of course. 

A box may contain a name in order for its content to be drawn in some other window 
(windows have titles giving names to their full content). Subterms may be shared, so that 
several boxes in the same window may bear the same name. 

A box may also contain one automaton (at most), in which case the display of this automaton 
may not exceed the box boundaries. 

In AUTOGRAPH one may retrieve information produced from AUTO: for example in an 
AUTOGRAPH Net  one may highlight the set of states (distributed among all components) 
corresponding to a given state of a global system produced by AUTO. Then using this primary 
feature we could display either equivalence classes of such states, browsing back and forth 
through its scattered states; or behavior paths, by depicting the distributed state jumps, 
as well as the performed actions and synchronisations at ports at any level up the graphic 
process tree. This work is still under progress, but does not seem to make any problem. 

A u t o m a t a  
They are represented by round-shaped vertices, which are joined by broken line edges. Both 
edges and vertices may be named, although it is mandatory for edges only. 

An edge may actually be named several times, thereby representing several transitions at 
once. Identically named vertices refer to the same state, but at most one of them may 
have outgoing edges (it is then the state behavior "declaration", while the others are intro- 
duced to avoid loops in drawings). In fact there exist several such short-hand conventions in 
AUTOGRAPH allowing to simplify drawings. We shall not enter into details here. 

Automata may be contained in boxes; alternatively there can be one residing directly inside 
the window. 

Automata representing system components should be entered by the user, as the model of his 
problem. But one may also depict an automaton as resulting from analysis under AUTO. We 
call this "exploration". The automaton is not automatically positioned: instead, the initial 
state is given, and then one-step transitions of any explored state are progressively provided 
on demand. The reason for this choice was that automatic placement is often disappointing, 
while progressive unfolding of the states and transitions may lead to interesting considerations 
(much like simulations of systems). 

3 A shor t  desc r ip t ion  of AUTO 

AUTO is a system consisting of a main toplevel loop, in which one may type commands. Commands 
may be of various sorts (including input/output  to and from files). But most of them bind identifiers 
to results of functions applied to objects. Functions may be composed from a list of primary 
functions, which constitute the heart of AUTO. Other usual commands are those binding identifiers 
to syntactic objects. In this case one has to invoke the corresponding parser explicitly (e.g. parse 
x = a : s t o p  is a command parsing a simple MEIJE term). In the former case one simply types 
set y = function(...). 

AUTO knows 6 main types: (process) terms, signals lists (for sorts of processes), automata (for 
internal representation of compiled systems), partitions (for internal representation of equivalence 
classes of states), paths (for sequences of behaviors), and finally abstraction criteria. 



3.1 R e d u c t i o n s  

Abstraction criteria, along with several other  notions such as contexts [Lar 87], are the syntactical 
means for AUTO to characterize process behaviors so as to reduce them further. An abstract 
action is a set of sequences of actions, and in AUTO a regular such set. A criterion is a collection 
of specific abstract  actions, and in AUTO a finite such set. 

Abstract  actions lead to state identifications, and thus to smaller quotient  systems which may 
be analyzed more easily. This reduction only partially retains properties, but  this is under full 
control of the user. In particular,  when the union of all abstract  actions does not add up to the full 
free monoid of possible concrete actions, then certain (sequences of) behaviors may  go unnoticed. 
This amounts to a fairness assumption: such behaviors would not per ta in  to the abstract  model. 
Think of infinite q - l oops  in the weak bisimulation case for instance. 

Short-hand notations for functions are used when the criterion to be applied is simple and well- 
recognized. This is the case of course for weak bisimulation reduction, where we call a-experiment 
any sequence of (more concrete) actions in r* : a : v*. This criterion is generalized to the case 
where only some actions remain visible, while others are renamed to r. 

We can now present a first set of functions in AUTO, some based on the abstraction mech- 
anisms and some on more classical reduction principles. They all share the property that  they 
produce normal forms for automata ,  from terms,  each along a given semantics. They use congru- 
ence properties wherever possible. Importantly,  these functions may be composed. For details of 
application, see AUTO's Handbook [SV 89]. 

t t a  
constructs the full global automaton corresponding to a term. 

m i n i  
constructs  a normal form automaton w.r.t, strong bisimulation. 

obs  
constructs  a normal form automaton w.r.t, weak bisimulation. 

t a u - s i m p l  
constructs a normal form automaton w.r.t, elimination of v - l o o p s  and single q- t rans i t ions .  

t r a c e  
constructs  a normal form automaton w.r.t, trace language equivalence. 

d t e r m  
constructs  a normal form automaton w.r.t, determinisation. 

e x c l u s i o n  
constructs a normal form automaton w.r.t, elimination of transitions whose labels, as com- 
pound actions, contain atomic signals declared as incompatible in a parameter  used by the 
function. Thus it tr ims away branches in the underlying graph. 

t a u - s a t u r e  
saturates an automaton using transitive closure of the transitions 7-, : a : v* and r*. 

a b s t r a c t  
abstracts  an automaton by a given criterion, given as parameter .  Unlike the previous func- 
tions, this one does not  take benefit of congruence properties. 

Other  similar functions should progressively add up to this list, endowing the user with a consistent 
range of well-identified functions to create his own reduction notions. A mechanism of user-defined 



functions is also envisaged, to give name to most popular reduction schemes. An example of 
desirable function is the context-dependent reduction, where one trims away behaviors of the 
process which are not part of the ones allowed by a given context. A context is a set of sequences 
of actions and thus amounts to an abstract action. 

3.2 C o m p a r i s o n s  

Of course resulting automata may be compared, through any of the two functions: 

eq 
for checking strong bisimulation, and 

obseq 
for checking weak bisimulation. 

It was foreseen that the result of these functions should be a temporal logic formula in case of 
failure, but other recent efforts in this domain have proved it to be a difficult matter, especially 
due to the size of this synthesised formula. A progressive simultaneous exploration of the two 
terms seems a more promising method, even though it will be less automated. 

Here again several further functions could be added, mainly the preorder comparisons, and a 
function providing the result of testing a process by a given observer (with may//must options}. 

3.3 Ana lys i s  

None of the preceding functions keeps unnecessary intermediate informations, for (space) efficiency 
reasons. For example r-behaviors  do not remember which synchronizations produced them. Still, 
information is conveyed at two specific points, in the naming of states: 

* The name of a state resulting from the expansion of a parallel system is the ordered list of 
states in components. 

* The name of a state in a quotient automaton is picked from a representative of this class in 
the original automaton. 

This information is enough for most cases, for it allows one to retrieve states and paths in 
original automata from reduced ones. So observations in our ~partial view" systems may be uplifted 
to the most concrete automata. Now a further step would be to regain this information on the 
process itself. This amounts to retrieve which (sequences of) synchronisations led to r-behaviors,  
knowing each time the start and target states. It is under way. 

Corresponding functions are: 

s t r u c t u r e  
provides the external naming of a state in a given automaton. Otherwise names are referred 
by integer internal row. 

p a t h  
provides a path in a given automaton leading from a state to another (or from the initial 
state}. This function should be completed so as to allow an abstract action to indicate 
admissible behaviors for performed (concrete) actions along this path. 

Of course the internal names of states as required by the s t r u c t u r e  function above should not be 
user-provided, but obtained by the system. To this end there are functions computing (sets of) 
states enjoying some properties: 

dead  
returns the deadlock states of an automaton 

diverge  
returns potentially diverging states of an automaton, those with real r - loops  (or livelocks). 



refusals 
returns all states which may refuse to perform a signal outside a given list of signals. 

A proper mixture of abstraction criteria and these functions may allow an analysis leading to a 
concrete result, as sketched in the example of section 4. We are not going to expand this type 
of functionality in AUTO, trying to spot every property of interest in the literature. Instead, 
collaboration with systems more directly dedicated to the definition and manipulation of such 
properties [Arn 89] seems more fruitful. 

In order to realize this, while sticking to the main body of process calculi, we introduced a 
function performing the partitioning algorithm for (strong) bisimulation reduction from a given 
initial partition. It is called ref ined-mini .  It may also help the user defining his own semantical 
reduction criteria at will. 

Finally, it should be remarked that the original partition may itself be produced by another 
partitioning experiment, possibly with a specific abstraction formulation or otherwise. More gen- 
erally, one may at any moment want to grasp and analyze which states are equivalent w.r.t, a 
given semantics. This is the purpose of the following AUTO functions: 

s t r o n g - p a r t i t i o n  
returns (an internal representation of) the collection of equivalence classes in an automaton 
w.r.t, strong bisimulation. 

w e a k - p a r t i t i o n  
same thing, with weak bisimulation. 

c r i t - p a r t i t i o n  
same thing, with bisimulation parameterized by a given abstraction criterion. 

r o ~ w  

provides the row of the class to which a given (concrete) state belongs. 

class 
provides the list of elements in a class, given its row. 

As we mentioned before, both paths and equivalence classes of states can be displayed with AU- 
TOGRAPH on a graphical version of process terms. 

3.4 M a n a g i n g  the  complex i ty  

There is no miracle to what AUTO may do in this domain. Efficient data structures and al- 
gorithms may push the limit a little further, so that for the time being systems of 104 states 
and around 105 transitions may be dealt with in few minutes. For larger systems the prob- 
lem actually comes from storage limits, more than time bounds. So the solutions advocated in 
AUTO consist in neve r  building full global systems, but instead only reductions of them rely- 
ing on congruence properties, further enhanced by the partial elimination of unvisible actions, 
or by abstraction. Another feature here is the division of usual functionalities into smaller-grain 
functions, allowing finer reduction strategies for the user. For example it was found that the 
usual weak reduction algorithm, which corresponds to m i n i ( t a u - s a t u r e ( t a u - s i m p l ( p r o c e s s ) ) )  
(assuming that process  contains but one level of parallel nesting, so that we leave away congru- 
ence considerations), was in many "symmetrical" problems replaced with benefit by m i n i ( t a u -  
s a tu r e (min i ( t au - s imp l (p roce s s ) ) ) ) .  This is because the transitive completion of transitions 
performed by t a u - s a t u r e  is actually in practice the most consuming of our algorithms, especially 
in space. So any reduction before this phase is welcome. 

Still, observing the complexity growth is not easy. AUTO provides through a collection of flag 
options the tracing of various measures: time, sizes of subterms at parallel construction, maximal 
length of r-sequences to name a few. 



It is hoped that these ideas could make up for an analysis environment that makes AUTO a 
practical tool, while remaining faithful to the grounds of pure process calculi theory. 

4 A Smal l  E x a m p l e  

We chose a simple algorithmic solution to the mutual exclusion problem due to Hyman and ex- 
tracted from [Ray 85], which has the important property of being erroneous, so that one can apply 
techniques for discovering the reason why. 
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Figure 1: The full example 

We represented the problem in process calculi graphical syntax as follows: 

- the m u t u a l e x c l  global system is made out of two similar bool_and_process  halves, each 
representing a process along with the boolean flag through which it shows its intention to 
enter the critical section. 

- in addition there is a T u r n  process for breaking ties, in case the processes proceed with exact 
symmetry. This last process is represented by a small automaton (implementing a memory 
variable with two possible values). Each state corresponds to the privilege granted to the 
corresponding process. 

- the booleans are represented as processes exactly like the Turn .  

- processes are expressed as automata also, with a straightforward translation from the small 
algorithmic imperative language they were expressed in originally. Going to (and out of) 
critical section is represented by the enter !  (exit!) signal emission. 

- Other internal signals are encoded with the following conventions on their constituting letters: 
b means "communicating with a boolean" ; k means "communicating with the Turn"; r means 
"read"; w means "write"; i means "my own"; j means "the other process"; t means "true"; 
f means "false". So for example b j r t ?  as appears in the process term means: "on reading 
true as the value of the other process's boolean". 



Figure 1 shows the AUTOGRAPHic screen after editing the example. AUTOGRAPH then produces 
textual files from this graphical representation. We shall now suppose them loaded into AUTO and 
comment a short AUTO session on it. 

set rss=obs mutualexcl; 

res : Automaton time -- 0.74s 

© display res short, 

size = 9 states, 16 transitions, 3 actions. 

The weak-bisimulation reduced form of the global system is computed (with intermediate reduc- 
tions on subterms). Its size shows it does not correspond to the expected specification, a loop on 
en te rhex i t !  in sequence, which takes only 2 states. One should then devise a couple of actions, 
one asserting the normal iterative behavior, the other a feared one. 

© parse-criterion Verif = crit> good! = (tau*:enter! :tau*:exit! :tau*), 

crit> bad! = (tau*:enter!:tau*:enter!:tau*); 

Verif : Criterion 

set Vres = abstract(res,Verif); 

Vres : Automaton 

© set V2 = obs Vres; 

V2 : Automaton 

© display V2 meije; 

let rec st_O = bad}:st_1 + good!:st_O ÷ goodJ:st_2 

and 

st_l = stop 

and 

st_2 = good!:st_O + good!:st_2 

in st_O 

The faulty behavior actually takes place. Notice how it leads to a deadlock, as we did not introduce 
any abstract action allowing two exit! in a row. 

set Wrongpath = path(res,structure(V2, car(dead V2))); 

Wrongpath : Path 

time = O.08s 

In AUTO the car  function stands for Lisp-like ~first element in a list ~. Similarly there are cdr and 
append. 

© show Wrongpath; 

2 T-st_6-T-st_6-Kl 

-- tau --> 0 F-st_2-F-st_3-Kl 

-- tau --> I F-st_S-F-st_S-Kl 

-- enter! --> 7 F-st_S-F-SC-KI 

-- enter! --> 4 F-SC-F-SC-K2 

: Path 

One has then got full information on a path of the early automaton leading to (a representative 
of) the erroneous state. In addition, one recollects names of states in a distributed fashion. For 
now it is not quite readable, but display under AUTOGRAPH should give a substantial help. 



5 C o n c l u s i o n s  

There are few basic ideas sustaining the relevance of AUTO and AUTOGRAPH to a practical appli- 
cability of the theoretic notions behind process calculi. 

• The user should be given full freedom to generate his own reduction mechanisms for comput- 
ing quotient automata for processes, provided these reductions are semantically sound and 

well identified. 

• The activity of validation should be as much as possible divided into: reduction first (possibly 
of an abstract specification also), and then comparison. 

Graphical systems are imperatively needed for displaying the results of analysis at a man- 

ageable cost. 

These are the future directions of development for AUTO and AUTOGRAPH. 
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