
The INDIA Lexic Generator

MICHAEL ALBINUS WERNER AI~ANN*

1 Introduction

Because lexJcM analysis takes a conciderable amount of compilation time it is necessary
to build fast scanners. Generated scanners were brought into discredit because their
lack of efficiency, although finite automata are an appreciated method for generating
scanners. Some effort was made to improve the speed of generated scanners.

This paper describes the lexic generator of the INDIA system.

2 Lexical analysis in the INDIA system

The INDIA compiler generator, described in [Albinus86], is the basis for compiler con-
struction in the INDIA system. It generates tables for all compiler components, which
contain the language specific informations. As presented in [At~mann86], the compiler
can be viewed as a set of abstract machines associated by tables which contain the
abstract instruction codes to control the work. In this way we have a le~ca/machiae
(scanner) that reads a sequence of input characters and fits them into a sequence of
lex]cal items, the smallest symbols known by the 8yntazticaJ machine (parser). The
8yrdacticaJ machiac (based on LR(I) respectively LALR(1) mechanism) transforms this
sequence of lexical items into a sequence of meta symbols again, and so on. Therefore,
we have the following model:

*Academy of Sciences of the G.D.R.
Institute of Informatics and Computing Technique
Rudower Chaussee 5, Berlin, G.D.R.

116

I secluence of input characters

lexical I J lexical ~ lexical
table]] machine J control data

~ sequence of lexical i t e ~

syntactical] -. syntactic~ -----~____.___J-syntactical I
table J I machine __.U ~ control data I

I sequence of meta symbols

Figure I: Principle of the lexical and syntactical machines

The other abstract machines of the compiler (tree constructor, table constructor, repar-
set, and code generator) are working in the same way. Every abstract machine is
controlled by control data including options for list regime, production of test results
and so on.

3 Generation of lexical table

The scanner has to construct the lexical items. There exists two kinds of lexical items,
namely lexical items without ~semantid like '<', ':-~ or 'BEGIN', and lexical items
with a determined value like identifiers or numbers. We call them termi,~ symbo/~ and
pse#dotermi~ symbols, respectively. Keywords (like 'BECIN') are ordinary termi~
symSots from the viewpoint of syntactical analysis. Comments are special psa,/otermi-
m~ symbols. Every lexical item is represented by an item number.

For generating the lexical table it is necessary to describe

• the text (string) of every termin~ symbol and the item number belonging to,

• the syntactical structure of every pse~otermir.~ s ~ l and the item number
belonging to,

• special features for handling of keywords, and

• special features for handling of comments.

The lexic generator transforms the deecrlption of lexical items into an deterministic
finite automaton as descrlbed in IAho77] and stores an abstract program, representing
the automaton, into the lexical table. Some special features introduced in the next
subsections are represented in the automaton.

117

3.1 Defining lexical items
The terminal and pseudoterminat symbols are defined during the generation of the syn-
tactical table. Using extended BNF notation (described in [Ai~mannS5]), the syntax
production

< P r o c e d u r e H e a d > : := 'PROCEDURE' " I d e n t i f i e r " <Parameters> ' ; ' I I

defines the terminal symbols 'PROCEDURE' and ' ;' as well as the pseudoterminal symbol
" Iden t i f i e r " . The item numbers belonging to are generated automatically. In a spe-
cial part of the compiler generator it is possible to declare the item numbers explicitly.
Nevertheless, in the most cases it is unnecessary.

Keywords are recognized by the property of being terminal symbols containing letters
only. All these facts are available for the generation of the lexical table.

3.2 Syntactical structure of pseudoterminal symbols
The syntax of pse~doterm/ss/symbols is described by using productions of regular gram-
mars (instead of regular expressions as proposed in [Aho77]). The possibilities of de-
scription are derived from Alexis (~i~ssenbeck861) using the INDIA notation.

A typical production is

"Real_Number" : := [<Decimal Digit>] + ' ' [<Decimal Digit>l*
['Z' [(' + ' [' - ')] [<Decimal Digit>]+] S l

It defines the syntactical nature of real numbers (in MODULA-2). Elements of a pro-
duction are simple character literals (like 'E') or previously declared character sets
(<Decimal Digit>). Character sets are introduced in section 3.5. A non printable
character literal can be written in its octal notation. For example, the character literal
36C stands for the EOL character.

Expressions are built using

• alternatives: ('+ ' t ' - ')

• options: [('+ ' I ' - ')]
(repeat factor 0 or 1)

• optional iterations: [<Decimal Digit>]*
(repeat factor O, 1 or any more)

• iterations: [<Decimal D i g i t >] +

(repeat factor 1 or any more)

It is possible to mark Jredundant" character]Jterals. These characters will be removed
by the sc~Tmer from the string containing the pseudoterminal symbo/. {a) describes
removing a character.

118

3.3 Comments

Comments are treated as a special pseudotermiaal symbol The description contains
the leading and ending characters of an comment. It is possible to describe the nested
structure of comments with the keyword NESTED. This breaks the regularity of the ex-
pressions and will be handled in a special way.

The next productions describe nested MODULA-2 comments and unnested hda com-
ments.

"Cow~ellt" ::,= , [' (* ') [ANY FOLLOWED BY ' *) '] * ' [' *) ')NESTED J J

"Comment" : := ('--' } [ANY FOLLOWED BY 36C] * {36C} I }

ANY stands for the character set containing all characters. FOLLOWED BY a is a construc-
tion that terminates the optional iteration [ANY]*, which never ends otherwise. It can
be used in other lexical declarations too for avoiding ambiguities, but requires multiple
access to characters and decreases the e~ciency of the scanner.

3.4 K e y w o r d s

Keywords are sampled from the set of termino~ syrabots defined during the generation of
the syntactical table. Using the phra~ EXCEPT KEYWORDB in the identifier production,
keywords and identifiers are distinguished.

" I d e n t i f i e r " : : - < l e t t e r > [<extended l e t t e r >] * EXCEPT KEYWORDS [J

The lexic generator produces a perfect hash function h over the keywords. It uses the
(heuristic) approach from [Sager85]. This function is defined as

h : % - , [0 .. N - I]

whereby X stands for the set of keywords and N is a cardinal number with N _ HX]I.
h is called a perfect hash function if h proves as an injection (h is unique).

Perfect hash functions have the advantage that the decision for being a keyword (or
not) is very fast, because after computing the hash code of an identifier it needs only
one comparison with the keyword represented by this hash code.

A perfect hash function h is called minimal perfect hash function if N = IIKII.

The lexic generator re~zes the hash function h as

hCk) = (ho(k) + h~Ck), h~(k)) MOD N

ho(k) -- ORDCk[io~]) + ORD(k[i02])
h,(k) = gl[(ORD(k[iu]) + ORD(k[iI2])) MOD

h2(k) = a2[(OaD(k[i ,]) + OaD(kii])) MOD
whereas

fl
d

119

• k e K is a keyword interpreted as a string (ARRAY OF CHAR)

• r is the smallest power of 2 with r > s ,

• {~v are array indices describing access to keyword characters;

• ORD is a function converting a character into its binary representation; and

• gl, g~ are arrays for parametrizing the hash function.

For details, see [Ernst87].

All these N, r, i , , gl, g2 are computed by the lexic generator and stored into the lexical
table as parameters for the hash function used during lexical analysis. Appendix B
contains the values computed for the keyword set of MODULA-2. By the way, all
hash functions computed with this algorithm by the authors were minimal perfect hash
functions. This holds for the compiler generator INDIA itself (22 keywords), MODULA-
2 (40 keywords), PALM (our MODULA-2 extension, 51 keywords) and CHILL (86
keywords).

3.5 Character sets

Character sets are used in the productions of the lexic generator to allow the choice of
one character from a set. It is in principle a simpliiied notation for a choice only. For
example,

<octal d ig i t> : := '01234567' j J
"Octal_Humber" ::= [<octal d ig i t>]+ 'B' I J

is equivalent to

"Octal_Humber" ::= [(' o 'J '1 'J '2 ' l ' 3 ' l ' 4 ' l 'S ' l ' e ' l ' 7 ')]+ 'B' l J

Definition of new character sets can use unions or differences of strings or already defined
character sets, respectively.

<hexadecimal dig i t> ::= <decimal dig i t> + '~BCDEFabcdef' II

3.6 The generated a u t o m a t o n and its abs trac t p r o g r a m

The lexJc generator samples all termim~l and pseudotermiaa| symbol8 delivered by the
syntax generator and builds an deterministic automaton from it. Termiaal s~mbols (ex-
cept keywords) are included into the automaton as chain, pseudotermin~d symbols as
partial automaton, derived from the affiliated production. Accepting any lexical item is
done by using the longest chain. This technique is well known and described in [Aho77],
for example.

The partial automaton for scanning the '<' symbol would be

120

© , < ,

Figure 2: Abstract automaton

The lexic generator produces an abstract program using basic operations from this
automaton. This abstract program is stored into the lexical table and interpreted by
the scanner during the lexical analysis. The set of basic operations is described in
appendix C. The resulting abstract program for state 2 above is

(* scan '<* *)
lex_accept

(* scan '>' and return item number of '<>' *)
lex_accept_and return_if_next '> ' , 85

(* scan '=' and return item number of '<=' *)
lex_accept_and_raturn.if_next 'ffi', 86

(* re turn i t e a number of '< ' *)
lax_return_code 72

4

4.1
$

Remarks on efficiency

Arrangements for increasing efficiency
The approach of converting the deterministic finite automaton into program text of
the scanner, favoured in the most lexic generators ([Horspoo187], [Eulenstein88],
[Grosch88], [Heuring86], [M~seenbeck86]), was not suitable for us, because the
INDIA system is multilingual. Currently, it supports PALM (our MODULA-2
extension, see [Baum88]) and CHILL. Therefore, the scanner has to interprete
the lexical table very efficiently. It tries to avoid multiple access to a character if
possible.

The main loop interpreting the lexical operations is a closed program part without
any procedure calls (except keyword handling). The data structures inside the
lexical table are optimized for this task and allow fast access to all parts of the
lexical table.

The length of a term/aa] symbo/(except keywords) is restricted up to 2 characters.
It results simple automata with short chains. Termiaal symbols with the same start

121

character decreases efficiency. For example, scanning '<' needs in MODULA-2
four operations instead of the simple lex_accept_and_return operation.

• Using character sets for transitions between states simplifies the automaton and
allows shorter and faster operation sequences interpreting the automaton.

• The identifier automaton is opthnlzed depending on the keywords:

O~ 6
extended letter

../
letter -

Figure 3: Abstract automaton for identifiers

is the character set containing all start characters of the keywords. The char-
acter set ~ contains all characters occuring in keywords at any position but not
the first. The check for being a keyword occurs only in state 2. Achieving state
3 an identifier cannot be a keyword, and the check would be absurd (and time
consuming).

Therefore, if an identifier contains at least one character not included in the char-
acter set a or 8, the check for being a keyword doesn't appear. In many progTam-
~ing languages it holds for all identifiers containing at least a small letter or a
digit.

The abstract program for this automaton in respect of MODULA-2 keywords is

s t a te I :

lex_goto_st at e_if_next_in_set
ABCDEFILMNOPQRSTUVW, 2

lex_goto_stat e_if_nezt_in_set
GHJKXYZabcdef ghi J klmnopqrstuvwxyz, 3

state 2:
lez=accept
lex_accept _whi le_in_set

ACDEFGHILMNOPRSTUVXY
lex_goto_stat e_if_next_in_set

O123456789BJKQWZabcdefghiJklmnopqrstuvwxyz, S
lex_return_code_if_keyword
lex_return_code 1

122

s t a t e 3:
lex_accept
lex_accept .whi le . in_set

0123456780
ABCVEFGHIJKLMNOPORSTUVWXYZabcdefghtJklmolxtrstuvwxyz

lex_return_code 1

4.2 Results (for M O D U L A - 2 lexic) 1
l ex ic table : 2 KByte

f i n i t e automaton: 54 s t a t e s , 90 t r a n s i t i o n s
abs t rac t program: 159 operations

MODULA-2 mix: 2*25 modules
1 f16 525 characters

362 894 blanks/EOL
28 921 l ines
302 854 characters in comments

99 456 l ex tca l items
10 131 keywords (10.2~)

4 662 comments (4.7~)
$3 794 i d e n t i f i e r s (33.98~)

runtime: 230 sec
7 545 l ines/ndn 4 854 charac te r s / sec

447 393 operations
4 662 characters handled more than once (0.42~)
5 308 i d e n t i f i e r s were asked to be a keyword (15.71~)

1time measured on an 8 MIIz IBM/AT

123

A Lexie definition part for MODULA-2

<octal d ig i t> ::=
<decimal d ig i t> ::=
<hexadecimal d ig i t> ::=
<let ter> : : =

<extended l e t t e r> : :=
<string1 character> ::=
<str ing2 character> : :=

"IDENTIFIER"
"OCTAL_Nt~BER"
"CAPJ)_Nt~BER"

"HEX_Nt%[BER"
"REAL_~BER"

"STRING"

"COMMENT"

(* Character set de f i n i t i ons *)
C* . *)

'01234567' I [

<octal digit> + '8g ' [[
<decimal d ig i t> * 'ABCVEFabcdef' [I
'ABCDEFCHIJKLMNOPQ~XYZ' +
'abcdefghijklmaopqrstuvwxyz' I I
<let ter> + <decimal digit> JJ
ANY - 36C - '"' Jl
ANY - $6C - 47C tJ

C* Pseudoterminal dec lara t ions *)
C* . *)

<let ter> [<extended le t t e r>]* EXCEPT KEYW0RDS It : : =

: := [<octal d igi t>]+ 'B' [l

: := [<decimal digi t>]+ [FOLL0~D BY ' . . '] II
: := <decimal d ig i t> [<hexadecimal d ig i t>]* 'H' II
: := [<decimal digi t>]+ ' . ' [<decimal d igi t>]*

['E ' [(' + ' J ' - ')] [<decimal digi t>]+] J[
: := { ' " ' } <string1 character> { ' " ' } J

{47C} <strtng2 character> {47C} J
[<octal digi t>]+ 'C' l[

: : - { ' " ' } [<str ingl character>
[<st r ingl character>]+] { ' " ' } I
{47C} [<string2 character>
[<string2 character>]+] {47C} Jl

::= { ' (* ' } EANY FOLLOWED BY ' *) ' 3 . { ' *) ' } NESTED l[

124

B Minimal perfect hash function for MODULA-2

The hash value must be computed by the fol lowing formula:

h := (OP~(cl) + O~(cO)

+ g l [(ORD(c3) + ORD(c)) MOD 16]

+ g2[(ORD(c2) + ORD(¢)) MOD 16]) MOD 40

Note: cO means length of terminal
c means blank character (Code = 32)
(can be eliminated by redef in i t ion of g)

*** RESULTS ***

h keyword h keyword ~r gl g2

0 MOD 20 LOOP 0 0 0
1 HOT 21 FOR 1 9 26
2 FROM 22 YAP. 2 27 29
3 MODULE 23 RECORD 3 8 0
4 OF 24 THEN ~ 39 0
5 DIV 25 CASE 5 i2 7
6 ARRAY 26 QUALIFIED 6 18 3
7 TO 27 I~LEMENTATION 7 15 0
B POINTER 28 AND 8 0 4
9 TYPE 29 BY 9 0 1

10 UNTIL 30 OR 10 0 0
11 WITH 31 DO 11 0 0
12 SET 32 END 12 0 32
13 BEGIN 33 ELSE 13 0 20
14 RE~rRN 34 ELSIF 14 2 1
15 REPEAT 36 CONST 1,5 19 i
16 WHILE 36 IN
17 PROCEDURE 37 EXIT
18 DEFINITION 38 IF
19 IMPORT 39 EXPORT

125

C
ton interpreter
Basic operations for a deterministic finite automa-

LexEnd~Line
LexEnd~fFile
LexOverreadBlamks
LexOverreadUntil
LexOverreadUntils
LexOverreadlfCondUntil
LexOverreadIfCondUn~ils
LexReadComment

LezAccept
LexReturnCode
LexAcceptAndReturn
LexAcceptAndReturnlfNext
LexReturnCodeIfNextNot
Le~cceptWhileInSet
LexAcceptWhileNotInSet
LexReturnCodeIfKeyword
LexInsertCharacter
LexBkipCharacter
LexReturnCharacter
LexGotoInitialState
LexGotoStatelfNext
LexGotoStatelfNeztNot
LexGotoStateIfNextInSet
LexGotoStateIfNextNo~InSet
LezGotoState
LexError

(* *)
C* *)
C* *)
(* <character> *)
(* <character>, <character> *)
(* <character> *)
(* <character>, <character> *)
(* <character>. <character>. *)
(* <character>, <character>. *)
(* <nested> *)
(* *)
(* <lexical code> *)
C* <lexlcal code> *)
(* <character>, <lexical code> *)
(* <character>, <lexical code> *)
(* <class> *)
(* <class> *)
C* *)
(* <character> *)
C* *)
C* *)
C* *)
(* <character>, <address> *)
(* <character>, <address> *)
(* <class>, <address> *)
(* <class>, <address> *)
(* <address> *)
(* <error code> *)

126

References

[Aho77]

[Albinus86]

[A~mann85]

[Ai~mann86]

[Baum88]

[ZrnstSZl

[Eulenstein88]

[Grosch88]

[Heuring86]

[Horspoo187]

[SSssenbeck86]

Aho, A.V.; Ullman, J.D.:
Principles of Compiler Design
Addison Wesley 1977

Albinus, M4 Ai3mann, Wd Enskonatus, P.:
The INDIA Compiler Generator
Workshop on Compiler Compiler and Incremental Compilations
iir-reporte 2(1986)12~ Berlin 1986, pp. S8-84

At~mann, W.:
Die Metasprache des Compiler-Rahmensystems INDIA
iir-reporte 1(1985)7, Berlin 1985, pp. 8-13

A~mann, W.:
The INDIA System for Incremental Dialog Programming
Workshop on Compiler Compiler and Incremental Compilation,
iir-reporte 2(1986)12, Berlin 1986, pp. 12-34

Baum, M.:
PALM
internal material, IIR, Berlin 1988

Ernst, Th.:
Eine Implementation des Minimalzyklen-Algorithmus zum Bestimmen
perfekter Hashfunktionen
internal material, fIR, Berlin 1987

Eulenstein, M.:
The POCO Compiler Generating System
Workshop on Compiler Compiler and High Speed Compilation, Berlin
1988

Grosch, J.:
Generators for High-Speed Front-Ends
Workshop on Compiler Compiler and High Speed Compilation, Berlin
1988

Heuring, V.P.:
The Automatic Generation of Fast Lexical Analysers
Software -- Practice and Experience 16(1986)9, pp. 801-808

Horspool, R.N.; Levy, M.R.:
Mkscan -- An Interactive Scanner Generator
Software -- Practice and Experience 17(1987)6, pp. 369--378

M~enbeck, H.:
Alex -- A Simple and Ei~icient Scanner Generator
SIGPLAN Notices 21(1986)5, pp. 69-78

127

[Sager85]

[Sswillus86]

[W te86]

Sager, T.J.:
Polynomial Time Generator for Minimal Perfect Hash Functions
Commun. ACM 28(1986)6, pp. 523-532

Szw~us, Gerd.; Hemmer, W.:
Die automatische Brseugung e1~ienter Scanner
University of Dortmund, Report Nr. 217, 1986

Waite, W. M.:
The Cost of Lexica] Analysis
Software - - Practice and Experience 16(1986)5, pp. 473--488

