
Abstract Interfaces for Compiler Generating Tools

U. Kastens
University of Paderborn, FRG

1. I n t r o d u c t i o n

Compiler construction is supported by tools which generate modules for the main compiler
subtasks. Different tools have to cooperate in order to produce a complete compiler. They
are often developed stand-alone without consideration how to integrate the generated
products. A considerable amount of engineering work is needed to configurate the whole
compiler. Adaption of the generated modules often reduces the overall performance of
the compiler.

A compiler tool generates a module for a compiler subtask from a formal specification.
Problems of tool integration result from dependencies between the specifications for dif-
ferent subtasks and from integration of the modules. There are different strategies to
simplify compiler development with tools: (1) A set of tools is developed together such
that they fit together smoothly. (2) Independantly develpoed tools are embedded in a
compiler construction environment which solves the integration problem for the user. Such
a system is described in [WHK 88]. (3) Each single tool is designed with open interfaces
which allow for easy integration and adaption of the generated products.

Strategy (1) is rather inflexible against exchange of single tools and adaption to im-
plementation requirements. A compiler construction environment (2) can be composed
for different tool sets. It embodies the know-how of tool integration. It can adapt the
interfaces determined by a single tool but it cannot change them. The notion of the
specification and the implementation of the modules are fixed. Hence we suggest in this
paper to develop compiler generating tools according to (3). Such a tool takes an abstract
representation of the specification as input and produces an abstract representation of the
generated algorithm. Various frontends and backends can easily be derived to support
suitable notions for the specifiaction and smoothly integratable implementations of the
algorithm.

In Sect. 2 of this paper we dicuss the problems of compiler tool integration. Sect. 3
presents the suggested tool design concept. Two examples of tool design on that base are
given in Sect. 4.

104

The ideas presented in this paper arose from the work on the development of compiler
construction environments performed in cooperation with the group of W.M. Waite, Uni-
versity of Colorado, Boulder.

2. Integration of compiler tools

A task oriented compiler design refines the compiler task into a sequence of subtasks: lex-
ical analysis, syntactic analysis, semantic analysis, code selection, and assembly. (Global
optimization and peeephole optimization may be inserted before and after code selection.)
The tasks are implemented by central compiler modules (scanner, parser, attribute evalu-
ator, code generator, and assembler) which act as filters transforming one representation
of the source program into another (character sequence~ token sequence, structure tree,
intermediate language, instruction sequence, object code). These filters use functions of
additional modules which act as abstract data types, store properties of certain objects
and provide access to them (e.g. identifiers, literal values, declared objects, ranges of
declarations, registers). Such a compiler structure is well accepted, systematic methods
for the solution of the subtasks are well known and can be found in most compiler texts
[ASU 861, [WG 841.

Different compiler tools are in use to generate each of the central filter modules. (The
ADT-Modules are usually not generated but adapted from precoined implementations.)
Such a tool takes a specification of the subtask and generates the compiler module from
it. The input to the tool specifies the translation step in some notion of a certain formal
concept specific for that subtask, e.g. regular expressions for the scanner, a context-free
grammar for the parser, an attribute grammar for the attribute evaluator, and tree pat-
terns with associated instructions for the code generator. The compiler module generated
by the tool is an algorithm of a certain class (e.g. finite state machine, stack automaton,
etc.) implemented by a systematic technique (e.g. table driven) and expressed in a certain
implementation language. Furthermore the module implementation includes interfaces to
surrounding modules. Fig. 1 describes this situation for a set of tools graphically.

With such a set of generating tools a compiler is constructed mainly by developing the
specifications. Additionally two classes of more technical problems have to be solved -
often without help from the tools: The single specifications are interrelated and have to
be ensured to be consistent. The generated modules must be integrated into the whole
compiler.

105

specification tool compiler mooule
. . . .

) ~ a n n e r t -~
J--~J =nl°°'Jl'~°° I generator

parser 1 pars<
generat°r -~-~1 ifac e

attribute ~ attribu~
o°en%~°'r "l~v"u~'°~ I I

I,aco I

-~-generator) i~I=r~n~
I,~oo I

Fig.l: Tools generating compiler modules

As an example for relationships between spedfications consider the scanner and parser
generation steps: The symbols specified for the scanner are the terminal symbols of the
context-free grammar for the parser. Usually the parser specification includes the notion of
keywords and special symbols. Instead of specifying them twice (for the scanner and parser
generator) they could be extracted from the CFG and directed to the scanner generator
(arc (1) in Fig. 1). That leaves the scanner specification with regular expressions for
identifiers and literals. A more subtle relationship exists between the specifications for

106

the parser and the attribute evaluator: The attribute grammar is based on a CFG which
describes the structure of the tree to be attributed. It is an abstraction of the derivation
tree computed by the p~rser. Hence the concrete grammar for the parser specification
has to be augmented by actions which construct that strucure tree (arc (2) in Fig. 1).

On the side of the generated products often a considerable amount of technical work is
required for module integration: The modules may be generated in different implementa-
tion laaguages, e.g. a parser generated in C by YACC [Jo 75] and an attribute evaluator
in Pascal from GAG [KHZ 82]. The interfaces of the modules may be based on different
assumptions how information is passed from one module to the other (e.g. encoding and
passing of tokens from the scanner to the parser~ or execution of actions initiated by the
parser). For both cases it might be necessary to adapt the interfaces. Since generated
modules usually are not prepared for being modified additional procedures transforming
the data structures or linking different languages have to be inserted. Such an adaption
can reduce the performance of the compiler. It may even be impossible to adapt the
modules reasonably. In the latter case a certain combination of tools must be discarded.

If each of the tools is used stand-alone the compiler developer has to adapt specifications
and generated products for each compiler generated. The know-how for that work is not
compiler specific but determined only by the combination of the tools. There are different
strategies to reduce the amount of that work:

(1)

(2)

Fixed tool sets: A certain set of tools is developed such that specifications and
products easily fit together, e.g. LEX [Le 75] and YACC [Jo 75] or GAG [KHZ 82]
and PGS [De 77]. If interfaces of the tools are hidden for the user such a toolset
may even appear as a monolithic generator producing a readily integrated compiler
(or part of it) from an integrated specification.

Open compiler construction environments: The desired set of tools is combined
under control of a tool mangement system. It takes care for relations between spec-
ifications~ directs them to the tools and integrates the generated products. Hence
it solves the tool integration problems for that specific tool combination. Such an
environment is Eli [WHK 88] constructed with the tool mangement system ODIN
[CL 88].

The integration problems discussed above will arise again in solution (1) if one of the tools
in the set should be replaced by a generator with different characteristics, or if the set is
completed by additonal tools. Such an exchange of single tools is usually impossible in
monolithic systems. Environments like (2) support modifications of the tool set best of all:
The know-how for the specific tool integration is embedded initially in the environment
and can be modified when tools are changed. The management system applies that
knowledge automatically for the construction of each compiler. We constructed several

107

environments solving the integration problems for different tool sets. From that experience
we learnt that tools should be designed with interfaces which simplify their integration.

3. A b s t r a c t t o o l in ter faces

A main reason for the difficulties with the integration of compiler tools discussed in
the previous section lies in the design of the tools themselves: Neither the notion of the
input specification nor the implementation of the generated compiler module can easily be
modified without rewriting large parts or all of the tool. Hence we suggest to develop tools
according to the following design principle: The central task of a tool is the computation
of an algorithm from a specification. The central part of the tool should be restricted
to exactly that task. Its input and output interfaces both are abstract data structures
instead of notions of the specification and implementations of the algorithm. Frontends
and backends transform the notion and implement the algorithm. They can easily be
modified without touching the central tool part in order to integrate the tool smoothly.
Fig. 2 shows such a tool structure with the abstract specification and the abstract algorithm
as its central interfaces.

The abstract specification is a data structure representing structure and information con-
tents of a specification. Its data format is reasonably simple for any compiler tool due to
the underlying formal specification concept, e.g. CFGs in the case of a parser generator.
A frontend for the tool producing that format from some notion can easily be constructed
or modified, e.g. in order to let a parser generator be used with the same input notion as
that of YACC or PGS. Furthermore specification information can be exchanged between
tools (as in Fig. 1) directly on the base of the abstract specification. Even interactive syn-
tax directed editors can be adapted to the tool on that interface. Such a frontend should
be restricted to transform the notion of the specification into the abstract representation.
Any check for consistency or further transformation which is independant of the notion
should be performed either in the central part of the tool or by additional modules with
the abstract representation as both input and output interface.

108

notions of the ipecification

. alternative tool)
frontends

,1
¢entral part of the "~

generator

alternative tool "~

1
implementation of the

compiler module

Fig. 2: Abstract tool interfaces

The central part of the tool generates an abstract algorithm. It is described by a data
struture based on the underlying formal concept of the algorithm, e.g. the transition func-
tion of an automaton. It does not contain any implementation decision for the algorithm.
Vaxious backends can be developed for that interface implementing the algorithm using
different techniques, e.g. either table driven or directly programmed, and using different
implementation languages. Furthermore such a tool backend can easily be modified in or-
der to produce compiler modules which fit to other modules without the need for explicit
and costly adapters.

This general principle is applicable throughout all of the compiler generating tools because
they are based on formal concepts for both the specification and the generated algorithms.

109

(It is of course applicable outside of compiler construction, too, where generation concepts
have these characteristics. This generalization aspect is beyond the scope of this paper.)
A scanner generator transforms representations of regular expressions (derived from char-
acter oriented or graphical notions) into a finite state machine described by its transition
function. A parser generator takes a context-free grammar (with actions inserted), checks
it for the required grammar class and produces an abstract parsing algorithm. It is repre-
sented by the grammar with inserted director sets in the case of an LL-parser, or by the
transition function in case of an LR-parser. An attribute evaluator generator transforms
a representation of an attribute grarmnar into a tree walking automaton. In the next
section it will be shown how that algorithm can be represented easily. The generator of
a code selector may take the description of tree patterns with associated actions for code
generation and augments them by strategic information for pattern application.

4. Two E x a m p l e s for Tool Des ign

In this section we briefly describe the design concepts of two projects for compiler tools
where we applied the principles of abstract interfaces described in the previous section. In
the first example a set of tools based on context-free grammars is presented. The second
example refers to an attribute evaluator generator developed as a successor of the GAG
system.

COMAR.

COMAR is a data format for the representation of context-free grammars. It was devel-
oped for interfacing various tools which analyse and transform CFGs [HKPW 87]. It plays
the role of abstract interfaces as introduced in Sect. 3, and is the base of an extensible
set of CFG-tools.

The information structure of a CFG consists of objects which are terminals, nonterminals,
productions and other objects which may augment the productions (e.g. actions, director
sets, etc.). The abstract data structure of a CFG is a list of definitions of such objects. The
productions in extended BNF are described by trees for their right hand sides. Additional
apphcation specific properties are associated to the objects: e.g. actions or first- and
follow-sets associated to productions.

110

CFG
notion

Transformation Analysis

generator
backend

LL-Parser

Fig. 3: COMAR Tool Set

The COMAR data format is defined in terms of the interface description language IDL [La
87]. From that definition the IDL-tool [SS 86] automatically generates an implementation
of the data structure in C with access functions, and routines for reading and writing a
standardized file representation of a COMAR structure. The development of a CFG tool
can immediately concentrate on its specific task using such a complete implementation
of the CFG representation. On this base we developed an initial, extensible set of CFG
tools which cooperate via the COMAR structure, Fig. 3. Upto now it contains a frontend
transforming a CFG notion into COMAR, a formatter for the opposite direction, tools for
EBNF-transformation LL(1)-check, LL-transformations, and an LL(1)-parser generator
[Bu 88].

The design of that LL(1)-parser generator follows the principle of abstract interfaces pre-
sented in this paper: Its input interface is a CFG in COMAR. The generator augments
it by LL(1)-director sets. The result - again a COMAR structure - is an abstract rep-
resentation of the LL(1)-parser. A backend of the generator implements it in C using a
directly programmed non-recursive technique which yields fast parsers.

111

Another parser generator based on the LALR(1)-technique is being developed for CO-
MAR. In this case the generated abstract algorithm of a LR-parser is not described by
an augmented CFG as in the LL-case. It is a data structure specifying the transition
function instead. Again suitable backends will implement it using a certain technique and
implementation language.

L I G A

An attribute evaluator is the central module of the semantic analysis phase a compiler.
The language independant generator for attribute evaluators LIGA is developed as a
successor system for the well established generator GAG [KHZ 82]. Whereas the GAG
system is fixed to a certain input language for AG specification (ALADIN) and the target
implementation language Pascal, the design concept for LIGA is based on abstract tool
interfaces, Fig. 4.

The information structure of an AG consists of objects which are symbols of a CFG
with associated attributes, and CFG productions each with a set of attribute rules. An
attribute rule specifies the context dependent computation of an attribute by a functional
expression over other attributes. Similarly as for COMAR a data structure is defined for
the abstract respresention of an AG. It consists of a list of the object definitions with the
productions and the attribution expressions being represented by trees. (The meaning of
operators and functions in the attribution is specificied outside the AG in terms of the
implementation language.) Again that data structure is defined in IDL in order to take
advantage of its automatic implementation.

In the AG the attribution of a production is a list of attribute rules in an arbitrary
order. The LIGA system generates a tree walking attribute evaluator controlled by a
visit-sequence for each production [Ka 80]. A visit-sequence is an ordered sequence of at-
tribute rules with operations for tree movement (ancestor and descendant visits) inserted.
Hence the abstract algorithm for such an attribute evaluator can be easily described by
a slight extension of the AG data structure: For each production the LIGA system sorts
the attribute rules according to the attribute dependencies and inserts visits at the ap-
propriate positions. (How to compute the visit sequences and how to optimize attribute
implementation is beyond the scope of this paper and can be found in [Ka 80], [Ka 87],
and [Ha 87]. The central part of the LIGA system produces the abstract attribute evalua-
tor as an augmented AG representation. Various backends may implement this evaluator
using different trechniques (table driven, recursive procedures, directly programmed with-
out recursion) and different implementation languages. The first existing backend applies
the latter technique in C, which yields in general the fastest implementation.

112

AG Notion

I I frontend variants

evaluator
generator

/ ~ ~ostract attribute evaluator

implementation of attribute evatuators

Fig. 4: LIGA system with abstract interfaces

5. Conc lus ion

The main tasks in compiler construction are solved by systematic algorithms. Tools are
available which generate compiler modules from specifications. They are often developed
as dosed stand-alone systems difficult to combine with other tools. Integration of their
products requires considerable engineering work and may loose efficiency because the tools
fix all implementation decisions.

In order to improve the applicability of generating tools we suggest in this paper a modular
tool structure: The central part of the generator translates an abstract representation of
a specification into an abstract algorithm. These interfaces are open to meet the require-
ments of the tools environment by variations of the frontends and backends. Especially
the implementation decisions for the generated products are separated from the gener-
ation of the abstract algo~'ithm. We demonstrated this design principle applied to the
development of a CFG toolset and an attribute evaluator generator.

113

Further work should be devoted to the development of other compiler tools on that base
and to increase the variants of the existing tools. Furthermore we believe that the design
principle is as well applicable to tools of areas different from compiler construction.

References

ASU 86

Bu 88

C1 88

De 77

Ha 87

HKPW 87

Jo 75

Ka 80

Ka 87

KHZ 82

La 87

Aho, A.V., R. Sethi and J.D. UlllT~n, "Compilers", Addison Wesley,
Reading MA, 1986

Budde, V., "Werkzeuge zur Grammatik-Transformation und LL-
Parsergenerierung auf der COMAR-Datenbasis, Diplomarbeit, FB 17,
Universitgt-GH Paderborn, 1988

Clemm, G.M., "The Odin Specification Language", in International
Workshop on Software Version and Configuration Control '88, Teubner,
Stuttgart, 1988, 144-158

Dencker, P. "Ein neues LALR-System", Institut ffir Informatik, Univer-
sitgt Karlsruhe, Diplomarbeit, 1977

Hall, M.L., "The Optimization of Automatically Generated Compilers",
Ph.D. Thesis, Dept. of Computer Science, University of Colorado, Boul-
der, CO. 1987

Heuring, V.P., Kastens, U., Plummer, R.G., Waite, W.M., "COMAR:
A Data Format for Integration of CFG-Tools', University of Colorado,
Boulder, ECE-Report 87/124, 1987, to appear in The Computer Journal

Johnson, S.C., "YACC - Yet Another Compiler-Compiler', Computer
Science Technica~ Report 32, Bell Telephone Laboratories, Murray Hill,
N J, July 1975

Kastens, U. "Ordered Attributed Grammars", Acta Informatica 13, 229-
256, 1980

Kastens, U. "Lifetime Analysis for Attributes", Acta Informatica 24,
633-651, 1987

Kastens, U., Hutt, B., Zimmermann, E. "GAG - A Practical Compiler
Generator", Lecture Notes in Computer Science 141, Springer, 1982

Lamb, D.A., "IDL: Sharing Intermediate Representations", TOPLAS,
vol. 9, no. 3, 1987, 297-318

t14

Le 75

SS 86

WG 84

WHK 88

Lesk, M.E., "LEX - A Lexical Analyzer Generator", Computer Science
Technical Report 39, Bell Telephone Laboratories, Murray Hilt, N J, 1975

Snodgrass, R., Shannon, K., "Supporting flexible and efficient tool in-
tegration", SoftLab Document No. 25, Computer Science Department,
Universtiy of North Carolina, Chapel Hill, N.C., May 1986

XYaite, W.M., G. Goos, "Compiler Construction", Springer Verlag, New
York, NY, 1984

Waite, W.M., Heuring, V.P., Kastens, U. "Configuration Control in Com-
piler Construction", Int'l Workshop on Software Version and Configura-
tion Controll SVCC, Grassau, Januar 88

