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ABSTRACT 

A bottom up- and a top down pattem matching algorithm for code selec- 
tion are presented. The setting is the same as in [AhGa84]. First all covers of 
the intermediate representation (IR) are computed, and cheapest ones are deter- 
mined by dynamic programming. Then code seIection proper is performed. 
While Graham-Glanville-like code generators ([G1Gr78],[Glan77]) use dynamic 
targeting, i.e. by selecting appropriate productions at reduction time, and while 
Aho- Ganapathi shift the targeting task to the semantic attributes and functions, 
the two algorithms presented in this paper use static targeting. Targeting rules, 
i.e. rules with patterns of depth 1, are simulated in the states of the recognizing 
automata. Therefore, all covers found for an IR are adequate as far as no 
semantic constraints are concerned. The bottom up approach suffers from the 
theoretical worst case complexity, i.e. the (static) size of the automata may 
grow exponentially with the size of the machine description. The top down 
approach has a linear (static) size of the automaton, but a dynamic size, i.e. the 
size of additional data structures, of IIRI * lmachine descriptionl. The bottom 
up approach has been implemented as a modification of the OPTRAN bottom 
up pattern matcher generator [Weis83]. 

1. Introduction 

In recent years, there has been done a considerable amount of research on the generative 
approach to code generation. A survey is given in [Lune83]. This approach automates the gen- 
eration of code generators and facilitates retargeting. In the area of code selection, works 
based on pattern matching has been proved to deliver reasonable results ([Glan77], [Henr84]). 
For a comparison of different approaches on an algebraic basis see [GiSc88] [Gieg88]. 

In the pattern matching approach, machine instructions are selected according to patterns 
of the intermediate representation (IR). Each (input) pattern models a target machine instruc- 
tion. A second (resul0 pattern describes, where the result of the corresponding instruction will 
be available. Leaves in the input pattem and the single node result pattern correspond to regis- 
ters, memory cells etc. Input pattern, result pattern, machine instruction and a cost statement 
estimating the amount of memory and machine cycles necessary for the machine instruction, 
form a kind of a "annotated" reduction rule. See figure 1. 
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b4aohine instruction : 

add oonst reg 

Add the content of a memory ceil, the address of which is given by "const" to the 
content of the register "reg". The result is written into the register "reg". The sub- 
patterns of the left-hand side pattern are numbered for later reference. 

Figure I 

For every given IR tree, a pattern driven code generator has to find at least one sequence 
of instructions corresponding to the tree. Such sequences are issued as indicated by covers of 
the IR tree by input patterns. A cover is found by plastering the tree with input patterns, such 
that every node of the tree has to be covered by exactly one node of one pattern and such that 
the patterns "fit together". This means, that the result pattern of the input pattern is or can be 
transferred to a leaf of another input pattern. The problem corresponds to the targeting prob- 
lem: the result of the corresponding machine instruction has to be in the place where the next 
instruction expects it to be. An example is given in figure 2. 

On the other hand, addressing modes may be factorized by special rules. Then, each 
result pattern of such rules symbolizes a certain addressing mode (indirection, indexing etc.) 
which can be used within other patterns without explicitly repeating the possible huge address 
pattern. "Fitting together" means in this context insuring that the appropriate addressing mode 
can be used. 

The pattern of figure 1 matches at node * and delivers a result 'reg', so that the pat- 
tern matches again at node **. Every node of the original tree is covered by exactly 
one pattern. The result of the first reduction produces a leaf of the second pattern. 

Figure 2 

A tree pattern marcher finding covers of trees should simulate the "pasting" process. This 
means in terms of rewrite systems to simulate the reduction of the input pattern by the result 
pattern. If the input pattem of a rule matches a subtree, this subtree is replaced by the ,result 
pattern. The process continues until no more pattern matches and only one node results. See 
figure 3. 
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Figure 3 

--> G 

In general, there is more than one cover for a tree by real (non RISC) machine descrip- 
tions. A code generator should be able to select one with minimal costs, i.e. sum of the costs 
for the instruction sequence issued. 

The Graham/Glanville approach ([Glan77], [GIGr78]) reduced the problem of tree pattern 
matching to the problem of recognizing words of a (string) language. The IR tree is linearized 
according to a preorder traversal. Each reduction rule is represented by a production of a 
context-free grammar. 

Example: REG -> + t" const REG, 

A LR-type parser is generated from this grammar. Each reduction in the parsing process 
corresponds to a tree reduction. Certain heuristics and backtrack mechanisms had to be built in 
to find a cover, because the grammars are ambiguous in general. But there is a left bias due to 
the preorder traversal and the employed heuristics. Early selection decisions and the one pass 
approach preclude the generation of even locally optimal code. 

The approach of Ganapathi/Fischer [OaFi82] provides further attribution mechanisms and 
formulation of predicates for more flexible conflict resolution. 

As [Henr84] indicates, the context-free approach to the problem has been driven to its 
inherent limits. Tree pattern matching technology promises to overcome these limitations. 
However, tree analysers like those of Kron [Kron75] or Hoffman/O'Donnell [HoDo82] cannot 
be used unchanged for this purpose. They can determine whether and where in a tree patterns 
from a set of pattems match, but they don't simulate the reduction process as described above. 

Aho/Ganapathi [AhGa85] propose a solution for this problem. The leaves of their patlems 
and the result patterns are parameter nodes which match every tree. So, they can use conven- 
tional pattem match automata. A suitable attribution has to provide the targeting task. These 
computations give rise to additional costs at run time. 

The approach presented in this paper will overcome this problem by adapting the well- 
known tree pattem matching automata to simulate the reduction process. For every given tree, 
the automata will provide all possible covers according to a set of reduction roles. Dynamic 
programming ([AhJo76]) performed in parallel wiU then fred a locally cheapest code sequence. 

2. The bottom up tree analyser 

Bottom up tree analysers have the great advantage, that their analysis time costs are linear 
in the number of the nodes of the subject tree. The bottom up tree analyser of Kron and 
Hoffmann/O'Dormetl works as follows: With every node in the tree a set of subpattems is 
associated which match the subtree at this node. These match sets are computed bottom up. 
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The match set of a node can be determined, if all subtrees of this node are already analysed. 
A subpattern matches at a node if and only if its root has the same label as the node and if 
every child pattern matches the corresponding child tree of the node. The latter fact can be 
determined by inspecting the match sets of the children. If the child pattern can be found in 
the match set of the corresponding child tree, then the child pattern matches the child tree. 

subject t ree  

Figure 4 

{(2)} {(i)} 
{(3)} ~~(2)}~ {(4)} 

{(3)} 

In figure 4 the subject tree to be analysed is shown together with its match sets. At node 
*, the full pattern matches. This fact is represented by associating match set {(1)} with *. The 
root label of the pattern is the label of the node, at the first child the first subtree of the pattern 
( ( 2 ) )  matches and at the second child the second subtree of the pattem ( ( 4 ) )  matches. We 
can see, that at node ** no pattern matches, because at its second child no match can be found 
for subpattem <reg>. This subpattern would be produced by reduction at node *. We can simu- 
late this rewrite rule. Every time, a full pattern occurs in a match set, all occurrences of the 
result pattern (as input subpattems) are added to the match set. Figure 5 shows the result for 
our example. 

""~).{(I)+ (4)} 
/-N.+ 

+<2++ (+) • , .  ,.+.:.,+ / , + , - = , . + + + + ,  

{(3)} ~~(+)} {(4)} 
{(3)) 

Figure 5 

At node *, we now have the additional information that subpattem (4) matches. This has 
the effect, that the main pattern is recognized at node **. Each match set now reflects the 
actual situation of the tree and additionally each situation which could arise by reductions of 
the tree. 

An example for more complex rules as shown in figure 6 is given in figure 7. 

At this point, we can observe several properties of the analyser. Chains of so-called 
transfer rules (rules having.an input pattern consisting of a single node, modelling for example 
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transformation rules (represented by the top node of the left-hand side pattern) 

/eq 

(3) Q ~ )  

L 

(1o) (~]) 

(13) ~ (14) 

Figure 6 subject  t r ee  

~ (12)}  • (-) 

{(2). (5). (g)} * (,,) ( . ~ i .~  + ~ 1 ) . ( f l ) .  (12)} + (-) 

{(3). (6). (7))-+ Q.) 

G 

Figure 7 ( * )  = { ( 4 ) , ( 1 D ) , ( 1 1 ) ;  ( 1 3 ) , ( 1 4 ) . ( 1 S ) }  

register-to-register transfers or memory-to-register transfers or factorizing rules) are enclosed in 
one match set. If  the input pattern of a transfer rule is contained in a match set, then at the 
same time the input subpatterns having the same label as the result pattern of the rule can be 
added to this match set. See for example rule (7) and (15). If (7) is contained in a match set, 
then set (*) can be added immediately. For rule (15) nothing is added, because the results are 
already considered. The effects of such chains of transfer rules are computed simultaneously. 
There are no problems with possible loops in transfer rule chains. In the Graham/Glanville 
approach, such possible infinite reduction sequences have to be detected and broken explicitly. 
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The second observation concerns the kind of information provided: The simulating ana- 
lyser only states, that certain patterns match, if certain transformation rules are applied at cer- 
tain subtrees or possibly no transformation rule is applied. But the information about the 
different covers found is not immediately available. The approach of M6ncke [Moen85] pro- 
vides more exact information in this respect, but it will probably produce larger automata. 

Thus, we have to collect further information at run time to determine an actual instruction 
sequence corresponding to the covers found by the automaton. A possible solution is to con- 
struct the graph representing all covers for an individual tree. An example for such a graph, 
called history graph, is shown in figure 8. Reduction rules are associated with those nodes in 
the tree to which they can be applied. If a reduction at node n depends on other reductions at 
descendent nodes, then an edge is drawn from the history graph of the descendent node to the 
history graph of  n. This shows which result of which reduction is responsible for the existence 
of  an appropriate leaf of another pattern. 

3. The generator of the bottom up analyser 
Naturally, it is possible to compute the match sets at analysis time. But it will be much 

more efficient to precompute them as the states of a finite tree automaton from the machine 
description. We are then able to compute encoded match sets and the associated partial history 
graphs for IR trees by means of this automaton. Pure analysis costs are linear in the number of 
nodes of the subject tree to be analysed. 

HoffmanrffO'DonneI1 [HoDo82] developed a generator for conventional tree analysers 
producing a n-dimensional matrix M[op] for every operator op, where n is the rank of op. 
Each entry M[op][fl,...f,,] supplies the match set for a tree node labeUed op, where every chttd i, 
from 1 to n, is already analysed by match set A. Realistic pattern sets will result in huge 
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sparse matrices, i.e. most entries will denote the empty match set. Table compression methods 
wiU produce reasonable automata representation [MWW85]. 

Kron's generator [Kron75] ( see also [Weis83]) produces finite bottom up tree automata. 
Match sets (or states in the finite automata terminology) are computed for a subtree by succes- 
sively regarding the root label (op), the match set of  the first child (f0, the match set of the 
second child (fz) ,. .. and the match set of  the last child (f,,). init[op] yields the start state contain- 
ing all subpatterns having root label op. Let the rank of the operator op be greater than zero. 
Then t rans ( i n i t [op] , ( l f l ) )=  zl denotes the state containing all the subpatterns of init[op] = z o 

which agree with the tree in the root label and the first child. All those subpatterns of Zo, 
whose first child cannot be found inf , ,  are not contained in zl. trans(z~_~,(ifD)= zl encodes the 
subpatterns of  zl which match the tree regarding the root label and the match sets fl,.--& of the 
children 1 ..... i. Compared to zi-1, al l  those subpattems are removed, whose child is not con- 
tained in.~. At last, the final state z, = t rans(z~ .b(n f ,3)  denotes the match set of  patterns agreeing 
with the whole subtree. An example of a tree analysis process on the basis of  the rule set of 
figure 6 is given in figure 9. (There is no simulation of  reductions in this figure!). 

init(+)={(1). (8). (12)} (+) {(1)} 

init(')=((2)), (5), (9)) ), (5)) init(reg)= (-) 

Figure 9 init(const) {(3), (6), (7)} i ~  

The automaton for this pattern set is shown in figure I0. The following convention is 
used: 
init[op] = zo is represented as op - - -> zo 
The transition from state zi-~ to zi by ~5 at the ith child, expressed by trans(zz_~,(i&))= z~, is 

represented as 

zi-1 . . . . . . .  > zi 
Final states are enclosed in bold face boxes. 
Transitions which are not explicitly mentioned lead to the empty state. Every transition out of  
the empty state leads back to the empty state. 

We will now simulate the reduction. As already mentioned in the previous chapter, the 
first step is to insert into every final state containing a full pattern (i) all those subpatterns 
which could be matched as result of  the reduction by (i). In our example, all subpatterns with 
root label "reg" (set (*)) are added to every final state that contains a full pattern of  a rule with 
a result pattern "reg". The result of  this first step is shown in figure 1 t. 

If  such a new final state f is involved in a transition of the kind t rans(z , ( i l ] )  = z',  then it 
may be possible that z" should contain additional subpattems according to the definition of tran- 
sitions. The simulation of the reduction may cause certain subpatterns to be no longer elim- 
inated on the transition from z to z'. Look at the following transition in the subautomaton of 1": 

f l "  

( ( 2 ) ,  (5 ) , (9 ) )  (1,f¢) WQ2):(5) ~ (-)~ 
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Figure  10 
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After the transition state fc has changed to fc', by simulating the reduction <const> ==> 
<reg>, pattern (9) will be a possible match, too. Pattern (9) is no longer eliminated by the tran- 
sition to f~'. . , 

fl 

The effects produced in this way by the final states changed in the first step, yield the 
automaton of figure 12. Remember that some transitions to the empty state not shown in the 
previous figure are also changed. 

c o o s t  - , .  • , c  

reg - - ~  
((4). (I0). (11).] 41" 

13). 04). Os) l 

f2 

( t  f4"), O, fs') 

f l  

Figure 12 

• o 

f3 
~ ( I . f i ' )  ~ (2,fr).(2, fc-)b f . . . .  . . ' ~  

l \ <2. f~'>. <2. fs'> 
O. fr). O.Fc') O,f2) 
(t~3"L(tf;~'). \ 14" 

_~' ' . . . :SJ (2,f~'),(ff3"). " I . " '  ' ' J 
( ~  (~. f4"), (2,fs') 

(2. ~ "), (2, ¢3 '). 
(2, ~4"), (2, !s') 

fS" 

After each step an automaton is produced using transitions on final states of the previous 
automaton, that is, final states which may exist no longer in the current automaton. For exam- 
pie, f r  of figure 12 has changed to ;I"i". The  process continues until the set of final states is no 
longer changed. The process terminates because during each step a state ~ (existing before the 
step) may only produce final states f/, satisfying ~ _c i f ,  and because only a finite number of 
combinations of subpattems exists. 

The final resuIt for our example is shown in figure 13. 

The major disadvantage of the bottom up automaton generation is the exponential worst 
case behaviour (see [HoDo82]). But examples using realistic patterns have shown good resuIts. 
Preliminary experiments on the basis of small rule sets didn't support our fears that the 
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fC" 

reg 4 ~ fr 

<2). <s). (9) . <.) } 

] (1.er), , ~  f2 
(l,f l "'), (I,f3""")" 14, ,~  
O,f4"). O,fs") 

f l "  " 

+ 

f 3 "  " " 

(1.fr).(1,f¢), ~ (2,~:4"), (2, fS') 
f I 0 F?) 

(2. f4"). (2, f5") 

(2 fr) (2 ecJ> 

fS" 

Figure 13 

simulating automaton becomes significantly larger than the non-simulating one (the worst case 
behaviour of  the two kinds of  automata is naturally the same). There were even rule sets where 
the number of  states (when identifying states containing the same subpattems) decreased and 
only the number of  transitions to non-empty states increased slightly . Further experiments 
using realistic machine descriptions will show, whether these good results will be confirmed. 

Finally, we have to discuss the generation of the partial history graphs for every final 
state. The iteration process makes this generation obvious: In the basic (non-simulating) auto- 
maton a partial history graph is associated to each final state describing the reduction rules of 
its full patterns. I f  during an iteration step a new final state f is produced on the basis of  a 
final state f, t h e n f  takes over the partial history graph o f f  and the reduction rules correspond- 
ing to newly added patterns are integrated. If  an application of a reduction rule may induce an 
application of a chain of further reduction rules, then they are linked together. Possible cycles 
may be represented. Figure 14 shows an example. 

The construction of the history graph can be prepared at generation time in the following 
way. There is a static number of leaves resulting from previous reductions in each (sub)pattern 
in a state. Therefore a static assignment of  positions in a vector can be computed for all the 
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history graph of f3 ": 

@ 

history graph of f3 ' ' :  

Figure 14 

history graph of f3 " " " ~@"-"~ '~ _~.~x>(~ @ re(,-~)rc(,Z~ 

leaves in all the (sub)patterns in a state. For each transition of the pattern matcher a program 
(or a table entry) can be generated, which uses these address assignmentsto transport the root 
addresses of partial history graphs to the point of next reduction. Precomputations on the basis 
of the rule costs will decrease the graphs for example by shortening rule chains. 

4. The top down analyser 

The most prominent property of the top down analysis automaton of 
Hoffmann/O'Donnell is its small generation cost. It takes time linear in the number of subpat- 
terns. On the other hand the analysis time costs are significantly higher than those of the bot- 
tom up automaton: the worst-case behaviour is O(number of nodes of the subject tree * 
number of subpattems). 

A top down analyser tries to recognize paths from the root to the leaves of patterns 
within a given subject tree. The paths are represented as strings of labels and child positions. 
For example, pattem number (1) of figure 6 can be described by the strings 

+ 1 1" 1 const 
and + 2 r e g  

The task of matching tree patterns within a tree is reduced to the problem of matching all 
strings of tree patterns and recording successfully matched strings of patterns at nodes in the 
subject tree. 

At generation time a finite automaton is build up on the basis of the pattern strings (see 
Hoffman~O'Dormell using the principles of Aho/Corasick [AhCo75]). 

A top down automaton for the patterns of figure 6 is shown in figure 15. A subject tree 
is analysed in preorder traversal. The transitions of the automaton are controIled by the label of 
the visited subject tree node and by the position of the visited child when descending the tree. 
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Entering a final state (represented by bold face boxes) means that a full path of a pattern 
matches. This fact has to be reported to the start node of  the path. I f  a traversal stack is used at 
run time, we can precompute the relative distance on the stack, where we can find the start 
node of  a path when entering a final state. If we have a match vector for every node with one 
counter for each full pattern (initialized by 0), then a match of a path of a full pattern (i) 
increases the counter (i) of  the match vector at the start node of the path. A counter equal to 
the number of  different paths of  (i) indicates a match of  the pattern. 

Q ~qF- reg -- 

" 2 r ~ 

......... 

Figure 15 

: a path of pattern (i) has been recognized, 
the start point of this path can be reached 
j units under the top of the traversat stack 

Figure 16 shows an analysis example using the automaton of figure 15. At each node we 
show the match vector and the transitions made by the node labels. 

This top down analyser will now be modified to simulate the reduction process. A prob- 
lem with the top down analyser is that the state computed for a node considers no information 
at all about the subtree at this node. The state is only determined by the upper context. On the 
other hand, a reduction process using only patterns of  the sort described above is inherently 
bottom up. Thus, the information about the result of the transformation process is only com- 
puted when the subtree is completely traversed. Thus, we have to visit each node a second 
time in postorder. At this time, the match vector of  the node informs us about which reduction 
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I 

I 

: match o f  n paths o f  pa t t e rn  ( i )  

match of all paths of a pattern (i) 

i-l~ j : j is the actually match state, i is the state j is reached from 

Figure 16 

rules are applicable and which result they produce. Say, a rule having a result pattern <op> can 
be applied at node n. This means that a path leading to n would continue with the label op, if 
this rule would be applied at n. If we remember the state z entered before the node label is 
taken into account, the transition entered from this state z following the edge labelled op sup- 
plies a state containing all information about possible matches basing on the simulated applica- 
tion. 

If this new transition produced additional matches at the node itself, then we have to con- 
sider the results of those rules again. The effects of such chains can be precomputed for each 
non-transfer rule and possible cycles may be broken. 

Figure 17 shows the simulation for the example of figure 16. 

For each label produced by the simulation of a (chain of) reduction rule(s) an additional 
transition has to be made. Each additional match has to be reported to an ancestor node. This 
means an additional cost at analysis time which is significantly higher than the run time of the 
simulating bottom up automaton. 

The simulation process of the bottom up automaton only increases the generation costs, 
not the run time costs (not mentioning the possible higher access costs induced by larger 
tables). The top down simulation method only affects the run time behaviour. The generator of 
the bottom up analyzer as programmed by the first author is being integrated into the PCC- 
environment by Nicole Leitges With support from SIEMENS AG Mfinchen. 
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Figure 17 

5. Conclusion 

A bottom up and a top down pattern matcher for code selection have been presented. 
Both pattern matcher first compute all possible covers for an IR tree, then a cheapest cover can 
be selected by dynamic programming performed in parallel. The bottom up pattern matcher 
performs static targeting: all transfer rules are simulated in the states of a reduction simulating 
automaton. The top down pattern matcher performs dynamic targeting by making several addi- 
tional transitions instead of a single one. But both approaches treat the problem on the pure 
syntactic level. 

The bottom up automaton may grow exponentially with the size of the machine descrip- 
tion. The generation cost for the top down automaton is linear. On the other hand, the analysis 
time performance of the bottom up automaton is much better than that of the top down auto- 
maton. Experiments will have to reveal the advantages for realistic machine descriptions. 
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