
T W O T R E E P A T T E R N M A T C H E R S F O R C O D E S E L E C T I O N

Beatrix Weisgerber*, Reinhard Wilhelm

FB 10 - Informatik
Universi~t des Saarlandes

D - 6600 Saarbrticken
Federal Republic of Germany

ABSTRACT

A bottom up- and a top down pattem matching algorithm for code selec-
tion are presented. The setting is the same as in [AhGa84]. First all covers of
the intermediate representation (IR) are computed, and cheapest ones are deter-
mined by dynamic programming. Then code seIection proper is performed.
While Graham-Glanville-like code generators ([G1Gr78],[Glan77]) use dynamic
targeting, i.e. by selecting appropriate productions at reduction time, and while
Aho- Ganapathi shift the targeting task to the semantic attributes and functions,
the two algorithms presented in this paper use static targeting. Targeting rules,
i.e. rules with patterns of depth 1, are simulated in the states of the recognizing
automata. Therefore, all covers found for an IR are adequate as far as no
semantic constraints are concerned. The bottom up approach suffers from the
theoretical worst case complexity, i.e. the (static) size of the automata may
grow exponentially with the size of the machine description. The top down
approach has a linear (static) size of the automaton, but a dynamic size, i.e. the
size of additional data structures, of IIRI * lmachine descriptionl. The bottom
up approach has been implemented as a modification of the OPTRAN bottom
up pattern matcher generator [Weis83].

1. Introduction

In recent years, there has been done a considerable amount of research on the generative
approach to code generation. A survey is given in [Lune83]. This approach automates the gen-
eration of code generators and facilitates retargeting. In the area of code selection, works
based on pattern matching has been proved to deliver reasonable results ([Glan77], [Henr84]).
For a comparison of different approaches on an algebraic basis see [GiSc88] [Gieg88].

In the pattern matching approach, machine instructions are selected according to patterns
of the intermediate representation (IR). Each (input) pattern models a target machine instruc-
tion. A second (resul0 pattern describes, where the result of the corresponding instruction will
be available. Leaves in the input pattem and the single node result pattern correspond to regis-
ters, memory cells etc. Input pattern, result pattern, machine instruction and a cost statement
estimating the amount of memory and machine cycles necessary for the machine instruction,
form a kind of a "annotated" reduction rule. See figure 1.

present address: Standard Elektrik Lorenz AG, For~chungszentmm, Lorenzstr. 10, D-7000 Stuttgart 40

216

b4aohine instruction :

add oonst reg

Add the content of a memory ceil, the address of which is given by "const" to the
content of the register "reg". The result is written into the register "reg". The sub-
patterns of the left-hand side pattern are numbered for later reference.

Figure I

For every given IR tree, a pattern driven code generator has to find at least one sequence
of instructions corresponding to the tree. Such sequences are issued as indicated by covers of
the IR tree by input patterns. A cover is found by plastering the tree with input patterns, such
that every node of the tree has to be covered by exactly one node of one pattern and such that
the patterns "fit together". This means, that the result pattern of the input pattern is or can be
transferred to a leaf of another input pattern. The problem corresponds to the targeting prob-
lem: the result of the corresponding machine instruction has to be in the place where the next
instruction expects it to be. An example is given in figure 2.

On the other hand, addressing modes may be factorized by special rules. Then, each
result pattern of such rules symbolizes a certain addressing mode (indirection, indexing etc.)
which can be used within other patterns without explicitly repeating the possible huge address
pattern. "Fitting together" means in this context insuring that the appropriate addressing mode
can be used.

The pattern of figure 1 matches at node * and delivers a result 'reg', so that the pat-
tern matches again at node **. Every node of the original tree is covered by exactly
one pattern. The result of the first reduction produces a leaf of the second pattern.

Figure 2

A tree pattern marcher finding covers of trees should simulate the "pasting" process. This
means in terms of rewrite systems to simulate the reduction of the input pattern by the result
pattern. If the input pattem of a rule matches a subtree, this subtree is replaced by the ,result
pattern. The process continues until no more pattern matches and only one node results. See
figure 3.

217

Figure 3

--> G

In general, there is more than one cover for a tree by real (non RISC) machine descrip-
tions. A code generator should be able to select one with minimal costs, i.e. sum of the costs
for the instruction sequence issued.

The Graham/Glanville approach ([Glan77], [GIGr78]) reduced the problem of tree pattern
matching to the problem of recognizing words of a (string) language. The IR tree is linearized
according to a preorder traversal. Each reduction rule is represented by a production of a
context-free grammar.

Example: REG -> + t" const REG,

A LR-type parser is generated from this grammar. Each reduction in the parsing process
corresponds to a tree reduction. Certain heuristics and backtrack mechanisms had to be built in
to find a cover, because the grammars are ambiguous in general. But there is a left bias due to
the preorder traversal and the employed heuristics. Early selection decisions and the one pass
approach preclude the generation of even locally optimal code.

The approach of Ganapathi/Fischer [OaFi82] provides further attribution mechanisms and
formulation of predicates for more flexible conflict resolution.

As [Henr84] indicates, the context-free approach to the problem has been driven to its
inherent limits. Tree pattern matching technology promises to overcome these limitations.
However, tree analysers like those of Kron [Kron75] or Hoffman/O'Donnell [HoDo82] cannot
be used unchanged for this purpose. They can determine whether and where in a tree patterns
from a set of pattems match, but they don't simulate the reduction process as described above.

Aho/Ganapathi [AhGa85] propose a solution for this problem. The leaves of their patlems
and the result patterns are parameter nodes which match every tree. So, they can use conven-
tional pattem match automata. A suitable attribution has to provide the targeting task. These
computations give rise to additional costs at run time.

The approach presented in this paper will overcome this problem by adapting the well-
known tree pattem matching automata to simulate the reduction process. For every given tree,
the automata will provide all possible covers according to a set of reduction roles. Dynamic
programming ([AhJo76]) performed in parallel wiU then fred a locally cheapest code sequence.

2. The bottom up tree analyser

Bottom up tree analysers have the great advantage, that their analysis time costs are linear
in the number of the nodes of the subject tree. The bottom up tree analyser of Kron and
Hoffmann/O'Dormetl works as follows: With every node in the tree a set of subpattems is
associated which match the subtree at this node. These match sets are computed bottom up.

218

The match set of a node can be determined, if all subtrees of this node are already analysed.
A subpattern matches at a node if and only if its root has the same label as the node and if
every child pattern matches the corresponding child tree of the node. The latter fact can be
determined by inspecting the match sets of the children. If the child pattern can be found in
the match set of the corresponding child tree, then the child pattern matches the child tree.

subject t ree

Figure 4

{(2)} {(i)}
{(3)} ~~(2)}~ {(4)}

{(3)}

In figure 4 the subject tree to be analysed is shown together with its match sets. At node
*, the full pattern matches. This fact is represented by associating match set {(1)} with *. The
root label of the pattern is the label of the node, at the first child the first subtree of the pattern
((2)) matches and at the second child the second subtree of the pattem ((4)) matches. We
can see, that at node ** no pattern matches, because at its second child no match can be found
for subpattem <reg>. This subpattern would be produced by reduction at node *. We can simu-
late this rewrite rule. Every time, a full pattern occurs in a match set, all occurrences of the
result pattern (as input subpattems) are added to the match set. Figure 5 shows the result for
our example.

""~).{(I)+ (4)}
/-N.+

+<2++ (+) • , . ,.+.:.,+ / , + , - = , . + + + + ,

{(3)} ~~(+)} {(4)}
{(3))

Figure 5

At node *, we now have the additional information that subpattem (4) matches. This has
the effect, that the main pattern is recognized at node **. Each match set now reflects the
actual situation of the tree and additionally each situation which could arise by reductions of
the tree.

An example for more complex rules as shown in figure 6 is given in figure 7.

At this point, we can observe several properties of the analyser. Chains of so-called
transfer rules (rules having.an input pattern consisting of a single node, modelling for example

219

transformation rules (represented by the top node of the left-hand side pattern)

/eq

(3) Q ~)

L

(1o) (~])

(13) ~ (14)

Figure 6 subject t r ee

~ (12)} • (-)

{(2). (5). (g)} * (,,) (. ~ i .~ + ~ 1) . (f l) . (12)} + (-)

{(3). (6). (7))-+ Q.)

G

Figure 7 (*) = { (4) , (1 D) , (1 1) ; (1 3) , (1 4) . (1 S) }

register-to-register transfers or memory-to-register transfers or factorizing rules) are enclosed in
one match set. If the input pattern of a transfer rule is contained in a match set, then at the
same time the input subpatterns having the same label as the result pattern of the rule can be
added to this match set. See for example rule (7) and (15). If (7) is contained in a match set,
then set (*) can be added immediately. For rule (15) nothing is added, because the results are
already considered. The effects of such chains of transfer rules are computed simultaneously.
There are no problems with possible loops in transfer rule chains. In the Graham/Glanville
approach, such possible infinite reduction sequences have to be detected and broken explicitly.

220

The second observation concerns the kind of information provided: The simulating ana-
lyser only states, that certain patterns match, if certain transformation rules are applied at cer-
tain subtrees or possibly no transformation rule is applied. But the information about the
different covers found is not immediately available. The approach of M6ncke [Moen85] pro-
vides more exact information in this respect, but it will probably produce larger automata.

Thus, we have to collect further information at run time to determine an actual instruction
sequence corresponding to the covers found by the automaton. A possible solution is to con-
struct the graph representing all covers for an individual tree. An example for such a graph,
called history graph, is shown in figure 8. Reduction rules are associated with those nodes in
the tree to which they can be applied. If a reduction at node n depends on other reductions at
descendent nodes, then an edge is drawn from the history graph of the descendent node to the
history graph of n. This shows which result of which reduction is responsible for the existence
of an appropriate leaf of another pattern.

3. The generator of the bottom up analyser
Naturally, it is possible to compute the match sets at analysis time. But it will be much

more efficient to precompute them as the states of a finite tree automaton from the machine
description. We are then able to compute encoded match sets and the associated partial history
graphs for IR trees by means of this automaton. Pure analysis costs are linear in the number of
nodes of the subject tree to be analysed.

HoffmanrffO'DonneI1 [HoDo82] developed a generator for conventional tree analysers
producing a n-dimensional matrix M[op] for every operator op, where n is the rank of op.
Each entry M[op][fl,...f,,] supplies the match set for a tree node labeUed op, where every chttd i,
from 1 to n, is already analysed by match set A. Realistic pattern sets will result in huge

221

sparse matrices, i.e. most entries will denote the empty match set. Table compression methods
wiU produce reasonable automata representation [MWW85].

Kron's generator [Kron75] (see also [Weis83]) produces finite bottom up tree automata.
Match sets (or states in the finite automata terminology) are computed for a subtree by succes-
sively regarding the root label (op), the match set of the first child (f0, the match set of the
second child (fz) ,. .. and the match set of the last child (f,,). init[op] yields the start state contain-
ing all subpatterns having root label op. Let the rank of the operator op be greater than zero.
Then t rans (i n i t [op] , (l f l))= zl denotes the state containing all the subpatterns of init[op] = z o

which agree with the tree in the root label and the first child. All those subpatterns of Zo,
whose first child cannot be found inf , , are not contained in zl. trans(z~_~,(ifD)= zl encodes the
subpatterns of zl which match the tree regarding the root label and the match sets fl,.--& of the
children 1 i. Compared to zi-1, al l those subpattems are removed, whose child is not con-
tained in.~. At last, the final state z, = t rans(z~ .b(n f ,3) denotes the match set of patterns agreeing
with the whole subtree. An example of a tree analysis process on the basis of the rule set of
figure 6 is given in figure 9. (There is no simulation of reductions in this figure!).

init(+)={(1). (8). (12)} (+) {(1)}

init(')=((2)), (5), (9))), (5)) init(reg)= (-)

Figure 9 init(const) {(3), (6), (7)} i ~

The automaton for this pattern set is shown in figure I0. The following convention is
used:
init[op] = zo is represented as op - - -> zo
The transition from state zi-~ to zi by ~5 at the ith child, expressed by trans(zz_~,(i&))= z~, is

represented as

zi-1 > zi
Final states are enclosed in bold face boxes.
Transitions which are not explicitly mentioned lead to the empty state. Every transition out of
the empty state leads back to the empty state.

We will now simulate the reduction. As already mentioned in the previous chapter, the
first step is to insert into every final state containing a full pattern (i) all those subpatterns
which could be matched as result of the reduction by (i). In our example, all subpatterns with
root label "reg" (set (*)) are added to every final state that contains a full pattern of a rule with
a result pattern "reg". The result of this first step is shown in figure 1 t.

If such a new final state f is involved in a transition of the kind t rans(z , (i l]) = z', then it
may be possible that z" should contain additional subpattems according to the definition of tran-
sitions. The simulation of the reduction may cause certain subpatterns to be no longer elim-
inated on the transition from z to z'. Look at the following transition in the subautomaton of 1":

f l "

((2) , (5) , (9)) (1,f¢) WQ2):(5) ~ (-)~

222

Figure 10

const - -~ ~ f c

reg

{r
[(4), (t8). (1t).]
Lo3), (~4). (ls)j

+

~ f l

~2

(]" f ~ f4

(2.fO

, CD

fc

F igure 11

reg
_+ fr

+

fl

f3"
! -~ 0.¢t) / - :7A (2 fr)
I), (8), 02)~X,, ~ , , " ~.LO) ~ ~.} j

(1, fr) O, ~ x ~ f4 "

' ' K'TLV~(z. fr) ~

f5

223

After the transition state fc has changed to fc', by simulating the reduction <const> ==>
<reg>, pattern (9) will be a possible match, too. Pattern (9) is no longer eliminated by the tran-
sition to f~'. . ,

fl

The effects produced in this way by the final states changed in the first step, yield the
automaton of figure 12. Remember that some transitions to the empty state not shown in the
previous figure are also changed.

c o o s t - , . • , c

reg - - ~
((4). (I0). (11).] 41"

13). 04). Os) l

f2

(t f4"), O, fs')

f l

Figure 12

• o

f3
~ (I . f i ') ~ (2,fr).(2, fc-)b f ' ~

l \ <2. f~'>. <2. fs'>
O. fr). O.Fc') O,f2)
(t~3"L(tf;~'). \ 14"

_~' ' . . . :SJ (2,f~'),(ff3"). " I . " ' ' ' J
(~ (~. f4"), (2,fs')

(2. ~ "), (2, ¢3 ').
(2, ~4"), (2, !s')

fS"

After each step an automaton is produced using transitions on final states of the previous
automaton, that is, final states which may exist no longer in the current automaton. For exam-
pie, f r of figure 12 has changed to ;I"i". The process continues until the set of final states is no
longer changed. The process terminates because during each step a state ~ (existing before the
step) may only produce final states f/, satisfying ~ _c i f , and because only a finite number of
combinations of subpattems exists.

The final resuIt for our example is shown in figure 13.

The major disadvantage of the bottom up automaton generation is the exponential worst
case behaviour (see [HoDo82]). But examples using realistic patterns have shown good resuIts.
Preliminary experiments on the basis of small rule sets didn't support our fears that the

224

fC"

reg 4 ~ fr

<2). <s). (9) . <.) }

] (1.er), , ~ f2
(l,f l "'), (I,f3""")" 14, ,~
O,f4"). O,fs")

f l " "

+

f 3 " " "

(1.fr).(1,f¢), ~ (2,~:4"), (2, fS')
f I 0 F?)

(2. f4"). (2, f5")

(2 fr) (2 ecJ>

fS"

Figure 13

simulating automaton becomes significantly larger than the non-simulating one (the worst case
behaviour of the two kinds of automata is naturally the same). There were even rule sets where
the number of states (when identifying states containing the same subpattems) decreased and
only the number of transitions to non-empty states increased slightly . Further experiments
using realistic machine descriptions will show, whether these good results will be confirmed.

Finally, we have to discuss the generation of the partial history graphs for every final
state. The iteration process makes this generation obvious: In the basic (non-simulating) auto-
maton a partial history graph is associated to each final state describing the reduction rules of
its full patterns. I f during an iteration step a new final state f is produced on the basis of a
final state f, t h e n f takes over the partial history graph o f f and the reduction rules correspond-
ing to newly added patterns are integrated. If an application of a reduction rule may induce an
application of a chain of further reduction rules, then they are linked together. Possible cycles
may be represented. Figure 14 shows an example.

The construction of the history graph can be prepared at generation time in the following
way. There is a static number of leaves resulting from previous reductions in each (sub)pattern
in a state. Therefore a static assignment of positions in a vector can be computed for all the

225

history graph of f3 ":

@

history graph of f3 ' ' :

Figure 14

history graph of f3 " " " ~@"-"~ '~ _~.~x>(~ @ re(,-~)rc(,Z~

leaves in all the (sub)patterns in a state. For each transition of the pattern matcher a program
(or a table entry) can be generated, which uses these address assignmentsto transport the root
addresses of partial history graphs to the point of next reduction. Precomputations on the basis
of the rule costs will decrease the graphs for example by shortening rule chains.

4. The top down analyser

The most prominent property of the top down analysis automaton of
Hoffmann/O'Donnell is its small generation cost. It takes time linear in the number of subpat-
terns. On the other hand the analysis time costs are significantly higher than those of the bot-
tom up automaton: the worst-case behaviour is O(number of nodes of the subject tree *
number of subpattems).

A top down analyser tries to recognize paths from the root to the leaves of patterns
within a given subject tree. The paths are represented as strings of labels and child positions.
For example, pattem number (1) of figure 6 can be described by the strings

+ 1 1" 1 const
and + 2 r e g

The task of matching tree patterns within a tree is reduced to the problem of matching all
strings of tree patterns and recording successfully matched strings of patterns at nodes in the
subject tree.

At generation time a finite automaton is build up on the basis of the pattern strings (see
Hoffman~O'Dormell using the principles of Aho/Corasick [AhCo75]).

A top down automaton for the patterns of figure 6 is shown in figure 15. A subject tree
is analysed in preorder traversal. The transitions of the automaton are controIled by the label of
the visited subject tree node and by the position of the visited child when descending the tree.

226

Entering a final state (represented by bold face boxes) means that a full path of a pattern
matches. This fact has to be reported to the start node of the path. I f a traversal stack is used at
run time, we can precompute the relative distance on the stack, where we can find the start
node of a path when entering a final state. If we have a match vector for every node with one
counter for each full pattern (initialized by 0), then a match of a path of a full pattern (i)
increases the counter (i) of the match vector at the start node of the path. A counter equal to
the number of different paths of (i) indicates a match of the pattern.

Q ~qF- reg --

" 2 r ~

.........

Figure 15

: a path of pattern (i) has been recognized,
the start point of this path can be reached
j units under the top of the traversat stack

Figure 16 shows an analysis example using the automaton of figure 15. At each node we
show the match vector and the transitions made by the node labels.

This top down analyser will now be modified to simulate the reduction process. A prob-
lem with the top down analyser is that the state computed for a node considers no information
at all about the subtree at this node. The state is only determined by the upper context. On the
other hand, a reduction process using only patterns of the sort described above is inherently
bottom up. Thus, the information about the result of the transformation process is only com-
puted when the subtree is completely traversed. Thus, we have to visit each node a second
time in postorder. At this time, the match vector of the node informs us about which reduction

227

I

I

: match o f n paths o f pa t t e rn (i)

match of all paths of a pattern (i)

i-l~ j : j is the actually match state, i is the state j is reached from

Figure 16

rules are applicable and which result they produce. Say, a rule having a result pattern <op> can
be applied at node n. This means that a path leading to n would continue with the label op, if
this rule would be applied at n. If we remember the state z entered before the node label is
taken into account, the transition entered from this state z following the edge labelled op sup-
plies a state containing all information about possible matches basing on the simulated applica-
tion.

If this new transition produced additional matches at the node itself, then we have to con-
sider the results of those rules again. The effects of such chains can be precomputed for each
non-transfer rule and possible cycles may be broken.

Figure 17 shows the simulation for the example of figure 16.

For each label produced by the simulation of a (chain of) reduction rule(s) an additional
transition has to be made. Each additional match has to be reported to an ancestor node. This
means an additional cost at analysis time which is significantly higher than the run time of the
simulating bottom up automaton.

The simulation process of the bottom up automaton only increases the generation costs,
not the run time costs (not mentioning the possible higher access costs induced by larger
tables). The top down simulation method only affects the run time behaviour. The generator of
the bottom up analyzer as programmed by the first author is being integrated into the PCC-
environment by Nicole Leitges With support from SIEMENS AG Mfinchen.

228

Figure 17

5. Conclusion

A bottom up and a top down pattern matcher for code selection have been presented.
Both pattern matcher first compute all possible covers for an IR tree, then a cheapest cover can
be selected by dynamic programming performed in parallel. The bottom up pattern matcher
performs static targeting: all transfer rules are simulated in the states of a reduction simulating
automaton. The top down pattern matcher performs dynamic targeting by making several addi-
tional transitions instead of a single one. But both approaches treat the problem on the pure
syntactic level.

The bottom up automaton may grow exponentially with the size of the machine descrip-
tion. The generation cost for the top down automaton is linear. On the other hand, the analysis
time performance of the bottom up automaton is much better than that of the top down auto-
maton. Experiments will have to reveal the advantages for realistic machine descriptions.

6. References

[AhCo75]

[AhJo76]

[AlaGa84]

[GaFi82]

[GiSc88]

A.V. Aho, M.LCorasick, Efficient String Matching: An Aid to Bibliographic
Search, CACM, June 1975, Vol. 18, Nr. 6

A.V. Aho, S.C. Johnson, Optimal Code Generation for Expression Trees,
JACM, Vol. 23, No 3, July 1976

A.V. Aho, M. Ganapathi, Efficient Tree Pattern Matching: An Aid to Code
Generation, POPL 1985

M. Ganapathi, C.N. Fischer, Description-Driven Code Generation Using Attri-
bute Grammars, POPL 1982

R. Giegerich, K. Schmal, Code Selection Techniques: Pattern Matching, Tree
Parsing, and Inversion of Derivors, Proceedings of ESOP'88, LNCS 300,
Springer Veriag 1988

229

[Gieg88]

[Glan77]

[G1Gr78]

[Henr84]

[HoDo82]

[Kron75]

[Lune83]

[Moen85]

[MWW851

[Weis83]

R. Giegerich, Code Selection by Inversion of Order-Sorted Derivors, to appear
in Theoretical Computer Science, North Holland

R.S. Glanville, A Machine Independent Algorithm for Code Generation and its
Use in Retargetable Compilers, PhD Dissertation, University of California,
Berkley, December 1977

R.S. Glanville, S.L. Graham, A New Method for Compiler Code Generation,
POPL 1978

R.R. Henry, Graham Glanville Code Generators, Phi) Dissertation, University
of California, Berkley, 1984

D.M. Hoffman, M.L O'Donnell, Pattern Matching in Trees, JACM 29,1, 1982

H. Kron, Tree Templates and Subtree Transformational Grammars, Phi)
Dissertation, University of California, Santa Cruz, 1975

H. Lunell, Code Generator Writing Systems, Software System Research Center,
Link6ping, Sweden, 1983

U. M0ncke, Generierung yon Systemen zur Transformation attributiertern
Operatorb~iume: Komponenten des Systems und Mechanismen der Generierung,
Dissertation, Universit~t des Saarlandes, Saarbrticken, 1985

U. M5ncke, B. Weisgerber, R. Wilhelm, Generative Support for Transforma-
tional Programming, ESPRIT Technical Week, 1985

B. Weisgerber, Attributierte Transformationsgrammatiken: Die Baumanalyse
und Untersuchungen zu Transformationsstrategien, Diplomarbeit, Universit~it
des Saarlandes, Saarbr~cken, 1983

