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Abstract 

A parallel implementation of PARLOG is described based on graph rewriting techniques. The 

implementation is suitable for fine grain parallel architectures such as FLAGSHIP and GRIP. In particular, 

we compile PARLOG programs to Dactl - an intermediate language based on generalised graph rewriting. 

We provide a complete translation scheme which maps every PARLOG procedure to a set of Dactl rewrite 

rules where the only selection process is pattern matching. We show how some of the most subtle features 

of PARLOG such as non-determinism and metaprogramming can be modelled in the graph rewriting 

framework of Dactl using suitable rule systems. Finally, we show how our Dactl rules can be translated to 

MONSTR - a subset of Dactl which is currently implemented on FLAGSHIP. This will allow our 

PARLOG to Dactl implementation to be directly executable by that machine. 

1. Introduct ion 

In this paper we continue our investigation in implementing logic languages in a graph reduction 

framework 6 by describing a parallel implementation of PARLOG 13 using Dactl (Declarative Alvey 

Compiler Target Language); Dact110 is a computational model based on generalised graph rewriting where 

programs are written as sets of rewrite rules. The language is intended to serve as a common intermediate 

language between logic and functional languages and novel computer architectures 20. Note that Dactl has 

some similarities with the languages Lean 3 and Clean 4 which are both intermediate languages based on 

graph rewriting, albeit they are designed to support mainly functional languages. Some of the objectives of 

such a bridging computational model are: to decouple the development of the languages from that of the 

architectures so that changes in either level should not necessarily affect the other; to reduce the number of 

required implementations; to provide a means of assessing the potential of languages for parallel execution 

and in particular to allow the testing of various execution strategies and models so that the most suitable 

one for each language can be found; to act as a point of reference in comparing the implementation of a 

certain language with that of another not belonging necessarily to the same class; finally, to free the 

programmer from the burden of considering low-level and machine-dependent implementation details. The 

figure below shows some of the languages that have been implemented in Dacfl and architectures on which 

implementations of Dactl are under way: 



314 

i I F; I i ..... 

In particular, we provide a complete translation scheme that maps every PARLOG procedure to a set of 

Dactl rewrite rules. Our basic translation scheme is similar to the one for GHCll; however, it has been 

optimised and extended to cope with some advanced metaprogramming featm'es available in PARLOG, 

such as suspending, resuming and terminating computations, handling exceptions, etc. 

Dacd is currently implemented on FLAGSHIP 22 and ZAPP 19. In particular, FLAGSHIP will initially 

support a restricted subset of Dactl called MONSTR 1. In this paper, we also show how our unrestricted 

Dactl rule systems can be translated to MONSTR without compromising their expresiveness, 

The rest of the paper is organised as follows: the next two sections introduce the reader to PARLOG 

and Dactl; the following decribes our PARLOG to Dactl implementation; finally, the last section provides 

some conclusions and related work. 

2. PARLOG 

PARLOG is a concurrent logic language featuring stream and-parallelism and committed-choice or- 

parallelism; a PARLOG program is a set of guarded clauses of the form 

R(tl,_.,t n) <--Guard : Body 

together with a mode declaration for every relation R which is of the form 

mode R (ml, ..., ran) 

Each m corresponds to one t and denotes the mode of that argument; a '? '  indicates that the argument is 

input and a '^' indicates that it is output. To initiate computation, a conjunction of relation calls is used of 

the form 

:- BI,...,B m , n>O 
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where all the Bra are to be evaluated in parallel. Execution proceeds by attempting to reduce this set of goals 

using the program clauses; each goat will commit to the first clause whose head unifies with that call and 

whose guard evaluates successfully. That goal then will be substituted by the conjunction of calls in the 

body of the selected clause. Every PARLOG clause can be translated to its Kernel PARLOG equivalent 

form. Kernel PARLOG is the "unsugared" version of PARLOG; there are no mode declarations and input 

matching and output unification are done by explicit calls to appropriate primitives in the guard and body 

respectively for each clause. We have based our implementation on a variant of Kernel PARLOG referred 

to from now on as Kernel PARLOGDact 1 or KPDact 1 for short; every clause here is of the form 

R(tl,...,ti,ti+l,...,tn) <--gl,...,gp : bl,.-.,bq. 

where without loss of generality we assume that the first t i arguments have input mode and the rest have 

output mode. The following modifications have been applied to the above clause compared with its original 

form: 

t 1 ..... t± are arbitrary variable or non-variable terms, where the only restrictions are that the overall 

input pattern should be linear (i.e. repeated occurrences of variables are not allowed). If a variable v 

occurs more than once in tz  ..... t±, new variables v 1, ..., v k are introduced for every such subsequent 

occurrence, and calls to the test unification primitive '==' of the form v==v 1, v==v 2 , .., v==v k are 

added in the guard. 

t±+ 1 ..... t n are distinct variables and for each output argument a call to the full unification primitive '=' 

is added in the body. If the original program uses the assignment primitive, no explicit call to such a 

primitive is required; Dactl supports directly the assignment of variables by means of non-root 

overwrites (see discussion on the unification primitive in the next section). 

Although not examined in detail in this paper, the model can cope with the free mixing of the sequential and 

parallel versions of the clause conjunction and search operators. 

3. Dactl 

A program in Dactl is a set of rewrite rules specifying a binary reduction relation which defines the 

possible transformations of graph objects. Graph rewriting is often used to implement functional languages 

which have a close resemblance to term rewriting systems. Dactl, however, is fundamentally a language of 

graph rewriting, and although it has been proven that certain, regular, classes of term rewriting systems can 

be modelled by a graph rewriting language like Dact115, the translation of PARLOG uses capabilities not 

found in term rewriting. 

In addition to the specification of a reduction relation, a practical rewriting system must say something 

about control of evaluation or reduction strategy: the choice procedure for selecting candidate redexes from 

those available in the graph. Dacfl can model very general and potentially ambiguous rewriting systems for 

which there may be no terminating (normalising) strategy. Since Dactl must accommodate different families 

of languages with divergent operational semantics (lazy functional languages, "eager" concurrent logic 

languages) no predefined strategy is adequate; instead, control markings are employed to determine the 

order of reduction. 
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As an exmnple, the following fragment of Dactl defines some rules for a strict append function: 

Append[Nil y] => *Yl 

Append[Cons [h t] y] => #Cons [h ^*Append[t y] ] ; 

Similar notation is used for rewritable functions, such as Append, and data value constructors, such as 

cons. However, there will be no rules for rewriting cons nodes. Each node has a symbol and a list of  arcs 

to successor nodes. 

The first rule says that an Append node with Nix as first argument is to take the value of  the second 

argument. That argument is activated causing further evaluation if it is a rewritable function. The second 

rule applies when a cons node is the first argument. The result is a new cons node (bearing the suspension 

marker, '# ' )  whose second argument is a recursive call to Append, This call is activated, using the '* '  

marker, and the notification marker, ' ^ ' ,  on the argument, causes the cons node to be reactivated when the 

result has been calculated. Hence the original caller of Append will be notified of completion only when 

the argument to cons has been evaluated. Note that by changing the second rule to 

Append [Cons [h t] y] => *Cons[h *Append[t y]] ; 

we get an eager append function, and by changing it to 

Append[Cons[h t] y] => *Cons[h Append[t y]]; 

we get a lazy one. 

In general, Dacfl roles take the form: 

Pattern --> Contractum, Activations, Redirections 

The pattern may be matched against any suitable part of the graph; it can be a simple graph or it can contain 

pattern operators. In particular, there are four pattern operators: '+' ,  ' - ' ,  '~ '  and Any. The intention is that 

p+q matches anything matched by p or q (union), p - q  matches anything matched by p but not by q 

(difference), paq matches anything matched by both p and q (intersection) and Any matches successfully 

against any node. 

The contractum specifies a new graph structure which may contain references to the pattern graph. After 

a successful matching, a copy of  the contractum is built, adding the new structure to the graph. The 

redirections part indicates how the new structure is to be linked into the original graph. A redirection 

involves a source node identifier (which must be from the original graph) and a target node identifier 

(usually in the new graph). All references to the source node are changed to become references to the target 

node. Hence arcs are redirected away from the source to the target. 

The example was given in the shorthand form of Dactl. The longhand form is as follows: 

a:Append[n y], n:Nil, y:Any-> *y, a:=yl 

a:Append[c y], c:Cons[h t], y:Any, h:Any, t:Any ~> d:#Cons[h ^b], b:*Append[t y], 

a : =d; 
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The longhand form gives an explicit tabulation of the graphs representing pattern and contractum. The 

components of a rule are made visibie, including the root redirection implied by the use of the '=>' 

separator between pattern and contractum of rules. 

Contractum nodes may be created active, using the '*'  marking, or suspended using a marking of the 

form '#' ,  '##', ... when rewriting of the node will only be considered when a number of children bearing 

the notification marking '^ '  equal to the number of '  #' markings have responded. Note here that the number 

of '#' is allowed to be less than the number of children bearing the notification marking; this can be used to 

express non-strictness. The activations section allows a rnle to make active some nodes in the original 

graph which were matched by the pattern. 

Only activated nodes will be considered for matching; if a match is found, the corresponding 

contractum is built and the redirections and activations are performed. However, if no rule matches, we 

notify all nodes suspended on the node in question by removing a '#' annotation, making the nodes active 

when the last '# '  is removed, This principle of notification on matching failure is rather unfamiliar but 

explains why many rules will redirect the root of the matched graph to an activated constructor node. Since 

there are no rules for the constructor, the attempt to match using the constructor will fail and hence those 

nodes suspended on the constructor will be notified of the result. 

Redirection has much the same effect as overwriting the source with the target, and we will often 

describe the process as overwriting. Although the most frequent kind of redirection has a similar effect to 

the classical root-overwrite of many graph reduction models, Dactl also allows the effect of overwriting 

non-root nodes. This is particularly important for the PARLOG translation where it is used to model 

instantiation of logical variables based on the use of a symbol vat  which is neither a constructor (since it 

can appear to be overwritten when instantiated) nor a normal function (since there are no rewrite rules for 

the symbol). Symbols like var are called overwritables, as opposed to the creatable constructors and the 

rewritable functions. The implementation of a unification primitive, for example, has among others the 

following rules: 

Unify[vl:Var v2:Var] => *SUCCEED, vl:=v21 

Unify[v:Var t: (Any-Vat) ] => *SUCCEED, v:=*t] 

Unify[t: (Any-Vat) v:Var] => *SUCCEED, v:=*t; 

plus rules for decomposing data structures. Note here the use of ' :  =' in the rhs which models the 

instantiation of variables. 

A rule wishing to suspend evaluation until a variable is instantiated creates a suspended node with a 

notification marker on an arc to the variable node, but does not activate the variable node itself. When 

another part of the computation wishes to instantiate the variable, it redirects arcs to the variable to the value 

to be given and it activates the value. If the value is a constructor, matching will fail, and all nodes 

suspended on the original variable will be notified. Note that in the definition of un i fy  above, we refrained 

from ruing the term a variable is redirected to if it is another variable; thus any nodes suspending on the 

former variable wilt not be activated only to suspend again. In addition, a form of rule ordering is 

available; rules separated by a ' I' may be tried for matching in any order whereas rules following a ' ; '  
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will only be considered if none of the earlier rules apply. The sequenced form can be considered a 

shorthand version of an equivalent set of rules using pattern difference operators instead. 

A complete description of Dactl is beyond the scope of this paper and can be found in 8,10. In addition, 

2 discusses its theoretical background and 9,14 examine the potential of Dactl for implementing declarative 

languages. 

4. Translating PARLOG to Dactl 

4.1 The Basic Translation Scheme 

Consider the following PARLOG program which appends two lists: 

mode append(?,?, ̂ ) . 

append([HLX],Y, [H[Z]) <- append (X, Y, Z) . 

append( [] ,Y,Y) . 

When translated to KPDact 1 gives the following code: 

append([HIZ],Y,Z) <-Z=[HIZ'], append(X,Y,Z'). 

append([],Y,Z) <- Z=Y. 

The equivalent Dactl program is shown below: 

Append [Cons [h x] y z] => #AND[^*Unify[z Cons[h z':Var]] ^*Appendix y z']] I 

Append[Nil y z] => *Unify[z y] I 

Append[x:Var y z] => #Append[^x y z] I 

Append[ (Any-Cons [Any Any] -Nil) Any Any] => *FAIL; 

Note the use of the pattern operators available in Dacfl to select the appropriate rule for matching; note also 

the introduction of new variables in the rhs of the rules as nodes with the pattern var. If the first input 

argument is a list, the first rule is selected which spawns two processes: one for the output unification and 

one for the recursive call. The two processes are monitored by the AND process which remains suspended 

until either of them reports back (note here the use of a single ' #'). If AND receives a SUCCEED message from 

one of the processes it suspends again waiting for the other to complete; if, however, it receives a FAZL 

message it immediately reports failure and temainates. This early detection of failure allows us to perform 

an important optimisation: when AND receives a failure message, it terminates the other processes in its 

conjunction whose computations are now unnecessary; the exact way the killing of active computation is 

achieved will be explained later on when we describe the implementation of the metacail. The definition of 

AND is given below: 

AND[SUCCEED SUCCEED ... SUCCEED] => *SUCCEED; 

r :AND [ (Any-FAIL) (Any-FAIL) ... (Any-FAIL) ] -> #r; 

AND[Any Any ... Any] => *FAIL; 

Note the way patterns operators are used in the second rule to detect whether to suspend again or fail. The 

use of a sequential rule ordering guarantees that the second rule will be tried only when the first does not 

match. Hence if the second rule matches, the produced pattern is actually 
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AND [ (Any-FAIL) (Any-FAIL) ... (Any-FAIL) ] -AND [SUCCEED SUCCEED ... SUCCEED] 

which means that some but not all of  the children processes have terminated successfully and thus AND 

should suspend again. Note here that the rhs '-> #r' expresses exactly this functionality: the root packet 

for miD will suspend waiting for the remaining children processes to terminate. The equivalent rule 

AND[p1: (Any-FAIL) p2: (Any-FAIL) ... pn: (Any-FAIL)] => #AND[^pl ^p2 ... ̂ pn]; 

would require the creation of a new root packet for AND which in this case is unnecessary. Note also that the 

technique of using pattern operators to detemline whether to suspend or fail is independent of the number of 

arguments of AND. In general, the detection of suspensions is one of the trickiest issues in implementing 

concurrent logic languages in a pattern matching based language like Dactl. 

Consider now the following program: 

mode partition(?,?,^) . 

partition(U, [VIX], [V[XI],X2) <- V<U : partition(U,X, Xl,X2) . 

partition(U, [VlX],XI, [VIX2]) <- U=<V : partition(U,X, Xl,X2) . 

partition(_, [], [], []) . 

whose KPDaet 1 code is shown below: 

partition(U, [VIX],XI,X2) <-V<U : XI=[VIXI'], partition(U,X, Xl',X2). 

partition(U, [VIX],XI,X2) <- U=<V : X2=[VkX2'], partition(U,X,Xl,X2') . 

partition(_, [],XI,X2) <-XI=[], X2=[]. 

The following issues arise in the translation of the above program to Dactl: the handling of the identical 

input patterns, and the evaluation of guards before commiting to a clause. The equivalent Dactl program is 

shown below: 

Partition[u Cons[v x] xl x2] => #Partition_Commit [^gl ^g2 u v x xl x2], 

gl:*Less[v u], g2:*Lesseq[u v] I 

Partition [u Nil xl x2] => #AND[^*Unify[xl Nil] ^*Unify[x2 Nil]]I 

Partition[pl p2:Var p3 p4] => #Partition[pl ^p2 p3 p4] I 

Partition [Any (Any-Vat-Cons [Any Any]-Nil) Any Any] => *FAIL; 

Partition_Commit [SUCCEED Any u v x xl x2] => #AND[^bl ^b2], 

bl:*Unify[xl Cons[v xl':Var]], b2:*Partition[u x xl' x2] I 

Partition_Commit[Any SUCCEED u v x xl x2] => #AND[^bl ^b2], 

bl:*Unify[x2 Cons[v x2':Var]], b2:*Partition[u x xl x2']I 

Partition_Commit [FAIL FAIL Any Any Any Any Any] => *FAIL; 

r:Partition_Commit[Any Any Any Any Any Any Any] -> #r; 

Since the first two clauses have identical patterns, they can coalesce into a single Dactl rule which performs 

the required input matching just once. We are then left with two non-overlapping rules; the first solves the 

two guards and commits to the body of either the first or the second clause, and the second instantiates the 

output arguments to the empty list if its second argument is also the empty list. In general, guards are 
solved by a Dactl function that takes the form 
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Predicate_Coramit [guard_conjunctions head_and guard_variables] 

guard conjunctions is a set of processes, one process for each guard conjunction. If no identical input 

patterns can be found, then there is one Dactl rule for each clause with an associated Predicate_Commit 

function which, in this case, will have a single guard conjunction, head and_guard variables are  the 

set of variables appearing in the head of the clause, as well as any new variables appearing in the guards. 

Thus the global (head variables) and the local (new guard variables) environments are carried forward and 

used when Predicate_Commit commits to the appropriate body. 

Finally, we show the translation of guarded clauses with overlapping input patterns. Consider the 

following program: 

mode union (7, ?, ̂ ) . 

union([XISl],S2,S) <- member(X, S2,yes) : union(Si,S2,S). 

union([XlSl],S2, [XINewS]) <-member(X, S2,no) : union(Sl,S2,NewS). 

union(Sl, [XIS2],S) <- member(X, Sl,yes) : union(Si,S2,S) . 

union(Sl, [XIS2], [XINewS]) <- member(X, Sl,no) : union(Si,S2,NewS) . 

union ( [], S, S) . 

union(S, [],S). 

mode member(?,?,^) . 

member(_, [] ,no) . 

member(X, [Xl ],yes); 

member (X, [_l Y], Answer) <- member (X, Y, Answer) . 

The following issues arise in the translation of the above program to Dactl: the handling of the overlapping 

input patterns in union and the sequential operator in the second clause of member. Translating to Dactl 

gives the following program: 

Union[pl p2 p3] => result:Stateholder, ###OR[^ol ^o2 ^03 result], 

ol:*Union' ["Ii" pl p2 p3 result], 

o2:*Union' ["I2" pl p2 p3 result], 

o3:~Union ' ["13" pl p2 p3 result]; 

Union' ["II" Nil s2 s result:Stateholder] -> result:=*Unify[s2 s]I 

Union' ["Ii" sl Nil s result:Stateholder] -> result:=*Unify[sl s] j 

Union' ["12" Cons Ix sl] s2 s result:Stateholder] 

-> result:=#Union'_Commitl[^gl ^g2 sl s2 s result], 

gl :*Member Ix s2 "Yes"], g2 ;*Member Ix s2 "No"] 

Union' ["I3" sl Cons[x s2] s result:Stateholder] 

-> result:=#Union'_Commit2[^gl ^g2 sl s2 s result], 

gl:*Member[x sl "Yes"], g2:*Member[x sl "No"] 1 

(Union' [pl p2 p3 p4 p5]&(Union' [Any Vat Any Any Stateholder]+ 

Union' [Any Any Vat Any Stateholder])) => #Union' [pl ^p2 ^p3 p4 p5]; 

Union' [Any Any Any Any Any] => *FAIL; 
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Union'_Comraitl[SUCCEED Any sl s2 s result:Stateholder] -> result:=*Union[sl s2 s] 

Union'_Commitl[Any SUCCEED sl s2 s result:Stateholder] 

-> result:=#AND[^*Unify[s Cons[x newS:Var]] ^*Union[sl s2 newS]] 

Union'_Commitl[FAIL FAIL Any Any Any Any] => *FAIL; 

r:Union'_Commitl [Any Any Any Any Any Any] -> #r; 

Union'_Commit2[SUCCEED Any sl s2 s result:Stateholder] -> result:=*Union[sl s2 s] 

Union'_Commit2[Any SUCCEED sl s2 s result:Stateholder] 

-> result :=#AND[^*Unify[s Cons[x newS:Var]] ^*Union[sl s2 newS]] 

Union' Commit2 [FAIL FAIL Any Any Any Any] => *FAIL; 

r:Union' Commit2[Any Any Any Any Any Any] -> #r; 

Member [Any Nil answer] => *Unify [answer "No"] l 

Member Ix Cons [x' y] answer] => #Member_SEQ[^*Eq[x x'] x y answer] I 

Member[pl p2:Var p3] => #Member[pl ^p2 p3] i 

Member[Any (Any-Var-Cons[Any Any]-Nil) Any] => *FAIL; 

Member_SEQ[SUCCEED Any Any answer] => *Unify[answer "Yes"] I 

Member_SEQ[FAIL x y answer] => *Member[x y answer]; 

OR[FAIL FAIL FAIL result:Stateholder] -> result:=*FAIL; 

The above translation deserves some explanation. Since all the overlapping clauses of union must be 

tried in parallel (we recall here that in Dactl pattern matching is the only selection process and there is no 

backtracking), we first transform the overlapping patterns to non-overlapping ones by extending them with 

a dummy argument which is given a unique value for each pattem. Various optimisations are possible here 

and some of them are illustrated in the translation above: the two unguarded clauses have been given the 

same argument; the same applies for clauses 1 and 2, and 3 and 4 which have identical input patterns. We 

are then left with 3 groups of clauses which are fired in parallel monitored by OR; these groups share the 

special node r e s u l t  which will be instantiated by one of the processes to the body of  the commiting 

clause. If all the processes report failure, oR is activated and rewrites r e s u l t  to FAIL. Although r e s u l t  is 

instantiated like a normal variable by means of non-root overwrites, the value it is assigned may not be a 

constructor but rather an executable function; for nodes like r e s u l t  we prefer to use the name stateholder< 

Finally note the way sequential search is expressed in Dactl in the translation of member. 

4.2 I m p l e m e n t a t i o n  of  P A R L O G ' s  metacal l  

PARLOG has been enhanced with a metacall which is used in systems programming and 

metaprograming. The original three-argument metacal113 has currently been extended to a five-argument 

one 7 which has been used to build a sophisticated programming environment 5. The metacall takes the form 

call (Module?, Resources ?, Goal?, Status ̂  , Control ? ) 

which indicates that Goal must be solved using the definitions in Module with an upper bound of resources 

defined by Resources .  Con t ro l  is used by the metaprogram (the program executing c a l l )  tO pass to the 

object program (Goal) various control messages such as suspend, c o n t i n u e  and s top  which will cause 
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the suspension, resumption and termination of Goal respectfully. Status is used by the object program to 

pass similar messages to its metaprogram as well as exceptions of  the form e x c e p t i o n  (Type) and 

exception (Type, Goal, NewGoal). 

A possible implementation of the metacall now follows; this is rather sketchy and a real implementation 

would involve more rules. For simplicity, we do not consider here the allocation of resources or the 

handling of modules; both can be implemented quite easily since Dactl is a modular language itself and can 

be extended with special modules that interface with the underlying implementation. The metacall is 

represented in Dactl as follows: 

Call [goal status:Vat control:Var signal:Var] 

where s i g n a l  is used to provide a two-way communication between Ca l l  and goal .  The program append 

shown in the previous section can be called using the metacall as follows: 

Call[^*Append[signal x y z] status:Var control:Vat signal:Vat] 

The following Dactl rules implement Cal l :  

Call[goal:Var status control signal] => #Call[^goal status ^control signal]; 

Call[goal:Valid_Goal status cent signal] => #Call' [^*goal status ^cont ^signal] ; 

Call[arg status:Vat Any Any] => *FAIL, status :=*Exception[Invalid_Arg] ; 

The first rule is used to suspend Ca l l  if  its goa l  argument is not instantiated yet. The second rewrites Cal l  

tO C a l l '  which then suspends until g o a l  terminates or a control message is sent via control  or s i g n a l  

(we assume here suitable definitions for the pattern Valid_Goal  which determines whether goa l  is a valid 

goal). The third rule will only match if goa l  is not instantiated to a valid goal in which case Ca l l  rewrites 

to FAIL and instantiates its s t a t u s  argument to an appropriate exception message. Incidentally, this is the 

only time that Ca l l  may fail. C a l l '  is defined as follows: 

Call' [result : (SUCCEED+FAIL) status :Vat Any Any] => *SUCCEED, status :=*result [ 

Call' [Any status:Vat c:STOP signal:Var] => *SUCCEED, status:=*c, signal:=*cl 

Call' [goal status:Vat Cons[c:SUSPEND control] signal:Var] 

=> #Call' [goal status' :Var ^control signal], 

status : =*Cons [c status ' ] , signal : =c I 

Call' [goal status:Vat Cons[c:CONTINUE control] signal:Vat] 

=> #Call' [goal status' :Vat ^control signal], 

status:=*Cons[c status'], signal:=cl 

Call' [goal status:Vat control:Vat signal :Cons [exception signal']] 

=> #Call' [goal status' ^control signal'], 

status:=*Cons[exception status' :Var] ; 

If goa l  completes execution, the first rule is used to terminate C a l l '  and instantiate s t a t u s  to the result of 

the computation. If c o n t r o l  is instantiated by the metaprogram to STOP, C a l l '  terminates again after 

instantiating both s t a t u s  and s i g n a l  to STOP. Thus g o a l  which also shares s i g n a l  receives the signal 

and terminates. The third and fourth rules are used to pass to g o a l  the messages SUSPEND and RESUME 
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which will then react appropriately. Finally, the last rule is executed if goal has itself reported an 

exception; C a l l '  will report the exception to its metaprogram and wait for ~urther instructions. 

The way g o a l  processes the control signals it receives from C a l l '  is illustrated by showing its 

implementation in Dactl for the case of Append (where we have assumed here for simplicity that its output 

argument is always a variable - hence we can use a simple redirection rather than a call to unify):  

Append[STOP Any Any Any] => STOP I 

Append[Cons[SUSPEND signal] x y z] => Append[signal x y z] I 

Append[signal:Var x:Var y z] => #Append[^signal ' x y z], 

signal:=*Cons[Exception[Deadlock] signal' :Var] l 

Append[signal:Var Cons[h x] y z:Var] => *Append[signal x y z'], 

z:=*Cons[h z' :Var] I 

Append[Var Nil y z:Var] => *SUCCEED, z:=*y; 

Append[Any Any Any Any] => *FAIL; 

Note that the third rule is used to pass an exception to call' ; note also that the first two rules have n o  

activation markings causing the termination and suspension respectively of computation. 

4.3 P A R L O G  on F L A G S H I P  

Dactl semantics insists that all rewrites take place atomically, i.e. they take place as a single indivisible 

action or not at all. This insistence on atomicity makes it difficult to implement directly on an asynchronous 

distributed architecture like FLAGSHIP without some dependence on locking, particularly when 

arguments may be copied among different processors. This led to the definition of  a simplified subset of 

Dactl named MONSTR 1 (an acronym for Maximum of One Non-root Stateholder per Rewrite) which 

imposes (among others) the following restrictions: 

• Nodes must be balanced (i.e. the number of suspensions '# '  must be equal to the number of outgoing 

return arcs - those bearing an '^ ') .  

• No more than one argument position in the patterns of rules rooted at a given symbol may refer to an 

overwritable or stateholder (like var); the rest of the argument positions must refer to constructors or be 

irrelevant to pattern matching (i.e. bear the special symbol Any). 

These restrictions mean that a rewrite may be exported to the processor containing the overwritable it refers 

to, avoiding problems of synchronisation (if variables were copied) or livelock/deadlock (if migration of 

the same variables was required by many processors simulatenously). The rest of the arguments involved 

in the matching process can be copied freely and since they are guaranteed to be constructors there are no 

consistency problems. 

Consider now the following PARLOG program: 

mode merge (?, ?, ̂ ) . 

merge([UlX],Y, [UIZ]) <- merge(X,Y,Z) . 

merge(X, [VIY], [VIZ]) <- merge(X,Y,Z) . 
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merge (X, [] ,X) . 

merge ( [] ,Y, Y) . 

whose DactI equivalent code is shown below: 

Merge[Cons[u x] y z] => #AND[^*Unify[z Cons[u z' :Vat]] ^~Merge[x y z']]l 

Merge[x Cons[v y] z] => #AND[^*Unify[z Cons[v z':Var]] ^*Merge[x y z']]I 

Merge[Nil y z] => *Unify[z Y]I 

Merge[x Nil z] => *Unify[z x]; 

(Merge[pl p2 p3]&(Merge[Var Any Any] +Merge [Any Vat Any])) => #Merge[^pl ^p2 p3] ; 

Merge [Any Any Any] => *FAIL; 

The above program violates both the MONSTR restrictions listed above: the patterns in the lhs of the rules 

may have an overwritable in more than one position; in addition, the rhs makes use of the function AND 

which has unbalanced nodes. The following transformation produces valid MONSTR code without 

compromising the "semantics" of the original Dactl rule system: 

Merge[pl p2 p3] => result:Stateholder_OR, ##OR2[^ol ^02 result], 

ol:*Mergel[pl p2 p3 result], o2:*Merge2[pl p2 p3 result] ; 

Mergel[Cons[u x] y z result] => *Mergel_Bodyl[u x y z result]l 

Me,gel[Nil y z result] => *Mergel_Body2[y z result]I 

Mergel[pl:Var p2 p3 p4] => #Mergel[^pl p2 p3 p4]; 

Mergel[Any Any Any Any] => *FAIL; 

Merge2[x Cons[v y] z result] => *Merge2 Bodyl[v x y z result] I 

Merge2[x Nil z result] => *Merge2_Body2[x z result] E 

Merge2[pl p2:Var p3 p4] => #Merge2[pl ^p2 p3 p4]; 

Merge2[Any Any Any Any] => *FAIL; 

Mergel_Bodyl[u x y z result:Stateholder_OR] => *SUCCEED, 

result:=Stateholder_AND, 

##AND2[^bl ^b2 result], 

#Is_SUCCEED[^bl result], #Is_SUCCEED[^b2 result], 

bl:*Unify[z Cons[u z':Var]], b2:*Merge[x y z']; 

MergelBody2 [y z result:Stateholder_OR] => *SUCCEED, result:=*Unify[z y]; 

MergelBody2[Any Any Any] => *FAIL; 

Merge2_Bodyl[v x y z result:Stateholder_OR] => *SUCCEED, 

result:=Stateholder AND, 

##AND2[^bl ^b2 result], 

#Is SUCCEED[^bl result], #Is SUCCEED[^b2 result], 

bl:*Unify[z Cons[v z':Var]], b2:*Merge[x y z']; 
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Merge2_Body2[x z result:Stateholder_OR] => *SUCCEED, result:=*Unify[z x]; 

Merge2_Body2[Any Any Any] => *FAIL; 

OR2[FAIL FAIL result:Stateholder_OR] => *FAIL, result:=*FAIL; 

OR2[Any Any result:Stateholder_OR] => *SUCCEED, result:=*SUCCEED; 

AND2 [SUCCEED SUCCEED result : Stateholder_AND] => *SUCCEED, result :=*SUCCEED; 

AND2 [Any Any Any] => *FAIL; 

Is_SUCCEED [FAIL result:Stateholder_AND] => *FAIL, result :=*FAIL; 

Is_SUCCEED [Any Any] => *SUCCEED; 

Note that the translation of this example to MONSTR is particularly difficult due to the non-deterministic 

input matching involved; we are not able to examine each input argument in turn sequentially, because the 

decision on whether to suspend or fail must be taken by examining the pattern as a whole. Note also the 

rewriting of the stateholder r e s u l t  to the value Stateholder_AND which allows only one ..._Bodyi 

process to commit (any other similar process would fail to match its last argument which would n o t  be 

now Stateholder_OR). Finally, note how the non-determinism which in the original Dactl rules was 

expressed by means of unbalanced nodes, here is retained by having one process per child of an 

unbalanced node, with all of them sharing a stateholder ( r e su l t ) ;  this stateholder will eventually be 

instantiated to the result of the computation (as we have just said the same stateholder is used as a mutual 

exclusion variable in the commitment phase). 

By producing these sort of transformations we can translate every Dactl rule system to an equivalent 

MONSTR one while retaining the expressiveness of the original system. The transformed MONSTR rule 

system then, will be directly executable by the FLAGSHIP machine. We are currently examining the 

effectiveness of our Dactl to MONSTR transformation using a simulator for a 4-processor FLAGSHIP 

machine; results will be reported in a future paper. 

5. Conclusions and Related Work 

In this paper we presented a parallel implementation of PARLOG in the context of the graph reduction 

framework. In particular, we showed how PARLOG clauses can be transformed to a set of rewrite rules as 

expressed by the compiler target language Dactl. We provided a high-level software implementation of 

PARLOG's metacalls and we illustrated how Dactrs flexibility in manipulating graphs allows for the 

initiation, suspension, resumption and termination of computations as well as the handling of exceptions. 

Finally, we described a Dactl to MONSTR transformation which retains the expressiveness of the original 

rule systems, but it also allows their direct implementation on the FLAGSHIP machine. Two major 

problems were identified during this process. The first was how to translate procedures where committing 

to a clause depends on tl3e evaluation of guards rather than input pattern matching. We solved it by 

representing the rhs of each clause as a Dactl function which after executing its respective guard reports 
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either failure or the corresponding body. The second problem was how to model the notion of suspension 

during input unification. Since Dactl does not handle in any special way PARLOG's variables (which are 

represented as ordinary nodes having the symbol va t )  we associated suspension with the presence of 

certain properties in the patterns produced, which can be detected using the pattern operators that are 

available in Dactl (note that the handling of deep patterns is particularly difficult - see, for example, 18). 

Although in this paper we concentrated only on how to translate PARLOG to Dactl, we have also 

examined similar implementations of other concurrent logic languages. In particular, in 11 we show how to 

implement GHC 21 using a novel efficient technique for performing the required run-time safety test. A 

GHC to Dactl compiler written in PARLOG is already operational on the top of the SPM (Sequential 

PARLOG Machine) system. The compiler will be modified to compile PARLOG programs; this will 

eventually lead to its bootstrapping in Dactl itself. We are currently investigating possible implementations 

of Flat Concurrent Prolog 16 and a class of equational (logic+functional) languages 12. 

Finally, it is worth pointing out that an implementation of PARLOG on ALICE is reported in 17; note, 

however, that that implementation supports only flat PARLOG and makes heavy use of the metacalls. 

Although PARLOG's metacalls can be supported in Dactl as shown in section 4.2, we do not rely on them 

in implementing full PARLOG. 
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