
Processes and Functions

Silvio Lemos Meira
Departamento de Inform~tica, Universidade Federal de Pernambuco

PO Box 7851, 50739 Recife - PE - Brazil

ABSTRACT

We discuss the idea of processes in a higher-order, purely functional, modular programming
language. Processes are introduced by defining two different and independent language worlds,
each of which with a simple semantical basis, one denotational, the other algebraic.

Programming with processes is done by creating static graphs of nondeterministic functions,

in a framework separated from the purely functional programming environment defined by a

functional language. We consider the characteristics of the approach.

1 I n t r o d u c t i o n

Several ideas have been recently put forward on how to integrate purely functional lan-

guages like Miranda[Tur85] and communication calculi such as CSP[Hoa85].

Most of these have tried to introduce communication (and process) constructs in a

functional language[Chr87,Hen84], thus mixing the purely applicative semantics of the

functional language considered with the (process) algebra semantics[BeK84] of the process

language.

This has the disadvantage of bringing nondeterminism into the functional language,

with the likely consequences on its semantics, proof and transformation systems.

Here we show how both functions and processes could be accomodated in a single

language, but in two different linguistic levels, as in CONIC[Kra84]. In a purely functional

level, O, we write purely functional programs. In a processes level, ~, we use the function

definitions in • to create a static network of communicating processes.

By doing so, we (almost completely) isolate the semantics of the two "worlds", making

it simpler than the previous approaches to the use of processes in a purely functional

setting.

287

2 A F u n c t i o n a l N o t a t i o n

The functional language discussed herein is a cousin of Miranda[Tur85]. The notation,

A 1, is being designed as the functional language of the ETHOS[Tak87] workstation.

A is purely functional, higher-order, polymorphic and non-strict and has abstract and

algebraic types. A possible function definition would be

DEF _! : Int -> Int;

0 ! =i;

n ! = n * (n-l)!;

END _ ! ;

where we define the ubiquitious factorial function as a post-fix operator (the _ before the

function symbol in the DEF line), of type In t -> In t (the type expression after ":" -read

of type- in the DEF line). The two equations define the possible cases for factorial over the

natural numbers. The function is partial over the Integers. When not given, the binding

power of operators is equal to that of prefix functions, i.e., maximum. We could have

given the binding and associativity of the operator as well, making for the full use of (in,

pre, pos, dist)fix operators in expressions.

The principal structured data type is the list. Lists are fully lazy objects, and the

domain L i s t In t , of lists of integers, has amongst its values _L, [.L], [1,_1_,3], etc.

Functions over lists are defined just the same as over scalar objects, like

DEF map : ALL a, b . (a -> b) -> L i s t a -> L i s t b;

map f [] = [] ;

map f (a:x) = f a : map f x;

END map ;

the higher-order function that applies another (f) to all elements of a list. The most general

type that can be assigned to such a definition was declared in the DEF line. We assume

type declarations are not necessary, given that the language has a Milner-like[Mi178] type

system, where inference is possible.

The modules system in A resembles that of Modula-2[Wir82], though there are no

Implementation or Local modules, or module Bodies. If we are to be concerned with the

purely functional aspects of the language, there exist Definition modules only. Modules will

aggregate data type and function definitions, and establish the import/export relationship

between component parts of the program. Modules may contain empty definitions, i.e.,

function definitions where only the type declaration has been given, or abstract data types

where the implementation is not defined. One example is

1 Fully described in [Mei88a], in Portuguese and [Mei88b], forthcoming, in English.

288

M0D Sorters;

EXP ListSorter;

DEF ListSorter : ALL a . List a -> List a;

(* Definition to be given later *)

END ListSorter;

END Sorters.

The S o r t e r s module can be compiled as it stands, making public a definition L i s t S o r t e r

of the given type. The S o r t e r s module as is can be used to define other modules like

M0D Use;

IMP ListSorter FROM Sorters;

EXP nIn0rd;

DEF nInOrd :

nIn0rd n =

END nIn0rd;

END Use.

ALL a . Int -> List a -> List a;

take n . ListSorter;

with " . " as functional composition. Use can be compiled (but not run) without the full

definition of L i s t S o r t e r . We can see that in its current state, S o r t e r s acts like a Modula-

2 definition module. In fact, that is what it is meant to be. At the programmer's wish, the

definitions therein will be completed and/or modified, leading to revisions/recompilations

of the user modules.

It is assumed that a standard module StdMod) exists, wherefrom definitions like take ,

map, hd, etc., are imported by default.

3 Levels of Languages

One of the main appeals of purely functional, higher-order, lazy functional languages is

their simple semantics. However, when one "extends" such a language with processes, the

previously existing equational theory ceases to work for the "extended" language.

This is what happens in the approach of [Chr87], where CSP is combined with a typed

A-notation. There, processes become first class data objects in an applicative concurrent

language, thus we can have A-expressions and processes being manipulated .by either,

and even processes being sent to other processes. The result is that a full denotational

semantics is only thought to be possible via metric spaces [Ame86], making it very complex.

Another approach is the one taken in [Hen84], which is to use a meta-notation which

includes both a functional language and a deterministic version of CSP, together with a

set of rules to transform the meta-programs into recursive definitions. This is not the

289

same as having real processes in the language, the same occurring with Stoye's sorting

office approach [Sto86] used by Turner in the functional operating system project [Tur87].

In both cases the result is a language which is neither functional, nor process oriented

only, risking the disadvantages of both, which is commonly the case with multi-paradigm

languages. The only way to maintain as much properties of a functional language as we

can is to separate the functional and process worlds in some sense. The method discussed

here is related to, but not derived from, the one used in the language CONIC[Kra84].

There we have two separate languages: one for programming and another for what is called

configuration, that is, for describing the ways in which processes are created, connected and

communicate. It looks likely that a natural property of processes is that their networking

characteristics are not necessarily related to the individual ones, thus giving rise to this

separation of concerns in CONIC and in the approach proposed herein.

4 S treams

Streams are lazy lists, which will be the communication channels between processes. In

lazy functional languages, little needs to be added to lists for their use as streams. Lists

are computed in a demand-driven way, and infinite ones like

DEF ones : List Int;

ones = i : ones;

END ones ;

can be easily defined and used to compute with. A "channel" in a network is just such

a list, with the producers working to supply the consumer demand. Both producer and

consumer are functions over lists. Indeed, in general, a process is a function over a number

of (list) parameters, producing as output a (partial) tuple of (partial) lists, that is to say

that , in genera/ the "type" of processes (in E) is given by

p : I I ~ I 2 ~ . . . - - + I r ~ - l ~ I m ~ O l x O 2 x . . . × O , ~ - l x O , ~
• s • •

y

m s t r eams a ~upl¢ of n s treams

The difference between streams (in E) and lists (in ~) is that

• In ¢, computation of values of members of a list is demanded and waited for;

• In E, only the strict demand waits for the computation. If the object to be computed

is not involved in a strict operation, and is not ready upon demand, the demanding

process will produce the value N, whose semantics is no information.

290

All domains in E have N as a possible value, but no function can explicitly produce N as a

possible result. The only operat ion that can use this value is equality. So, the behaviour

of

DEF Ladd : List Int -> List Int -> List Int;

Ladd = map (uncurry (_+_)) . pair;

END Ladd;

which adds two lists, is the same as a process or as a function. Just as lists, the streams

are typed and objects of any type can be passed around.

5 Stat ic N e t w o r k s

Given tha t processes are functions, the way to separate both and to define networks

of processes is to have a configuration language to create and name the processes and

establish the connections. The appropr ia te syntactic unit tha t is used in A is called a

process module, or MODP. A MODP can import definitions from other modules and define a

number of PROcesses and CONnections. Assuming the existence of a MODule ml

MOD ml;

EXP merge, fast, slow;

DEF merge;

merge (a:x) y = a : merge y x;

END merge;

DEF fast; (* FAST producer of integers, starting from i *) END fast;

DEF slow; (* SLOW producer of integers, from I *) END slow;

END ml.

a process module tha t uses its functions can be defined as

MODP m2;

IMP merge, fast, slow FROM ml;

PRO (* definition of the processes

Mixer = merge; (* Mixer is a 2-input, l-output process

fastP = fast;

slowP = slow;

Printer = WriteLnInt;

(* WriteLnInt is assumed to come from StdMod, formats Integers

,)
,)

291

fastP slowP

Mixer

As it can be seen, there is no control whatso-

ever. The demand, by Sys0u% to print results,

will generate a chain of calls, in the reverse way

of the arrows, for output to be produced by indi-

vidual processes. This gives rise to a very simple

way to deal with processes.

Printer ~I SysOut

Figure 1: Processes and Connections of the Module m2.

to be d i s p l a y e d in a window *)

END;

CON (* how t h e p r o c e s s e s are connec ted *)

fastP -> Mixer.l;

slowP -> Mixer.2;

Mixer -> Printer;

Printer -> SysOut;

(* SysOut is a Standard Process. It will demand computation and force

the network to produce it. *)

END;

END m2.

As it can be seen, in the PRO...END block, the identifier to the left of the = sign defines the

n a m e of the process and the equation to its right the act ion it performs. In the ¢0N. . . END

block, we define the connections, with information flowing in the direction given by the

arrow. Processes can appear in either side of the arrow, and parameters are named by

indexing the process name with integers, with p. 1 being the first of p's parameters (or the

first element of the output tuple), from left to right.

The network corresponding to the process module m2 is shown in Fig. 1

6 Lazy Funct ional Processes and N o n d e t e r m i n i s m

In a purely functional model, the behaviour of the process described by m2 would be to

merge the lists defined by f a s t and slow. The result of merge f a s t slow, for

f a s t = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0

292

s l o w = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0

would be the list

[1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 9 , 9 , 1 0 , 1 0 , . . .

with every i-th element, for odd i, coming from f a s t and the even ones from slow. In

the process network defined by m2, however, the time at which elements of either f a s t or

slow are available is important to define the outcome of the Mixer process.

The method of computation in a process network is lazy evaluation, on demand by the

processes that need to produce output, the only ones in the network that are naturally

eager. As usua/, the process that asks for input is the consumer and the one required to

produce it the producer.

In Fig. 1, Sys0ut will drive the network, demanding computation from P r i n t e r , which

in turn drives Mixer and in consequence f a s t P and slowP.

As it happens, Mixer will consume a token at a time, from one of its two inputs. It will

do that demanding the head of one stream to be passed to the output - t ha t is required

by its functional definition. If the token is available, it is passed to the output and the

computation proceeds. Otherwise, the producer hands out N, the not available value, and

starts doing whatever is necessary to produce a token, in the case its head normai form.

N, on its turn, is passed to the output and from there to where it is being asked.

As the streams are typed, there will be an N for every type, as there are as many 3_ as

domains. Just like ±, a process cannot produce N explicitly. N is the answer to a request

when no data is available from the producer. However, we can compare (=, "=) values

against N, in order to decide whether a computation should proceed, for example.

Possible outcomes of the experiment described by module m2, as viewed in Sys0ut are

- - a s the N token is filtered out by the "printing" process--

[1 , [] , 2 , 3 , 4 , 5 , [] , 6 , 7 , 8 , 9 , [] ,

.

where the output corresponding to slowP is boxed, merge is a nondeterministic function,

and the above are only two of the possible outcomes. Also, merge's output stream is

permeated by N's, such that if we could see (an instance of) it, the two streams above

would look like

.

.

with the boxed output coming from slowP.

293

L a z y S t r e a m s ~ S t r i c t M e s s a g e s

Individual processes as in Fig. 1 behave the same as a lazy functional language, driven by

the need to produce output. Whether or not a particular process will be asked to produce

output depends on the overall behaviour of the process network. If such output is on

demand, it will be delivered in normal form, which means either the value of the item

or N. If the consumer accepts N as input (i.e., it is non-strict) computation can proceed.

Otherwise, it will wait until the producer delivers a value. This method of computation

avoids widespread deadlocking in the network [Mei88c], which would happen if partially

evaluated objects could be sent through the streams.

Many definitions can be carried over from @ to = which keep their functional behaviour.

One such example is Ladd (cf. Sec.4), whose other definition is

DEF Ladd;

Ladd [] [] = [];

Ladd (a:x) (b:y) = a+b : Ladd x y;

END Ladd;

As the "+" operator is strict on its arguments, the messages sent by a process defined by

Ladd need both a and b to be defined before the sum is computed and output. Thus, the

network defined by 2

MODP m3;

IMP merge, fast, slow, Ladd FROM ml;

PRO

Mixer = merge; fastP = fast; slowP = slow;

Adder = Ladd; Printer = WriteLnInt;

END;

CON

fastP -> Mixer.l; slowP -> Mixer.2;

Mixer -> Adder.l; fastP -> Adder.2;

Adder -> Printer; Printer -> SysOut;

END;

END m3.

will have its throughput bound by the speed of fastP and one of its possible outputs

would be

[2,4,4,7

assuming fastP would always have a token to output.

2Assuming Ladd ill ml.

294

IntWinl slowP

Mixer Adder

fastP IntWin2

Figure 2: The newtork for module m4.

7 One Further Example

Now we show one short example on synchronization. First define

MODP m4;

IMP merge, slow, fast, Ladd FROM ml;

PRO

Mixer = merge; fastP = fast; slowP = slow;

Adder = Ladd; slowP = slow;

END ;

CON

fastP -> Mixer. I ; slowP -> Mixer. 2 ;

fastP -> Adder. 1 ; slowP -> Adder. 2 ;

Mixer -> IntWinl; Adder -> IntWin2;

END;

END m4.

assuming IntWinn to be an "integer" window. The network is shown in Fig. 2. The

messages from slowP and f a s t P are sent to Mixer and Adder by duplicating the output

s tream of the first two. As Mixer is always demanding a token and it will not wait

for slowP, the output generated by f a s t P will accumulate as the computation proceeds.

295

Adder, the other user of the information, needs a token from both input processes, and

that will lead to a long queue of f a s t P tokens waiting to be consumed.

If that sort of behaviour is not wanted, we could build a buffer to avoid a process

leading another by more than a number of tokens. That can be defined as a function of

two input to two output streams, and a state consisting of two integers: the maximum

and the current difference between the two streams. The process to the left adds to later

and the right one subtracts:

DEF buffer : ALL a . Int -> Int -> List a -> List a -> (List a, List a);

buffer Lim Count (a:x) y = icons a p, a -= N ~ abs Count < Lim;

buffer Lim Count x (b:y) = rcons b q, b "= N & abs CounZ < Lim;

LOC icons, rcons, p, ~q;

p = buffer Lim (Count+l) x y;

q = buffer Lim (Count-l) x y;

icons a (x,y) = (a:x, y);

rcons a (x,y) = (x, a:y);

END icons, rcons, p, q;

END buffer;

where L0C introduces local definitions, abs is the absolute value and ~ a non-strict "and".

b u f f e r will allow one of the processes to be at most Lira tokens ahead, and it is a fairly

generical definition, although not being a real buffer as we know, given that the tokens

are stored in the network, and not in a space local to b u f f e r .

8 Conclusions and Further Work

Static networks of processes were introduced in a purely functional language to cater for

distributed and concurrent programming. No restrictions about the actual distribution of

the processes need to exist, they could run on a single machine.

The approach keeps the functional language separated from the process language and

helps keeping down the complexity of both. Some experimentation has been done to justify

this claim, and a complete formal semantics of the language A is being written.

In our initial approach, MODPs could not export process networks to other modules.

That restriction is being raised now, allowing for a rather general use of the concepts of

process and network.

296

9 Acknowledgements

The work reported here was partly financed by CNPq and FINEP. Much of the results
have strong connections with the author's discussions with Rafael Lins (UFPE) and Simon
Thompson (UniKent), during the Summer 87/88 in Recife.

References

[Ame86]

[BeK84]

[Chr87]

[Hen84]

[Hoa85]

[Kra84]

[Mei88a]

[Mei88b]

[Mei88c]

[Mi178]

[Mil80]

America, P. et al.: A Denotational Semantics of a Parallel Object Ori-

ented Language. Report CS-R8626, Computer Science/DST, Centrum voor

Wiskunde en Informatica, Amsterdam, The Netherlands, 1986.

Bergstra, J. A. and J. W. Klop: "Process Algebra for Synchronous Com-

munication". Information and Control (60) 1/3, pp. 109-137, 1984.

Christensen, P.: Combining CSP with an Applicative Language. Internal
Report, Dept. of Comp. Sci., Tech. Univ. of Denmark, Lingby, DN, 1987.

Henderson, P.: Communicating Functional Programs. Tech. Report FPN-8,
Comp. Sci. Dept., University of Stirling, UK, 1984.

Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall Intl.,

1985.

Kramer, J. et al.: The Conic Programming Language: Version 2.4. Res. Re-

port 84/19, Dept. of Computing, Imp. College London, UK, 1984.

Meira, S. R. de L.: Introduction to Functional Programming. Escola de

Computa£~o, Campinas-SP, 1988. (In Portuguese)

Meira, S. R. de L.: A Modular Functional Language with Processes. Working
Report, Departamento de Inform£tica, UFPE, Recife. To be submitted to

SIGPLAN Notices.

Meira, S. R. de L.: Functional Processes and Their Semantics. Working
Report, Departamento de Inform£tica, UFPE, Recife.

Milner, R.: "A Theory of Type Polymorphism in Programming". Jour. of

Comp. and Sys. Sci. (17) 3, pp. 348-375, 1978.

Milner, R.: A Calculus of communicating Systems. Springer-Verlag, LNCS
92, Berlin, 1980.

297

[Sto86]

[Tak87]

[Tur85]

[Tur87]

[Wir82]

Stoye, W. R.: A New Scheme .for Writing Functional Operating Systems.

Cambridge Univ. Computer Lab., Tech. Report 56, Cambridge, 1986.

Takahashi, T. (Ed.): Anais do IV Encontro de Trabalho do Projeto Ethos.

Petr6polis, Abr. 1987.

Turner, D.: Miranda: A non-Strict Functional Language with Polymorphic

Types. LNCS 201, 8pringer-Verlag, Sep. 1985.

Turner, D.: "Functional Programming and Communicating Processes".
Proc. of PARLE Conference, Eidhoven, 1987.

Wirth, N.: Programming in Modula-2.2nd. Ed., Springer-Verlag, New York,
1982.

