
FACILE: A Symmetric Integration of Concurrent and Functional

Programming

Alessandro Giacalone Prateek Mishra Sanjiva Prasad

Depar tment of Computer Science

The State University of New York at Stony Brook

Stony Brook, New York 11794-4400

CSNET: ag@sbcs.sunysb.edu, mishra@sbcs.sunysb.edu, sanjiva@sbcs.sunysb.edu

Abstract

FACILE is a language which symmetrically integrates concurrent and functional programming. It is

a typed and statically scoped language. The language supports both function and process abstractions.

Recursive functions may be defined and used within processes, and processes can be dynamically created

during expression evaluation. Inter-process communication is by hand-shaking on typed channels. Typed

channels, functions and process scripts are first-class values.

In this paper, we present the "core" syntax of FACILE. We then describe an abstract machine C-FAM

which executes concurrent processes evaluating functional style expressions. The operational definition of

FACILE is presented by giving compilation rules from FACILE to C-FAM instructions, and execution rules

for the abstract machine. An overview of the FACILE environment is also discussed.

1 Introduction

Concurrent programming, as exemplified by CCS [Mil80], CSP [HoaSS] or occam [INM84], and functional

programming, as exemplified by ML [Mi184] or Scheme [Wi185], have been recognized as expressive and attractive

programming techniques. These techniques apply naturally to rather different classes of problems. The strength

of functional programming is its support for abstraction, through the definition of abstract data types and

functions [Bac78]. Concurrent programming is necessary when dealing with physically distributed systems, or

with problems of synchronization and time-dependent behavior.

Most concurrent languages provide only limited support for data abstraction, function definition and gen-

eral value processing. As a consequence, abstract data types and functions must in general be expressed as

collections of processes. This leads to both a loss in clarity and an increase in complexity when reasoning about

computations on data values. On the other hand, most functional languages cannot express indeterminate

computation, modelling of shared resources, time-dependent behavior and persistent objects. While several

proposals to extend the expressive power of functional languages have been made in the past, we believe that

none provide the full power of concurrent programming.

*This work has been partially supported by NSF CCR-8704309 and NSF CCK-8706973

185

We have developed FACILE 1, a language framework that is a symmetric integration of functional and

concurrent programming~ that is~ it fully supports both programming styles. The model underlying FACILE

is one of concurrently executing processes that communicate by synchronous message passing. The processes

manipulate data in the functional style. Typed channels, which are data values, constitute the interface through

which processes interact.

Our approach is distinct from earlier ones~ where one programming style is enriched with constructs that

support the other programming style. For example, the approaches described in [Ke178],[AS85] and [Hen82],

which are derived from [Kah74~KM76]~ add the merge pseudo-function to a lazy functionallanguage. In contrast~

our approach attempts to integrate a full flmctional language with a full concurrent language.

In this paper we describe the "core" syntax of FACILE~ which is a combination of a strongly typed functional

language (standard ML) and an expression-oriented concurrent programming language (Occam/CCS). We

also describe an operational semantics for FACILE in terms of an abstract implementation. The abstract

implementation is based on a definition of a Concurrent Functional Abstract Machine (C-FAiV[)~ which is a

generalization of the SECD machine [Lan64] that supports multi-processing.

S y m m e t r i c I n t e g r a t i o n

FACILE supports both process and function abstractions in a symmetrically integrated fashion. By integration,

we mean that in any context the user has the choice of using functions and abstract data types, or communicating

processes, or any combination of both abstractions. By symmetry we mean that a concept may take the form

of a function and be treated as such, but may in fact be implemented as a system of communicating processes.

Symmetrically, the internals of a process may be implemented using functions. In Section 2 we illustrate these

ideas through some examples.

FACILE is more than a language for programming; the ability to choose between expressing a concept

in process-oriented or fmlctional terms is especially important at the level of system specification and design.

Certain components of a system may be specified in an abstract fashion using fimctions, while other components

may be more naturally described in terms of their temporal behavior as systems of processes. This allows one

to take into account requirements that must be met by the structure of system being designed. For exaxaple~

such requirements may include that the system be physically distributed over a number of processors~ that it

be implemented on a given architecture or cope with certain synchronization or timing problems.

The symmetric integration of functions and processes in FACILE makes it a powerful language for proto-

typing and the step-wise refinement of programs. Consider, for example~ the problem of specifying a compiler.

A compiler may be specified as a process that maps a source program into target code: it accepts the source

program over an input channel~ applies function comp to it and writes out the target code on an output channel.

The source and target program may be represented using abstract datatypes common in functional program-

ming: tists~ files etc. The function eomp which accomplishes this mapping could be specified in the flmctional

style but be implemented as a pipeline of processes: lexical scanner, parser, type checker and code generator. In

FACILE~ the functional specification of eomp may be replaced by the process implementation without altering

the contexts in which eomp is used. Each component process in the pipeline may itself be implemented as

a function or as a combination of functions and processes. Similarly, the various abstract datatypes involved

(lists~ files~ abstract syntax trees) could themselves be represented by processes.

The design of FACILE is part of an ongoing project at Stony Brook concerned with the development of

1Functione*l And Concurrent Integrated LanguagE, pronounced FAH-CHEE-LEH.

~86

interactive environments that support specification/design of complex systems. At present, we are implementing

an environment for FACILE which will include a syntax-driven editor and an interactive~ graphical source-level

debugging system. The user interface of the environment is briefly discussed in the last section.

The Language

As mentioned, FACILE is roughly a combination of ML and an occam-llke language. -We have taken ML

[Mi184] as the functional programming component of FACILE as it is a statically typed~ higher-order functional

language with excellent facilities for data abstraction, and has a well-understood semantics. The concurrent

component of FACILE includes a core set of constructs extracted from occam [tNM84] and CCS [I~180]~

which provide the necessary support for concurrency. While semantic foundations of concurrent languages

are still the subject of research, promising operational/algebraic approaches have been recently developed

[BHK84~Hen88~Hoa85,MilS0,Plo82]. These techniques appear to be adequate for a semantic description of the

constructs we select.

FACIL]~ exhibits a number of interesting features summarized below.

• It inherits from ML static scoping~ static typing and call-by-value semantics.

• In keeping with our goals of symmetry, the syntax is two-sorted: functions and processes. Each syntactic

category refers to the other but does not subsume it.

Inter-process communication is synchronized and takes place over typed channels.

• Channels are generated dynamically and are first class values. In particular, channel values can be

communicated between processes.

Sending and receiving values over channels, channel creation, and process creation are function expres-

sions.

The Concurrent Functional Abstract Machine

The Concurrent and Functional Abstract Machine is an abstract machine which executes concurrent processes

evaluating functional expressions. The C-FAM described in this paper is an abstract machine that describes

the implementation models for a class of languages that integrate functional and concurrent programming, e.g.

FACILE and Amber.

The machine can be called "functional" since it supports function-closures as first-class values, along with

other values tha t a simple functional language uses. It qualifies to be called "concurrent", since it provides

support for process abstraction, dynamic process creation, dynamic channel creation, and synchronous inter-

process communication on typed channels. The C-FAM supports process definition using process closures which

are values; it also supports creation of processes by instantlating process definitions with arguments, forking

and termination of processes, and the non-deterministic conditional selection of a continuation.

We describe a compiler function that maps FACILE programs into a lower level programs over a small

set of C-FAM opcodes. Following Landin and Cardelll [Lan64,Car83] a transition system over machine states

describes the operations of the abstract machine.

187

1.1 R e l a t e d W o r k

The language Amber [Car86a] is the closest in spirit to our work. FACILE can be viewed as a generalization of

the function-process integration at tempted in Amber. The language P/vIL [Rep88], which derives from Amber,

describes the use of "event values" to express function abstractions involving inter-process communication.

FACILE differs in that it does not have "event values". Recently, Nielson [Nie88] has described a language that

combines CCS and the typed lambda-calculus. The language, like CCS, includes only static port names. In

contrast, FACILE has the notion of a channel value which is dynamically created and may be exchanged between

processes. La [KS82], the parallelism of applicative expressions is expressed by a translation into processes in

LNET, a language inspired by CCS. Another approach that relates concurrency with ftmctional-style abstract

data type is described in [Att87] : art algebraic framework is presented where behaviors are first-class objects.

There are several general purpose languages (e.g. Ada [ADA83], NIL [SS87], CHILL [CI~85], Modula-2

[Wir82]) tha t support some expression evaluation together with facilities for concurrent programming. These

languages do not support full functional programming (e.g, fimctions are not first class values) and the facilities

for concurrency are often restricted (e.g., Ada).

Implementations of functional languages has traditionally been in terms of the SECD machine [Lan64,HenS0].

This description has served as the basis for abstract machines that are more optimized and implementation

oriented such as Cardelll's FAM [Car83]. Abstract machines for extensions to pure functional languages, e.g.

the secd-m machine [AS85] and the Chaos machine [Car86b], also derive from the SECD description. A slightly

different approach is taken in the Categorical Abstract Machine [CCM85].

Abstract machines have also been defined to specify and support the implementation of concurrent lan-

guages. For example, the A-Code machine [BOS0] has been used to define the semantics of Ada and CHILL s a

Concurrent Abstract Machine (CAM) [Gia87] has been used to support an interactive simulation environment

based on CCS [GS88], and a similar abstract machine is reported in [Car85].

1.2 Organ iza t ion o f the Paper

The remainder of the paper is structured as follows. Sections 2 and 3 contain, respectively, a description of a

"core" syntax for FACILE and some examples. Section 4 contains a discussion of the salient features of the

C-FAM definition and its executhon rules. Section 5 contains a summary of the rules for compiling FACILE

into C-FAM codes. The entire definition of C-FAM execution rules is reported in Appendix A. Appendix B

contains the entire definition of the compiler rules. Section 6 overviews the FACILE environment and concludes

the paper.

2 Syntax

Definition : (ID]~NTIFIEItS) ~" is the set of all identifiers. Typical identifiers are represented by ~, ~ ,

id.
Definition : (TYPES) T, the set of type expressions, is defined by the following grammar, where t, t~

are representative types :

t ::= int I b°°t I uni t I (t) I t l - - * t z I t e h a n I t l , . . . , t , ~ I t p roc

188

Defini t ion : (EXPRESSIONS)

e~:p ::=

ezp, the set of function expressions, is defined by the following grammar:

id [constant I (e~px, ...,expn) I project i ,n e~p

if ezpl then exp2 else exp3 I A(idl , id~).ezp

ezpl ezp2 I A(id~, . . . , id~) .Beh-Ezp

f i x (idt, . . . , idn) (expl, . . . ,expn) [ezpt ; ezp~,

spawn(Beh_Exp) i channel(t) i exp~ ! ezp~ I e~p ?

ezpi + exp2 t
II

Constants include integers, booleans true and false, a special value triv, and Identifiers are expressions.

channel-valued constants. Tuples of expressions are expressions, as also the i ~h component of a n-tuple. The

language contains an i f - t h o n - o l s e construct for conditional expressions. Function abstractions, i.e. A-forms

and function application are also expressions. Recursive functions and process definitions are expressed through

the f i x construct; the tuple of expressions in a f i x expression must be either A- or A-abstractlons.

The A-abstraction, also called a Process Script, is the process-level counterpart of the A-abstraction. The

spawn expression evaluates to triv, but has the effect of creating a process executing the specified behavior

expression concurrently with the spawning process. The channel expression evaluates to a new channel value.

The send expression ezp~ ! ezp2 evaluates to triv and transmits the value of ezp2 on the channel given by

ezpl 's value. The receive expression ezp ? evaluates to the value received on channel exp. For the sequential

expression ezpl ; ezp2, expression ez/~ is first evaluated for its effects and then ezp2 is evaluated, with the

value of exp2 returned as the result. The binding of names to values is treated uniformly as A or A bindings.
Def in i t ion : (BEHAVlOit EXPlt~SSlONS) Beh_Ezp, the set of behavior expressions, is defined by the

"cerminate

a c t i v a t e ezp ezp

B e h _ E ~ II ... II S e h _ Z ~ p .

a l t ezpl : - Beh -Ezp l % ...

ezpn : - Beh-Expn endall;

ezp ; Beh_Ezp

(inaction)

(process invocation)

(parallel)

(alternative)

(sequential)

B

following grammar:

Beh._Ezp

terminate indicates process termination. An a c t i v a t e replaces the current process with one executing an

instantiated process script. The first expression must evaluate to a process script, the second to the tuple of

arguments for instantiation. Concurrent execution of processes is expressed with the parallel construct. The

conditional non-deterministic selection of an alternative is expressed by the a l t construct. Each alternative is

"guarded" by a boolean expression~ which can be arbitrarily complex. In the sequential behavior expression~

ezp is evaluated first, for its effects, followed by the execution of Beh_Ezp.

3 Examples

We now present a few examples of FACILE programs, which illustrate some aspects of symmetry, showing

the relation between functions and processes. The use of some constructs is also clarified. We have used

l o t and lo t ro¢ , which are "syntactic sugar", to improve readability. The first three examples show different

implementations of the fibonaeei function; the fourth example shows how a ML ref cell, a mutable data

189

structure~ can be implemented.

Example 1 defines the script of a process that , when provided a non-negatlve integer i on input channel

"a" returns the i ~h fibonacci number on channel " b ' , and then terminates. The function f ib is defined in the

usual functional programming style as a recursive function. This function is applied to the integer received on

the channel "a".

A(a, b).

le t , t e e

f l b = ~ (i) .

i ~ ((i = o) o~ (4 = 1)) t h e . z

e l s e f i b (i - 1) + f ib (i - 2)

i n

b ~ (f ib(a ?))

end;

terminal;e

Example 1

Example 2 defines a process script for the same computation but where the fibonaeci function is implemented

using a network of processes, f ib is still a A-abstraction, but recursive calls are not "stacked". Instead, for

each reeursive call to fib, an asynehronously executing process is created, and the integer argument is passed

to it on an input channel. The channels generated for each reeurslve call are new. Example 2 illustrates how

processes can be invoked by functions.

A(a, b).

letrec

fib = ~(i).

if ((4 ---- O) or (4 ---- i)) then 1

else let

(inl , o~tl) = (c h ~ e Z (~ , t) , c h ~ , ~ e l (i n t)) ;

i n

spawn((o~tt ! fib(in1?)); t e = i n a t e);

spawn((out2 ! fib(in2?,)); terminate);

(i ,m(= - 1));
(in2!(~ - 2));
((o ~ t l ?) + (o~t27))

e n d

i n

b ~ (f ib(a ?))
end;

te rminate

Example 2

Exampte 3 implements the same computation, but with a recursive process script. The function f ib has been

eliminated; the code is quite similar to an implementation in occam.

190

~ x (F) (A(~, b).
l e t

i n

= a?

else le~

(inl, o~tl) = (ch~e1(int),eh~neICint)) ~

(in2, out2) = (eharmel(int), eharmel(int))

in

end;

~erminate)

spa~n(ao t iva t e F (inl, outl));

a p a ~ (~ c t i w t e 2 (in2, o~t2));
(i.1!(~ - 1));

b!((o~tl?) + (out2?))

Example 3

Example 4 shows how the concept of memory can be implemented in FACILE. Other abstract data types and

mutable objects can also be implemented in a simAlar maimer. The example illustrates the use of the process-

related constructs te rminal ;e , a c t i v a t e and the non-deterministic a l* . In particular, the example shows that

the "guard" expressions in an a l t can be very complex.

I memo~y -- ~ix(mem)(A(get, m,~conte~ts).

a l t ((get!contents); t rue) : -

a c t i v a t e mere(get,put,contents)

% l e t neweontents = put?

i n

spa r t a (ac t iva te mere(get,put, neweontents));

true

1--

1: e r , t i na t e

r e / ~ A(z).
l e t

end

endal~)

i n

(read, write) = (channel(~nt), ¢ ~ - ~ a l (i,~t))

(spawn(a c t i v a t e memory(read, write, ¢));

(read, write))
end

de?el - A(/oe).(projectl , 2 loc)?

assign = A(loc, neweont). (projeet2 , 2 loc)!neweont
Example 4

Example 4 shows how a memory location can be implemented using processes and chalmels. The process script

191

memory describes the behavior of a memory location. The formal parameters get and put are channels which

provide "probes" to access and change the contents of the location. The interface to a memory location is

thus represented by a pair of channels used to read and update its contents. Following the convention in ML,

memory locations are manipulated via three functions: ref~ derefand assign.

Function ref activates a memory process with the appropriate actual argument values, and returns as the

result~ the pair of channels with which to access it. Given the pair of access channels to a memory location,

function derefreturns the contents of that memory location; assign changes the contents to the desired value.

The behavior of the memory process script is the following: if an attempt is made to read from channel get,

it makes the value contents available and reactivates itself with the same arguments. If an attempt is made

to write on put, it reactivates itself with the same access channels but with contents replaced by the value

newcontents received on put.

4 The Concurrent and Funct ional Abstract Machine

The description of the C-FAM is generally along the lines of the SECD machine [Lan64]. A C-FAM can be

considered as having several concurrently executing SECD-like machines %mbedded" in it, along with the

mechanism by which these interact with one another. The machine description differs from the conventional

SECD machine description [Hen80] in that the components are not specified in terms of data structures, but

as abstract structures; the environment, in particular, is a function from Identifiers to Values~ and not~ say, a

list of lists.

Any realization of the C-FAM will need to express the components as data structures; identifiers appearing

in data structures (e.g. in a closure) can be replaced by information for accessing these data structures. A

realization of the machine may also differ in many respects: environments may be represented and manipulated

differently, and the treatment of recursive definitions may differ. "Op-codes" may be added to handle extensions

to the base language (e.g. exceptions, datatypes, pattern-matching).

In many respects, the machine is similar to the Functional Abstract Machine (FAM) [Car83]. The machine

is built atop an unlimited "heap" of typed cells of values which include integers, booleans, tuples, the unit

value, closures~ etc. Typed channels and ProcClosures are among the "values" supported by the machine - -

hence it can support dynamic channel creation, channel passing, and dynamic process creation and invocation.

The specification of the C-FAM does not define the implementation of the heap, channel creation and garbage

collection.

4 .1 N o t a t i o n

Def in i t ion ." (VAT.UES) £V is the domain of expressible values.

£1) = int ÷ bool ÷ uni t ÷ tuples ÷ closures ÷ PvocClosures + S

192

D e f i n i t i o n : int is the set of integers, boot consists of the boolean values ~rue and f a l s e~ and unit

comprises the dist inguished value t r i v .

S , closures, ProcCIosures, tupIes are the vMue domains corresponding to the syntactic type-expressions

t chan, tl --+ t2, t proc~ t l * . . . * t~, respectively (where t~ t l , t2 , t~ C T).

S denotes the universal set of all possible typed channels. St denotes the subset of £ consisting of

channels on which vMues of type t can be commurdcated. ~ is a typical subset of £ , and k is a typical

channel in £.

Closures are the values corresponding to),-expressions, i.e. functions. A closure is a triple consisting of the

list of formals~ the body of the function~ and the environment which gives the values of the free variables

appearing in the body.

ProcCIosures are similar to closures; they are the process-definition counterparts to closures, i.e. they

correspond to A-expressions. A ProcCIosure is also a triple consisting of a list of formals, the body of the

process being defined, and the definition-time environment.

D e f i n i t i o n : (ENVIRONMENTS) ~ the set of all %nvi ronments ' , includes a~ the finite domain functions

from subsets of 27 to CV. e E ~ is a representat ive environment.

N o t a t i o n : If L is a sequence~ then [~ is also a sequence~ with z as its first element. [] denotes an

empty sequence.

N o t a t i o n : f [f '] is a finite domain function obtained by augmenting function f with f ' , suck tha t

aom(:[:']) = do,-,,(:) U aam(f)

/[f'](~) = I f'(~) if z e dom(]')

L / (z) if z e d a m (f) - dorn(f ')

D e f i n i t i o n : A so~t is a set of typed channels. •

4 .2 D e f i n i t i o n o f t h e M a c h i n e

The operat ion of the C-FAM is defined by a transit ion system whose configurations have two components: a set

of active processes, and a set of channels being used by these processes. For b o t h configurations and transitions

rules, we use a two-dlmensional syntax.

A machine configuration is depicted below as :

~: C £, is a sort (set of typed channels).

is a set of quadruples, each representing the (s, e, c, d) configuration of a process.

s (Argument Stack) is a stack of Denotable Values

193

e 6 £ is a finite-domain function from Identifiers to Denotable Values (Environment)

c (control-list) is a linear sequence of C-FAM instructions

d (dump) is a stack the elements of which are (i) environments, and (ii) (argument-stack, control-

list)-pairs

The picture below shows how a quadruple appears in a configuration.

Environment__

Control

i

I ll° I

U

Process

Stack

Dump

under inspection

4.3 T r a n s i t i o n s

The transitions the machine can make depending on the machine instruction and state are defined by the

relation " ~ " , which is defined by the rules in Appendix A.

In this subsection, we discuss some of the rules. The picture below shows how a rule is structured. The rule

used in the example is the rule for fimction application. (Note: An APPLY is preceded by a SAVE, according

to the compilation rule for function application. So, the current environment e would already have been saved

on the dump, according to the execution rules).

Op-code Elemlnts on top
of s tack

l

closu~a ((:(I X n) ,c I ,a|)] I (v | n)1 •

K ~ c U

cl

I Conditions

°;
K c, U

v
Resulting conflguratlon

194

Process Scripts

p~ocD~,~((,~,...,~,,),e, : eo,~e)1 " >- o

8

1C e b~

[eROCD~F((~ , ~°),c~) [c
d f ̧ ̧

[P r o e C l o s . r e ((~ l , . . , ~o), el, e) J ~
e

c

d

The rule describes the creation of a ProcClesure from process script c1~ and formal parameters zl ... ~ . ,

which are arguments to the op-code PROCDEF. The current environment e is packaged with c 1 and zl ... z~

to form a ProcClosure that is placed at the top of the stack. Notice the similarity with the Functior~ Abstraction

rule for op-code ABST, where a closure is returned.

R e e u r s | v e E n v i r o n m e n t A u g m e n t a t i o n

R E C B I N D (~x,.. . ,$~)I n > 1

I(v , vows tltl(l' e U

[R E C B I N D (z l , . . . , z n l q c ==~

d

where

e I = e[xl ~-~ wl~ ... ,zn ~-* Wn]

and

wi is vi with every instance of a closure closure(formalsk, ck, e[fk])

appearing in vi replaced by closure(formalsk, ck, e'[f~])

and every instance of a proc-closure ProcClosure(formatsm, cm, e[f,~])

appearing in vl replaced by ProcCIosure(formatsrn, am, e'[fm])

Note the recursively defined environment e'.

This rule describes the t reatment of (mutually) recursive function and process definitions. A tuple of values,

each a closure or ProcClosure, is on the stack in the initiM state. The op-code R E C B I N D takes as argument

the list of identifiers zx -.- z,~, which are to be recursively bound to these values. The environments packaged

in each of these values are updated by building cyclic references into them. The "side-condltion" ensures that

the cyclic references are built in at the appropriate place.

195

Process Act iva t ion

A C T I V A T E I

I Pr°~c~°~urc((~l , ' ' ,~nl ,c ' ,e ') tl (vl, ... ,vo) I ,
K: e H ~ H

[A C T I V A T E [e

d

where e' = e"[xl ~-+ Vl z,~ ~-~ v~].]

The Process Activation Rule describes the replacement of the current process by an instantiation of the

process script. The ProcClosure is on the top of the stack, with the argument tuple below it. Ia the resulting

state, the process has empty stack and dump. Its control list is obtained from the ProcClosure, and the

environment is the one packaged in the ProcClosure, augmented by binding the formal parameters to the

actual arguments. Notice the similarity with the Ftmction Application rule.

Creat ion of Paral le l Processes

F O R K (cl, ... ,ck : code)lk>_ 1

K, e l,t

F O R K (c 1 , ... ,ck)]c
d

$

K: e

C

d

C l . . .

[]

U

Ck

[]

This rule describes the creation of new processes. The stacks and dumps of these new processes are initially

empty, the environment obtained from the process executing the F O R K , and the control lists of these processes

are obtained from the parameter of the F O R K op-code.

196

A l t e r n a t i v e (N o n - D e t e r m i n i s t i c)

[A L T (b l : code F cl : code .. b~ : code F c,~ : code)I k >_ t

8

e 5l

bl

d

LIt

For any i E {1,...,k}]

[A T(b, r e , , ... 51

/C ~ U'

c/

The Alternative rule says that if the "guard" of any of the alternative continuations for a process can

evaluate to ~rue, then that alternative may be selected. For the i th alternative to be selected, the precondition

of the rule must be satisfied. This says that the machine with a process evaluating the code bl of the "guard"

in a context/.4 of other processes, /C as the sort, and with stack s, dump d and environment e should make

transitions to a state which has the process with value t ruo on stack s, the same environment and dump e

and d, an empty control list, and with context b/* of other processes, and]C t as the sort. Then, the process

executing the A L T op-code selects the i *h alternative by making these same transitions. The resulting state

has context b/t of other processes, ~r as the sort, but has an empty stack and dump, c¢ as the control-fist, and

e as the environment.

Channe l Creat ion

C H A N (t : t ype)]

$

K, e l,t

[CHAN(t) Ic
d

C

d

where k

The Channel Creation rule says that that any channel of the specified type may be returned, provided it is

not already in the sort ~. The sort is augmented with the addition of the new channel.

197

C o m m u n i c a t i o n (Non-De te rmin i s t i c)

VqV ,
K~ e i

ai

[R E C E I V E]

V ~ ~J
ej

I R E C E I V E Icj

dj

]provided k E 1~ N '~ and v E E]2t. [

/.4]C el

ci

&

sj

ej

cj

dj

/4

The rule for Communication says that any two processes may communicate if one of them is attempting

to execute op-code R E C E I V E with channel value k at the top of its stack, and the other is attempting to

execute op-code S E N D with a value v at the top of the stack, with the channel k immediately below. The

proviso ensures that the channel k is a valid channel in the sort K, and that value v is transmittable on it.

In the resulting state, the receiving process has the value v on its stack, and the sender process has the value

t r i v . A process blocks if there is no process it can communicate with.

5 Compil ing FACILE Programs

In this section, we describe how a FACILE program can be compiled into a sequence of C-FAM instructions.

Here we highlight only some interesting features of the compilation. The complete definition is given in Ap-

pendix B.

Def ini t ion : The function compile maps FACILE constructs to a sequence of C-FAM instructions. •

N o t a t i o n : Sequences are enclosed in (square) brackets, with "1" as the infix cons operator. "@" is the

infix append operator. Examples of lists: [elf], [a] @ [c[a~, ~. •

compile(Be1 1] ... [] Be,,) = [FORK(compile(Be1) compi le(Be,))]TERMINATE]

compile(spawn(procbody)) = [FORK(compile(procbody))]CONSTANT(triv)]

In executing the parallel construct, the current process is replaced by a set of concurrent processes. This is

compiled into a F O R K instruction, with the arguments to the F O R K op-code being the compiled code to be

executed by each process. The original process is then terminated by op-code T E R M I N A T E .

The spawn expression creates a concurrently executing process with the specified code and returns the value

t r i v . This too is compiled into a F O R K with the argument being the compiled argument of the spawn. The

constant t r i v is then returned by the execution of op-code CONSTANT(t r i v) .

co'mpile(al¢ bl :- Be1% [ALT(campile(bl) F compile(Be1),...,

% b,, : - Be,, ,ndaZ~) ~ompile(b,,) ~- compilKBe,,))]

198

The a l t construct is compiled into an ALT op-code with the ~'guard-alternative" pairs compiled pairwise

to form the arguments to the ALT op-code.

co'mpile(ac'~J.va't;o el e2) = eo~npi~e(e2) ~ corr~pi~e(el) @ [ACTIVATE]

compile(f e) = compile(e) @ compile(f) @ [SAVE]APPLYIRESTORE]

There is some similarity in the compilation of process activation, i.e. the instantiation of a process script,

and of function call. The argument is to be evaluated, followed by the evM.uation of the operand. In the case

of process activation, the ProcClosure is instantiated with the argument tuple by op-code ACTIVATE. In

function application, the calling environment is first saved, then the closure is applied. Following the return of

a value, the calling time environment is restored.

compile()~(xt,...,z,).e) = [ABST(($I,...,z,~),eompile(e)@[RETURN])]

compile(A(~1, . . . ,z ,).body) = [PROCDEF((zl,...,x,~),eompile(body))]

The A- and A-Abstractions are compiled in similar ways. Since function application yields a value, the

op-code R E T U R N is appended onto the compiled code of the body. A closure is created using an A B S T

instruction, a ProcClosure with a P R O C D E F instruction.

compile(~ix (~1 ~ ,) (el e ,)) = eompile(~) ~ ... ~compile(e ,)

[TUPLE(n) IRECBIND(:c l , ..., a,~)]

The recursive :f£x construct is compiled by first compiling the tuple of the body of the definitions, and then

filling in the cyclic references with a R E C B I N D instruction.

6 C o n c l u s i o n s and Future D e v e l o p m e n t s

We have described the key features of FACILE, a powerful language that integrates both functional and process-

oriented constructs. We have also introduced the C-FAM, an abstract machine to provide an abstract specifi-

cation of an implementation of our language.

199

6.1 D i s t r i b u t e d C - F A M

Note that the C-FAM really specifies that processes can either evolve asynchronously through internal eval-

uation, or communicate with each other in a hand-shaking fashion. In other words, the machine does not

specify real parallel execution/evaluation. Parallel and distributed execution of the C-FAM is expressed by the

following property.

C o n c u r r e n t Compos i t i on of Independent Processes

I II I
I- E1 I-EIi

t II uu l II uu l
I providedUx rlb/2 = 0and(/Cx 17 /C~) - iC = 01

This property says that two concurrently executing independent machines may be combined. The resulting

machine can make any series of transitions that the original machines could make, provided (i) the processes in
the original machines are distinct, and (ii) that the sets of channels generated by the original machines while

making their transitions are disjoint.

A distributed implementation should ensure that channels generated at different processors are distinct.

There also should be facilities for interprocessor sharing of information, since the sort 1C is a shared component.

A distributed implementation requires robust protocols that ensure sharing of information, as well as the correct

application of rules which affect more than one process, such as the rules for S E N D - R E C E I V E and ALT.

6.2 T h e F A C I L E E n v i r o n m e n t

As mentioned in the introduction, a project concerned with the implementation of an interactive FACILE

environment is in progress. The goal of the FACILE environment is to support and integrate all the activities

involved in specifying, designing and implementing a system. The environment will have a graphical user

interface. In particular, it will use a two-dimensional syntax for FACILE. Processes are represented by boxes

that may enclose sub-systems. Ports can be attached to boxes and joined by communication links. The

functional (sequential) part of FACILE will also have a graphical syntax. A syntax-driven editor will allow

the "direct" manipulation of system descriptions. An interactive source-level debugging system will allow one

to execute system specifications at any stage of refinement. The debugging system will be integrated with an

interpreter that is based on a variant of the C-FAM which we describe below.

The semantics of FACILE based on the C-FAM is rather low-level and is suitable mainly as a guide for

an implementation. We have also defined a more abstract, "strueturM" version of FACILE semantics, using

Labelled Transition Systems [Plo81]. The semantics derives from the reduction-style semantics of ML and on

the notion of observable behavior used in CCS. This higher-level semantics is the subject of another paper. It

provides a specification of a source-level notion of program execution which is useful, for example, as the basis

for developing tools such as source level debuggers.

The interpreter is based on an abstract machine which we will call AC-FAM (for Augmented C-FAM). The

configurations of the AC-FAM are essentially those of the C-FAM, except that its "code" consists of operations

on sets of FACILE abstract syntax trees rather than "assembler-level" op-codes. The level at which executions

200

are modeled by the AC-FAM is intermediate between te rm reduction and C-FAM transitions. Roughly speaking,

the AC-FAM implements the reduction semantics but takes from the C-FAM the concept of environment as a

component of the run-t ime state. Our viewpoint is that the AC-FAM constitutes a form of semantic specification

suitable for interactive debugging; in future work we plan to develop this concept in greater depth.

Refe rences

[ADA83] ADA Reference Manual. 1983. In Ellis Horowitz, "Programming Languages: A Grand Tour".

[AR87] Egidio Astesiano and Gianna Regio. SMoLCS-Driven Concurrent Calculi. In LNCS 249 : TAPSOFT '87~

pages 169-201, Springer-Veflag, Berlin, 1987.

lASS5] S. Abramsky and R. Sykes. Secd-m : a Virtual Machine for Applicative Programming. In Jean-Pierre Jouannaud,

editor, LNCS 201: Functional Programming Languages and Computer Architecture, pages 81-98, Springer-

Verlag, Berlin, September 1985.

[Bac78] John Backus. Can Programming Be Liberated from the yon Neumann Style ? A Functional Style and Its Algebra

of Programs. Communications of the ACM, 21(8):613-641, August 1978.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating Sequential Processes. Journal of

the ACM, 31(3):560-599, July 1984.

[BO80] D. Bjorner and O.N. Oest, editors. ZNCS 98: Towards a Formal Description of ADA. Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 1980.

[Car83] Luea Cardelli. The Functional Abstract Machine. Technical Report Technical Report TR-1OT, Bell Labs, 1983.

[Car85] Luea Cardelli. An Implementation Model of Rendezvous Communication. In LNCS 197: Proceedings of the

Seminar on Concurrency, pages 449-457, Springer-Vedag, Berlin, 1985.

[Car86a] Luea Cazdelli. Amber. In Cousineau, Cnrien, and Robinet, editors, LNCS 252: Combinators and Functional

Programming Languages, pages 21~17, Springer-Ver]ag, 1986.

[Car86b] Luea Cardclli. The Amber Machine. In Cousineau, Curien, and Robinet, editors~ LNCS 2~2 : Combinatore and

Functional Programming Languages, pages 48-70, Springer-Verlag, 1986.

[CCM85] G. Cousineau, P. L. Curien, and M. Mauny. The Categorical Abstract Machine. In Proceedings of the IFIP

Conference on Functional Programming Languages and Computer Architecture, IFIP, September 1985.

[CIII85] CHILL Language Definition: CCITT Recommendation Z. 200. volume 5 number 1 edition, January 1985.

[Gia87] Alessandro Giacalone. A Concurrent Abstract Machine and an Interactive Environment for Simulating Concurrent

Systems. Technical Report TR 87/13, Dept. of Computer Science, SUNY at Stony Brook, December 1987.

[GS881 Alessandro Giaealone and Scott A. Smolka. Integrated Environments for Formally Well-Founded Design and

Simulation of Concurrent Systems: A Non-Procedural Approach. IEEE Transactions on Software Engineering,

June 1988.

[Hen80] Peter Henderson. Functional Prograrnming: Application and Implementation. Prentice ttall International,

London, 1980.

[Iten82] Peter Henderson. Purely Functional Operating Systems. In Darlington, Henderson, and Turner, editors, Func-

tional Programming and its applications, pages 177-192, Cambridge University Press, 1982.

[tten88] Matthew Hennessy. Algebraic Theory of Processes. MIT Press~ 1988.

[tIoa85] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Seience~ Prentice-ltall, 1985.

[INM84] occam Programming Manual. 1984. Prentice-Hall International Series in Computer Science, C.A.R. Hoare

(Series Editor).

201

[Kah74]

IKe178]

[KM76]

[KS82]

[Lan64]

[MilS0]

[Mil84]

[NieS8]

[Plo81]

[Plo82]

[RepS8]

[ss87]

[Wil85]

[wir8~.]

Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. In Proceedings of the IPfP Confer-

ence, pages 471-475~ IFIP~ 1974.

Robert Keller. I)enotational Semant;cs for Parallel Programs w~th Indeterminate Operators. In E.J, Neuhold~

editor, Formal Descriptions of Programming Concepts, pages 337-366, North-Holland Publishing Company,

1978.

Gilles Kahn and David MacQueen. Corout~nes and Networks of Parallel Processes. IRIA Report 202, IRIA,

November 1976.

3. R. Kennaway arid M. R. Sleep. Expressions as Processes. In Conference Record o/the 1982 ACMSymposinm

on LISP and Functional Programming, pages 21-28, ACM, August 1982.

P.J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6(4):308-320, 1964.

Robin Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer Science,

Springer-Verlag, 1980.

Robin MilneL A proposal/or Standard ML. Internal Report CSR-157-83, University of Edinburgh, 1984.

]?lemming Nielson. The Typed),-Calculus with First-Class Processes. June 1988. Extended Abstract.

G.D. Plotkln. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19~ Aarhus Uni-

versity, September 1981.

G.D. Plotkin. An Operational Semantics/or CSP. Technical Report CSR-114-82, University of Edinburgh,

May 1982.

J.H. Reppy. Synchronous Operations as F~rst-class Values. In Proceedings of ~he StGPLAN Conference on

Programming Language Design and Implementation, pages 250-259, ACM SIGPLAN, June 1988.

Scott A. Smolka and Robert E. Strom. A CCS semantics for NIL. IBM Journal of Research and Developmen~

31(5):556-570, September 1987.

William Clinger et al. The Revised Revised Report on Scheme, or An UnCommon Lisp. AI Memo 848, MIT, Aug

1985.

Niklaus Wirth. Programming in MODULA.2. Tezts and Monographs in Computer Science, Springer-Verlag,

second,corrected edition~ 1982.

202

Appendix A : E x e c u t i o n R u l e s for t h e C - F A M

1. P r o c e s s Scr ip t s

P R O C D E F ((zl,...,z,~),el : code)1 n > 0

8

~: e

[PRocvEr((~,..., ~.),~e
d

2. F u n c t i o n A b s t r a c t i o n

U

[P~oeCIo~ure((,~,...,,.),e~,e)]~

A B S T ((f o r m a I s) , d : code)]

8

[ABST(formats, e'l Jc
d

3. l~eeurs ive E n v i r o n m e n t A u g m e n t a t i o n

] e~o,ure(Sorma~, e', e)] ~eee t

R E C B I N D (z i , . . . , z~)] n > 1

[(v~, ...v°)],
~; e

[R E C B ± N D (= ~ , . . . , ~ o)] e

d

where

Ll
]~ I (~1' '" ~) I '

e

e

d t
e t ~ e[~1 ~-~ wt~ ... ~ n ~-+ Wn]

and

wi is vi with every instance of a closure closure(formals~,ck, e[f~])

appearing in v¢ replaced by closure(formalsk, ck, e'[fk])

and every instance of a proc-closure ProcClosure(formals,~, cm, e[fm])

appearing in vl replaced by ProcCIosure(formalsm, cm, et[fm])

Note the recursively defined environment e I.

2 0 3

4. P roce s s A c t i v a t i o n

[A C T I V A T E]

] ACTIVATE 1 ¢

d

[where e ~' = e"[~¢1 ~-~ vl , zn ~ vn].]

5. Creat ion of Paral le l Processes

[]
e I U

E I

[}

[F O R ~ (c, ,c~ : cod~)l k > 1

K; e Z,/

I ''F°R~:(~', "'" '~)I~

6. P r o c e s s T e r m i n a t i o n

K: e

C ¢1

d []

• °" ¢ k

[]

bl

T E R M I N A T E]

[' ," '"TERMINATE

204

7. A l t e rna t i ve (Non-De te rmln i s t l e)

I ALT(bx:code F c l :code . .b~:code F ck:code) j k > l

1C e U

d

U'

For any i e {1, ..., k}

8. Channe l C rea t i on

I e L¢

I AsT(b~ ~ e~, ... ,b~ ~ ~) I c

d

t C H A N (t : type) l

e l,t

d

I~,~e~o k ~ ,c, k e ~han~. I

9. Commun{ea t lon (Non-Dete rmln l s t i c)

=~ I~cu{ k}
~ 8

e

C

d t
IR~cE±w]

/C ei ej

~ 1 R E c ~ z v ~ I cj

4 di

l provided k 6 1C N chant and v C C~t.

U ei

cl

c~

205

10. C o n s t a n t s

CONSTANT(constant)]

S

lC e

I CONSTANT(.)]e

d

is a constant .] where

11. I d e n t | f i e r s

lA
= = ~

K, e

c

d

U

IDENT(identifier) l

8

E e

[±DENT(=)
d

where ~ = +(:). [

12. Saving Environments

U e
C

d

H

K~ e /4

d

13. Restoring E n v i r o n m e n t s

8

e

C

bt

RESTORE]

s

IC e

[R E S T O R E] c

~ d

U
8

e I b~

c

d

206

14. Function*CaU

t
[~to,~, 'e((, , , . . . , , , ,) ,e , ,e ,)

tFi(vl, ... ,,,,,)I; l e M

d

wheree~ = e l [z l ~ v l , . . . , ~ v n] .]

[]
4
£I

~ d

15. R e t u r n

R E T U R N]

e
I R E T U R N]e

~ d

16. Condi t iona l

U
SO

e H

CO

d

IF(cx : code, c2 : code)

e U

d

e /2

d

I I̧ tlII i e
U

207

17. T u p l l n g

TUPLE(n) , n >_ 2]

Fv1. . .~-] ,
~ e /4

=:~
I TUeLE(n) I~

d

Note: TUPLE(1) can be viewed as identity or a "no-op".

TUPLE(O) can be thought of as CONSTANT(triv)

[(~ v4],
/¢ e

C

d

18. T u p l e P r o j e c t l o n [P R O J (i , n) , l < i < n , n > _ 2 [

U

I (vl, . . . ,vn) Is
1(. e

I PROJ(i,n) I ,
d

19. A r i t h m e t i c

L/

~ 3 m ,

V F z ~ q c
d

/4

w h e r e v = a + b, provided a,

1¢ e

C

d

E int.]

bl

20. S tack M a n i p u l a t i o n

208

/C e

F-f~-p-lc
d

U /C e /2

c

d

21. C o n c u r r e n t C o m p o s i t i o n o f I n d e p e n d e n t P r o c e s s e s

Ip rovided Ut ~ ~2

~ 7 = ~ 7 ~

209

A p p e n d i x B : C o m p i l i n g F A C I L E P r o g r a m s

compile(Be1]I ... II Be~)
compi le (a i r bl : - B e 1 %

% b~ : - Be~ e n d a t t)
compi/e(ter luina~a)

c o m p i l e (a c t i v a t e el e2)

compile(e ; Be)

compile(id)

compile(const)

~o~piZ~(h(~ ~.).bodu)

c o ~ t e (f e)

compile(spawn(pr ocbody))

compile(el ! e2)

compile(e ?)

compile(el ; e2)

compile(if b thon el else e2)

compile(projec~i,,~ e)

compile(el + e2)

= [FORK(compile(Be1),..., compile(Be,~))ITERMINATE]

= [ALT(compile(bt) ~- compile(Be1),...,

c ~ p i t e (b ,) e compize(Be,))]

= [TERMINATE]

= compile(e2) ~ compile(el) @ [ACTIVATE~

= compile(e) @ [POP] ~ compile(Be)

= [IDENT(id)]

= [CONSTANT(eonst)]

= [ABST((xl, . . . ,zn),compile(e)@[RETVRN])]

= [PROCDEF((~I $n),eompile(body))]

= compile(e) @ compile(f) @ [S A V E t A P P L Y I R E S T O R E]

= compile(el) @ ... @compile(en) @

[TUPLE(n) tRECBIND(~I , . . . ,~)]

= [CHAN(t)]

= [FORK(compile(procbody))lCOYSTANT(triv)]

= compile(el) + co~pile(e~) ~ [SEND]
= compile(e) @ [RECEIVE]

= compile(el) @ [POP] @ compile(e2)

= co.pile(b) ~ [tF(co~pile(el) , eompiIe(e~))]

= eompiZ~(~) ~ ... + ~ompile(e,) + [TUPLE(~)]

= compile(e) @ [PROJ(i, n)]

= compile(e~) @ compile(e2) @ [PLUS]

