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Abstract 

FACILE is a language which symmetrically integrates concurrent and functional programming. It is 

a typed and statically scoped language. The language supports both function and process abstractions. 

Recursive functions may be defined and used within processes, and processes can be dynamically created 

during expression evaluation. Inter-process communication is by hand-shaking on typed channels. Typed 

channels, functions and process scripts are first-class values. 

In this paper, we present the "core" syntax of FACILE. We then describe an abstract machine C-FAM 

which executes concurrent processes evaluating functional style expressions. The operational definition of 

FACILE is presented by giving compilation rules from FACILE to C-FAM instructions, and execution rules 

for the abstract machine. An overview of the FACILE environment is also discussed. 

1 Introduction 

Concurrent programming, as exemplified by CCS [Mil80], CSP [HoaSS] or occam [INM84], and functional 

programming, as exemplified by ML [Mi184] or Scheme [Wi185], have been recognized as expressive and attractive 

programming techniques. These techniques apply naturally to rather different classes of problems. The strength 

of functional programming is its support for abstraction, through the definition of abstract data types and 

functions [Bac78]. Concurrent programming is necessary when dealing with physically distributed systems, or 

with problems of synchronization and time-dependent behavior. 

Most concurrent languages provide only limited support for data abstraction, function definition and gen- 

eral value processing. As a consequence, abstract data types and functions must in general be expressed as 

collections of processes. This leads to both a loss in clarity and an increase in complexity when reasoning about 

computations on data values. On the other hand, most functional languages cannot express indeterminate 

computation, modelling of shared resources, time-dependent behavior and persistent objects. While several 

proposals to extend the expressive power of functional languages have been made in the past, we believe that 

none provide the full power of concurrent programming. 

*This work has been partially supported by NSF CCR-8704309 and NSF CCK-8706973 
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We have developed FACILE 1, a language framework that  is a symmetric integration of functional and 

concurrent programming~ that  is~ it fully supports both  programming styles. The model underlying FACILE 

is one of concurrently executing processes that  communicate by synchronous message passing. The processes 

manipulate data in the functional style. Typed channels, which are data values, constitute the interface through 

which processes interact. 

Our approach is distinct from earlier ones~ where one programming style is enriched with constructs that 

support the other programming style. For example, the approaches described in [Ke178],[AS85] and [Hen82], 

which are derived from [Kah74~KM76]~ add the merge pseudo-function to a lazy functionallanguage. In contrast~ 

our approach attempts to integrate a full flmctional language with a full concurrent language. 

In this paper we describe the "core" syntax of FACILE~ which is a combination of a strongly typed functional 

language (standard ML) and an expression-oriented concurrent programming language (Occam/CCS). We 

also describe an operational semantics for FACILE in terms of an abstract implementation. The abstract 

implementation is based on a definition of a Concurrent Functional Abstract Machine (C-FAiV[)~ which is a 

generalization of the SECD machine [Lan64] that  supports multi-processing. 

S y m m e t r i c  I n t e g r a t i o n  

FACILE supports both  process and function abstractions in a symmetrically integrated fashion. By integration, 

we mean that  in any context the user has the choice of using functions and abstract data types, or communicating 

processes, or any combination of both  abstractions. By symmetry we mean that  a concept may take the form 

of a function and be treated as such, but  may in fact be implemented as a system of communicating processes. 

Symmetrically, the internals of a process may be implemented using functions. In Section 2 we illustrate these 

ideas through some examples. 

FACILE is more than a language for programming; the ability to choose between expressing a concept 

in process-oriented or fmlctional terms is especially important at the level of system specification and design. 

Certain components of a system may be specified in an abstract fashion using fimctions, while other components 

may be more naturally described in terms of their temporal behavior as systems of processes. This allows one 

to take into account requirements that  must be met by the structure of system being designed. For exaxaple~ 

such requirements may include that  the system be physically distributed over a number of processors~ that it 

be implemented on a given architecture or cope with certain synchronization or timing problems. 

The symmetric integration of functions and processes in FACILE makes it a powerful language for proto- 

typing and the step-wise refinement of programs. Consider, for example~ the problem of specifying a compiler. 

A compiler may be specified as a process that  maps a source program into target code: it accepts the source 

program over an input channel~ applies function comp to it and writes out the target code on an output channel. 

The source and target program may be represented using abstract datatypes common in functional program- 

ming: tists~ files etc. The function eomp which accomplishes this mapping could be specified in the flmctional 

style but  be implemented as a pipeline of processes: lexical scanner, parser, type checker and code generator. In 

FACILE~ the functional specification of eomp may be replaced by the process implementation without altering 

the contexts in which eomp is used. Each component process in the pipeline may itself be implemented as 

a function or as a combination of functions and processes. Similarly, the various abstract datatypes involved 

(lists~ files~ abstract syntax trees) could themselves be represented by processes. 

The design of FACILE is part  of an ongoing project at Stony Brook concerned with the development of 

1Functione*l And Concurrent Integrated LanguagE, pronounced FAH-CHEE-LEH. 



~86 

interactive environments that  support specification/design of complex systems. At present, we are implementing 

an environment for FACILE which will include a syntax-driven editor and an interactive~ graphical source-level 

debugging system. The user interface of the environment is briefly discussed in the last section. 

The Language 

As mentioned, FACILE is roughly a combination of ML and an occam-llke language. -We have taken ML 

[Mi184] as the functional programming component of FACILE as it is a statically typed~ higher-order functional 

language with excellent facilities for data abstraction, and has a well-understood semantics. The concurrent 

component of FACILE includes a core set of constructs extracted from occam [tNM84] and CCS [I~180]~ 

which provide the necessary support for concurrency. While semantic foundations of concurrent languages 

are still the subject of research, promising operational/algebraic approaches have been recently developed 

[BHK84~Hen88~Hoa85,MilS0,Plo82]. These techniques appear to be adequate for a semantic description of the 

constructs we select. 

FACIL]~ exhibits a number of interesting features summarized below. 

• It inherits from ML static scoping~ static typing and call-by-value semantics. 

• In keeping with our goals of symmetry, the syntax is two-sorted: functions and processes. Each syntactic 

category refers to the other but  does not subsume it. 

Inter-process communication is synchronized and takes place over typed channels. 

• Channels are generated dynamically and are first class values. In particular, channel values can be 

communicated between processes. 

Sending and receiving values over channels, channel creation, and process creation are function expres- 

sions. 

The Concurrent Functional Abstract  Machine 

The Concurrent and Functional Abstract Machine is an abstract machine which executes concurrent processes 

evaluating functional expressions. The C-FAM described in this paper is an abstract machine that  describes 

the implementation models for a class of languages that integrate functional and concurrent programming, e.g. 

FACILE and Amber. 

The machine can be called "functional" since it supports function-closures as first-class values, along with 

other values tha t  a simple functional language uses. It qualifies to be called "concurrent", since it provides 

support for process abstraction, dynamic process creation, dynamic channel creation, and synchronous inter- 

process communication on typed channels. The C-FAM supports process definition using process closures which 

are values; it also supports creation of processes by instantlating process definitions with arguments, forking 

and termination of processes, and the non-deterministic conditional selection of a continuation. 

We describe a compiler function that  maps FACILE programs into a lower level programs over a small 

set of C-FAM opcodes. Following Landin and Cardelll [Lan64,Car83] a transition system over machine states 

describes the operations of the abstract machine. 
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1.1 R e l a t e d  W o r k  

The language Amber [Car86a] is the closest in spirit to our work. FACILE can be viewed as a generalization of 

the function-process integration at tempted in Amber. The language P/vIL [Rep88], which derives from Amber, 

describes the use of "event values" to express function abstractions involving inter-process communication. 

FACILE differs in that  it does not have "event values". Recently, Nielson [Nie88] has described a language that  

combines CCS and the typed lambda-calculus. The language, like CCS, includes only static port names. In 

contrast, FACILE has the notion of a channel value which is dynamically created and may be exchanged between 

processes. La [KS82], the parallelism of applicative expressions is expressed by a translation into processes in 

LNET, a language inspired by CCS. Another approach that  relates concurrency with ftmctional-style abstract 

data type is described in [Att87] : art algebraic framework is presented where behaviors are first-class objects. 

There are several general purpose languages (e.g. Ada [ADA83], NIL [SS87], CHILL [CI~85], Modula-2 

[Wir82]) tha t  support some expression evaluation together with facilities for concurrent programming. These 

languages do not support full functional programming (e.g,  fimctions are not first class values) and the facilities 

for concurrency are often restricted (e.g., Ada). 

Implementations of functional languages has traditionally been in terms of the SECD machine [Lan64,HenS0]. 

This description has served as the basis for abstract machines that  are more optimized and implementation 

oriented such as Cardelll's FAM [Car83]. Abstract machines for extensions to pure functional languages, e.g. 

the secd-m machine [AS85] and the Chaos machine [Car86b], also derive from the SECD description. A slightly 

different approach is taken in the Categorical Abstract Machine [CCM85]. 

Abstract machines have also been defined to specify and support the implementation of concurrent lan- 

guages. For example, the A-Code machine [BOS0] has been used to define the semantics of Ada and CHILL s a 

Concurrent Abstract Machine (CAM) [Gia87] has been used to support an interactive simulation environment 

based on CCS [GS88], and a similar abstract machine is reported in [Car85]. 

1.2 Organ iza t ion  o f  the  Paper  

The remainder of the paper is structured as follows. Sections 2 and 3 contain, respectively, a description of a 

"core" syntax for FACILE and some examples. Section 4 contains a discussion of the salient features of the 

C-FAM definition and its executhon rules. Section 5 contains a summary of the rules for compiling FACILE 

into C-FAM codes. The entire definition of C-FAM execution rules is reported in Appendix A. Appendix B 

contains the entire definition of the compiler rules. Section 6 overviews the FACILE environment and concludes 

the paper. 

2 Syntax 

Definition : (ID]~NTIFIEItS) ~" is the set of all identifiers. Typical identifiers are represented by ~, ~ ,  

id. 
Definition : (TYPES) T, the set of type expressions, is defined by the following grammar, where t, t~ 

are representative types : 

t ::= int  I b°°t I uni t  I (t) I t l - - * t z  I t e h a n  I t l , . . . , t , ~  I t p roc  
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Defini t ion : (EXPRESSIONS) 

e~:p ::= 

ezp, the set of function expressions, is defined by the following grammar: 

id [ constant I (e~px, ...,expn) I project i ,n  e~p 

if ezpl then exp2 else exp3 I A(idl .... , id~).ezp 

ezpl ezp2 I A(id~, . . . , id~) .Beh-Ezp 

f i x  (idt, . . . , idn) (expl, . . . ,expn) [ ezpt  ; ezp~, 

spawn( Beh_Exp ) i channel( t ) i exp~ ! ezp~ I e~p ? 

ezpi + exp2 t ............. 
II 

Constants include integers, booleans true and false,  a special value triv,  and Identifiers are expressions. 

channel-valued constants. Tuples of expressions are expressions, as also the i ~h component of a n-tuple. The 

language contains an i f - t h o n - o l s e  construct for conditional expressions. Function abstractions, i.e. A-forms 

and function application are also expressions. Recursive functions and process definitions are expressed through 

the f i x  construct; the tuple of expressions in a f i x  expression must be either A- or A-abstractlons. 

The A-abstraction, also called a Process Script, is the process-level counterpart of the A-abstraction. The 

spawn expression evaluates to triv,  but has the effect of creating a process executing the specified behavior 

expression concurrently with the spawning process. The channel expression evaluates to a new channel value. 

The send expression ezp~ ! ezp2 evaluates to triv and transmits the value of ezp2 on the channel given by 

ezpl 's value. The receive expression ezp ? evaluates to the value received on channel exp. For the sequential 

expression ezpl ; ezp2, expression ez/~ is first evaluated for its effects and then ezp2 is evaluated, with the 

value of exp2 returned as the result. The binding of names to values is treated uniformly as A or A bindings. 
Def in i t ion : (BEHAVlOit EXPlt~SSlONS) Beh_Ezp, the set of behavior expressions, is defined by the 

"cerminate 

a c t i v a t e  ezp ezp 

B e h _ E ~  II ... II S e h _ Z ~ p .  

a l t  ezpl : -  Beh -Ezp l  % ... 

ezpn : -  Beh-Expn endall; 

ezp ; Beh_Ezp  

(inaction) 

(process invocation) 

(parallel) 

(alternative) 

(sequential) 

B 

following grammar: 

Beh._Ezp 

terminate indicates process termination. An a c t i v a t e  replaces the current process with one executing an 

instantiated process script. The first expression must evaluate to a process script, the second to the tuple of 

arguments for instantiation. Concurrent execution of processes is expressed with the parallel construct. The 

conditional non-deterministic selection of an alternative is expressed by the a l t  construct. Each alternative is 

"guarded" by a boolean expression~ which can be arbitrarily complex. In the sequential behavior expression~ 

ezp is evaluated first, for its effects, followed by the execution of Beh_Ezp.  

3 Examples  

We now present a few examples of FACILE programs, which illustrate some aspects of symmetry, showing 

the relation between functions and processes. The use of some constructs is also clarified. We have used 

l o t  and lo t ro¢ ,  which are "syntactic sugar", to improve readability. The first three examples show different 

implementations of the fibonaeei function; the fourth example shows how a ML ref cell, a mutable data 
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structure~ can be implemented. 

Example 1 defines the script of a process that ,  when provided a non-negatlve integer i on input channel 

"a" returns the i ~h fibonacci number on channel " b ' ,  and then terminates. The function f ib  is defined in the 

usual functional programming style as a recursive function. This function is applied to the integer received on 

the channel "a". 

A(a, b). 

le t ,  t e e  

f l b  = ~ ( i ) .  

i ~  ( ( i  = o) o~ (4 = 1))  t h e .  z 

e l s e  f i b ( i  - 1) + f ib ( i  - 2) 

i n  

b ~ ( f ib(a ?)) 

end; 

terminal;e 

Example 1 

Example 2 defines a process script for the same computation but where the fibonaeci function is implemented 

using a network of processes, f ib  is still a A-abstraction, but recursive calls are not "stacked". Instead, for 

each reeursive call to fib, an asynehronously executing process is created, and the integer argument is passed 

to it on an input channel. The channels generated for each reeurslve call are new. Example 2 illustrates how 

processes can be invoked by functions. 

A(a, b). 

letrec 

fib = ~(i). 

if ((4 ---- O) or (4 ---- i)) then 1 

else let 

( inl ,  o~tl)  = ( c h ~ e Z ( ~ , t ) , c h ~ , ~ e l ( i n t ) ) ;  

i n  

spawn( (o~tt  ! fib(in1?)); t e = i n a t e  ); 

spawn( (out2 ! fib(in2?,)); terminate ); 

( i ,m(=  - 1) ); 
( in2!(~ - 2) ); 
( ( o ~ t l ? )  + (o~t27) )  

e n d  

i n  

b ~ (f ib(a  ?)) 
end; 

te rminate  

Example 2 

Exampte 3 implements the same computation, but  with a recursive process script. The function f ib  has been 

eliminated; the code is quite similar to an implementation in occam. 
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~ x ( F ) (  A(~, b). 
l e t  

i n  

= a? 

else le~ 

(inl, o~tl) = (ch~e1(int),eh~neICint)) ~ 

( in2, out2) = ( eharmel( int), eharmel( int) ) 

in 

end; 

~erminate ) 

spa~n(ao t iva t e  F (inl, outl)); 

a p a ~ ( ~ c t i w t e  2 (in2, o~t2)); 
(i.1!(~ - 1)); 

b!((o~tl?) + (out2?)) 

Example 3 

Example 4 shows how the concept of memory can be implemented in FACILE. Other abstract  data types and 

mutable objects can also be implemented in a simAlar maimer. The example illustrates the use of the process- 

related constructs te rminal ;e ,  a c t i v a t e  and the non-deterministic a l* .  In particular, the example shows that  

the "guard" expressions in an a l t  can be very complex. 

I memo~y -- ~ix(mem)(  A(get, m,~conte~ts). 

a l t  ((get!contents); t rue ) : -  

a c t i v a t e  mere(get,put,contents) 

% l e t  neweontents = put? 

i n  

spa r t a (ac t iva te  mere(get,put, neweontents) ); 

true 

1-- 

1: e r ,  t i na t  e 

r e /  ~ A(z). 
l e t  

end 

endal~) 

i n  

(read, write) = ( channel( ~nt ), ¢ ~ - ~ a l (  i,~t ) ) 

( spawn( a c t i v a t e  memory(read, write, ¢) ); 

(read, write) ) 
end 

de?el  - A(/oe).(projectl ,  2 loc)? 

assign = A( loc, neweont ). (projeet2 ,  2 loc )!neweont 
Example 4 

Example 4 shows how a memory location can be implemented using processes and chalmels. The process script 
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memory  describes the behavior of a memory location. The formal parameters get and put  are channels which 

provide "probes" to access and change the contents of the location. The interface to a memory location is 

thus represented by a pair of channels used to read and update its contents. Following the convention in ML, 

memory locations are manipulated via three functions: ref~ derefand assign. 

Function ref  activates a memory  process with the appropriate actual argument values, and returns as the 

result~ the pair of channels with which to access it. Given the pair of access channels to a memory location, 

function derefreturns  the contents of that  memory location; assign changes the contents to the desired value. 

The behavior of the memory  process script is the following: if an attempt is made to read from channel get, 

it makes the value contents available and reactivates itself with the same arguments. If an attempt is made 

to write on put, it reactivates itself with the same access channels but with contents replaced by the value 

newcontents received on put. 

4 The  Concurrent  and Funct ional  Abstract  Machine  

The description of the C-FAM is generally along the lines of the SECD machine [Lan64]. A C-FAM can be 

considered as having several concurrently executing SECD-like machines %mbedded" in it, along with the 

mechanism by which these interact with one another. The machine description differs from the conventional 

SECD machine description [Hen80] in that  the components are not specified in terms of data structures, but 

as abstract structures; the environment, in particular, is a function from Identifiers to Values~ and not~ say, a 

list of lists. 

Any realization of the C-FAM will need to express the components as data structures; identifiers appearing 

in data structures (e.g. in a closure) can be replaced by information for accessing these data structures. A 

realization of the machine may also differ in many respects: environments may be represented and manipulated 

differently, and the treatment of recursive definitions may differ. "Op-codes" may be added to handle extensions 

to the base language (e.g. exceptions, datatypes, pattern-matching). 

In many respects, the machine is similar to the Functional Abstract Machine (FAM) [Car83]. The machine 

is built atop an unlimited "heap" of typed cells of values which include integers, booleans, tuples, the unit 

value, closures~ etc. Typed channels and ProcClosures are among the "values" supported by the machine - -  

hence it can support dynamic channel creation, channel passing, and dynamic process creation and invocation. 

The specification of the C-FAM does not define the implementation of the heap, channel creation and garbage 

collection. 

4 .1  N o t a t i o n  

Def in i t ion  ." (VAT.UES) £V is the domain of expressible values. 

£1) = int ÷ bool ÷ uni t  ÷ tuples ÷ closures ÷ PvocClosures + S 
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D e f i n i t i o n  : int is the set of integers, boot consists of  the boolean values ~rue and f a l s e~  and unit  

comprises the dist inguished value t r i v .  

S ,  closures, ProcCIosures, tupIes are the vMue domains corresponding to the syntactic type-expressions 

t chan,  tl  --+ t2, t proc~ t l  * . . .  * t~, respectively (where t~ t l , t2 , t~  C T). 

S denotes the universal set of all possible typed channels. St denotes the subset of £ consisting of 

channels on which vMues of type t can be commurdcated. ~ is a typical subset of £ ,  and k is a typical 

channel in £.  

Closures are the values corresponding to ),-expressions, i.e. functions. A closure is a triple consisting of  the 

list of formals~ the body of the function~ and the environment which gives the values of the free variables 

appearing in the body. 

ProcCIosures are similar to closures; they are the process-definition counterparts  to closures, i.e. they 

correspond to A-expressions. A ProcCIosure is also a triple consisting of a list of formals, the body of the 

process being defined, and the  definition-time environment.  

D e f i n i t i o n  : (ENVIRONMENTS) ~ the set of all %nvi ronments ' ,  includes a~ the finite domain functions 

from subsets of 27 to CV. e E ~ is a representat ive environment.  

N o t a t i o n  : If L is a sequence~ then [ ~  is also a sequence~ with z as its first element.  [] denotes an 

empty sequence. 

N o t a t i o n  : f [ f ' ]  is a finite domain function obtained by augmenting function f with f ' ,  suck tha t  

aom(:[:']) = do,-,,(:) U aam(f) 

/[f'](~) = I f'(~) if z e dom(]') 

L / ( z )  if z e d a m ( f )  - dorn( f ' )  

D e f i n i t i o n  : A so~t is a set of typed channels. • 

4 .2  D e f i n i t i o n  o f  t h e  M a c h i n e  

The operat ion of  the  C-FAM is defined by a transit ion system whose configurations have two components:  a set 

of active processes, and  a set of  channels being used by  these processes. For b o t h  configurations and transitions 

rules, we use a two-dlmensional syntax.  

A machine configuration is depicted below as : 

~: C £,  is a sort ( set of typed channels). 

is a set of quadruples, each representing the (s, e, c, d) configuration of a process. 

s (Argument  Stack) is a stack of Denotable Values 
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e 6 £ is a finite-domain function from Identifiers to Denotable Values (Environment) 

c (control-list) is a linear sequence of C-FAM instructions 

d (dump) is a stack the elements of which are (i) environments, and (ii) (argument-stack, control- 

list)-pairs 

The picture below shows how a quadruple appears in a configuration. 

Environment__ 

Control 

i 

I ll° I 

U 

Process 

Stack 

Dump 

under inspection 

4.3  T r a n s i t i o n s  

The transitions the machine can make depending on the machine instruction and state are defined by the 

relation " ~ " ,  which is defined by the rules in Appendix A. 

In this subsection, we discuss some of the rules. The picture below shows how a rule is structured. The rule 

used in the example is the rule for fimction application. (Note: An APPLY is preceded by a SAVE, according 

to the compilation rule for function application. So, the current environment e would already have been saved 

on the dump, according to the execution rules). 

Op-code Elemlnts on top 
of s tack  

l 

closu~a ((:(I . . . . .  X n ) ,c I ,a| )] I ( v |  . . . . . .  n )1 • 

K ~ c U 

cl 

I Conditions 

°; 
K c, U 

v 
Resulting conflguratlon 
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Process Scripts 

p~ocD~,~( (  ,~,...,~,, ),e, : eo,~e )1 " >- o 

8 

1C e b~ 

[ eROCD~F((~ ,  ..... ~°),c~) [c 
d f ̧  ̧

[ P r o e C l o s . r e ( ( ~ l ,  . . ,  ~o), el, e) J ~ 
e 

c 

d 

The rule describes the creation of  a ProcClesure from process script c1~ and formal parameters  zl  ... ~ . ,  

which are arguments to the op-code PROCDEF.  The current environment e is packaged with c 1 and zl  ... z~ 

to form a ProcClosure that  is placed at the top of the stack. Notice the similarity with the Functior~ Abstraction 

rule for op-code ABST,  where a closure is returned. 

R e e u r s | v e  E n v i r o n m e n t  A u g m e n t a t i o n  

R E C B I N D (  ~x,.. . ,$~ )I n > 1 

I(v , vows tltl( l' e U 

[ R E C B I N D ( z l , . . . , z n l q  c ==~ 

d 

where 

e I = e[ xl ~-~ wl~ ... ,zn ~-* Wn] 

and 

wi is vi with every instance of a closure closure(formalsk, ck, e[fk]) 

appearing in vi replaced by closure(formalsk, ck, e'[f~]) 

and every instance of a proc-closure ProcClosure(formatsm, cm, e[f,~]) 

appearing in vl replaced by ProcCIosure(formatsrn, am, e'[fm]) 

Note the recursively defined environment e'. 

This rule describes the t reatment  of (mutually) recursive function and process definitions. A tuple of values, 

each a closure or ProcClosure,  is on the stack in the initiM state.  The op-code R E C B I N D  takes as argument 

the list of identifiers zx -.- z,~, which are to be recursively bound to these values. The environments packaged 

in each of these values are updated  by building cyclic references into them. The "side-condltion" ensures that  

the cyclic references are built in at the appropriate place. 
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Process  Act iva t ion  

A C T I V A T E  I 

I Pr°~c~°~urc((~l , ' ' ,~nl ,c ' ,e ' )  tl (vl, ... ,vo) I ,  
K: e H ~ H 

[ A C T I V A T E  [e 

d 

where e' = e"[xl ~-+ Vl . . . . .  z,~ ~-~ v~].] 

The Process Activation Rule describes the replacement of the current process by an instantiation of the 

process script. The ProcClosure is on the top of the stack, with the argument tuple below it. Ia the resulting 

state, the process has empty stack and dump. Its control list is obtained from the ProcClosure, and the 

environment is the one packaged in the ProcClosure, augmented by binding the formal parameters to the 

actual arguments. Notice the similarity with the Ftmction Application rule. 

Creat ion of  Paral le l  Processes  

F O R K (  cl, ... ,ck : code )lk>_ 1 

K, e l,t 

F O R K ( c 1 ,  ... ,ck) ]c 
d 

$ 

K: e 

C 

d 

C l  . . .  

[] 

U 

Ck 

[] 

This rule describes the creation of new processes. The stacks and dumps of these new processes are initially 

empty, the environment obtained from the process executing the F O R K ,  and the control lists of these processes 

are obtained from the parameter of the F O R K  op-code. 
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A l t e r n a t i v e  ( N o n - D e t e r m i n i s t i c )  

[ A L T ( b l  : code F cl : code .. b~ : code F c,~ : code)I  k >_ t 

8 

e 5l 

bl 

d 

LIt 

For any i E {1,...,k}] 

[ A T(b, r e , ,  ... 51 

/C ~ U' 

c/ 

The Alternative rule says that if the "guard" of any of the alternative continuations for a process can 

evaluate to ~rue, then that alternative may be selected. For the i th alternative to be selected, the precondition 

of the rule must be satisfied. This says that the machine with a process evaluating the code bl of the "guard" 

in a context/.4 of other processes, /C as the sort, and with stack s, dump d and environment e should make 

transitions to a state which has the process with value t ruo  on stack s, the same environment and dump e 

and d, an empty control list, and with context b/* of other processes, and ]C t as the sort. Then, the process 

executing the A L T  op-code selects the i *h alternative by making these same transitions. The resulting state 

has context b/t of other processes, ~r as the sort, but has an empty stack and dump, c¢ as the control-fist, and 

e as the environment. 

Channe l  Creat ion  

C H A N ( t  : t ype)]  

$ 

K, e l,t 

[ CHAN(t) Ic 
d 

C 

d 

where k 

The Channel Creation rule says that that any channel of the specified type may be returned, provided it is 

not already in the sort ~.  The sort is augmented with the addition of the new channel. 
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C o m m u n i c a t i o n  (Non-De te rmin i s t i c )  

VqV  , 
K~ e i 

ai 

[ R E C E I V E  ] 

V ~  ~J 
ej 

I R E C E I V E  Icj 

dj 

]provided k E 1~ N '~ and v E E]2t. [ 

/.4 ]C el 

ci 

& 

sj 

ej 

cj 

dj 

/4 

The rule for Communication says that any two processes may communicate if one of them is attempting 

to execute op-code R E C E I V E  with channel value k at the top of its stack, and the other is attempting to 

execute op-code S E N D  with a value v at the top of the stack, with the channel k immediately below. The 

proviso ensures that the channel k is a valid channel in the sort K, and that value v is transmittable on it. 

In the resulting state, the receiving process has the value v on its stack, and the sender process has the value 

t r i v .  A process blocks if there is no process it can communicate with. 

5 Compil ing  FACILE Programs 

In this section, we describe how a FACILE program can be compiled into a sequence of C-FAM instructions. 

Here we highlight only some interesting features of the compilation. The complete definition is given in Ap- 

pendix B. 

Def ini t ion : The function compile maps FACILE constructs to a sequence of C-FAM instructions. • 

N o t a t i o n  : Sequences are enclosed in (square) brackets, with "1" as the infix cons operator. "@" is the 

infix append operator. Examples of lists: [elf], [a] @ [c[a~, ~. • 

compile( Be1 1] ... [] Be,, ) = [FORK(compile(Be1) ..... compi le(Be,) )]TERMINATE] 

compile(spawn(procbody)) = [FORK(compile(procbody))]CONSTANT(triv)] 

In executing the parallel construct, the current process is replaced by a set of concurrent processes. This is 

compiled into a F O R K  instruction, with the arguments to the F O R K  op-code being the compiled code to be 

executed by each process. The original process is then terminated by op-code T E R M I N A T E .  

The spawn expression creates a concurrently executing process with the specified code and returns the value 

t r i v .  This too is compiled into a F O R K  with the argument being the compiled argument of the spawn. The 

constant t r i v  is then returned by the execution of op-code CONSTANT( t r i v ) .  

co'mpile(al¢ bl :- Be1% . . . . . .  [ALT( campile(bl) F compile(Be1),..., 

% b,, : -  Be,, ,ndaZ~ ) ~ompile(b,,) ~- compilKBe,,) )] 
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The a l t  construct is compiled into an ALT op-code with the ~'guard-alternative" pairs compiled pairwise 

to form the arguments to the ALT op-code. 

co'mpile(ac'~J.va't;o el e2 ) = eo~npi~e(e2) ~ corr~pi~e(el) @ [ACTIVATE] 

compile(f e) = compile(e) @ compile(f) @ [SAVE]APPLYIRESTORE ] 

There is some similarity in the compilation of process activation, i.e. the instantiation of a process script, 

and of function call. The argument is to be evaluated, followed by the evM.uation of the operand. In the case 

of process activation, the ProcClosure is instantiated with the argument tuple by op-code ACTIVATE.  In 

function application, the calling environment is first saved, then the closure is applied. Following the return of 

a value, the calling time environment is restored. 

compile()~(xt,...,z,).e) = [ ABST(($I,...,z,~),eompile(e)@[RETURN] ) ]  

compile( A( ~1, . . . ,z ,  ).body ) = [PROCDEF((zl,...,x,~),eompile(body))] 

The A- and A-Abstractions are compiled in similar ways. Since function application yields a value, the 

op-code R E T U R N  is appended onto the compiled code of the body. A closure is created using an A B S T  

instruction, a ProcClosure with a P R O C D E F  instruction. 

compile(~ix (~1 ..... ~ , )  (el ..... e , ))  = eompile(~) ~ ... ~compile(e ,)  

[ TUPLE(n) IRECBIND(:c l ,  ..., a,~)] 

The recursive :f£x construct is compiled by first compiling the tuple of the body of the definitions, and then 

filling in the cyclic references with a R E C B I N D  instruction. 

6 C o n c l u s i o n s  and  Future  D e v e l o p m e n t s  

We have described the key features of FACILE, a powerful language that  integrates both  functional and process- 

oriented constructs. We have also introduced the C-FAM, an abstract machine to provide an abstract specifi- 

cation of an implementation of our language. 
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6.1 D i s t r i b u t e d  C - F A M  

Note that the C-FAM really specifies that processes can either evolve asynchronously through internal eval- 

uation, or communicate with each other in a hand-shaking fashion. In other words, the machine does not 

specify real parallel execution/evaluation. Parallel and distributed execution of the C-FAM is expressed by the 

following property. 

C o n c u r r e n t  Compos i t i on  of  Independent Processes 

I II I 
I- E1 I-EIi  

t II uu l II uu l 
I providedUx rlb/2 = 0and(/Cx 17 /C~) - iC = 01 

This property says that two concurrently executing independent machines may be combined. The resulting 

machine can make any series of transitions that the original machines could make, provided (i) the processes in 
the original machines are distinct, and (ii) that the sets of channels generated by the original machines while 

making their transitions are disjoint. 

A distributed implementation should ensure that channels generated at different processors are distinct. 

There also should be facilities for interprocessor sharing of information, since the sort 1C is a shared component. 

A distributed implementation requires robust protocols that ensure sharing of information, as well as the correct 

application of rules which affect more than one process, such as the rules for S E N D - R E C E I V E  and ALT.  

6.2 T h e  F A C I L E  E n v i r o n m e n t  

As mentioned in the introduction, a project concerned with the implementation of an interactive FACILE 

environment is in progress. The goal of the FACILE environment is to support and integrate all the activities 

involved in specifying, designing and implementing a system. The environment will have a graphical user 

interface. In particular, it will use a two-dimensional syntax for FACILE. Processes are represented by boxes 

that may enclose sub-systems. Ports can be attached to boxes and joined by communication links. The 

functional (sequential) part of FACILE will also have a graphical syntax. A syntax-driven editor will allow 

the "direct" manipulation of system descriptions. An interactive source-level debugging system will allow one 

to execute system specifications at any stage of refinement. The debugging system will be integrated with an 

interpreter that is based on a variant of the C-FAM which we describe below. 

The semantics of FACILE based on the C-FAM is rather low-level and is suitable mainly as a guide for 

an implementation. We have also defined a more abstract, "strueturM" version of FACILE semantics, using 

Labelled Transition Systems [Plo81]. The semantics derives from the reduction-style semantics of ML and on 

the notion of observable behavior used in CCS. This higher-level semantics is the subject of another paper. It 

provides a specification of a source-level notion of program execution which is useful, for example, as the basis 

for developing tools such as source level debuggers. 

The interpreter is based on an abstract machine which we will call AC-FAM (for Augmented C-FAM). The 

configurations of the AC-FAM are essentially those of the C-FAM, except that its "code" consists of operations 

on sets of FACILE abstract syntax trees rather than "assembler-level" op-codes. The level at which executions 
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are modeled by the AC-FAM is intermediate between te rm reduction and C-FAM transitions. Roughly speaking, 

the AC-FAM implements the reduction semantics but takes from the C-FAM the concept of environment  as a 

component of the run-t ime state. Our viewpoint is that  the AC-FAM constitutes a form of semantic specification 

suitable for interactive debugging; in future work we plan to develop this concept in greater depth.  
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Appendix A : E x e c u t i o n  R u l e s  for t h e  C - F A M  

1. P r o c e s s  Scr ip t s  

P R O C D E F ( (  zl,...,z,~ ),el : code )1 n >  0 

8 

~: e 

[ PRocvEr((~,..., ~.),~e 
d 

2. F u n c t i o n  A b s t r a c t i o n  

U 

[ P~oeCIo~ure((,~,...,,.),e~,e) ]~ 

A B S T ( ( f o r m a I s ) , d  : code)] 

8 

[ ABST(formats, e'l Jc 
d 

3. l~eeurs ive  E n v i r o n m e n t  A u g m e n t a t i o n  

] e~o,ure(Sorma~, e', e) ] ~eee t 

R E C B I N D (  z i , . . . , z~  )] n > 1 

[ (v~, ...v°) ], 
~; e 

[ R E C B ± N D ( = ~ , . . . , ~ o ) ] e  

d 

where 

Ll 
]~ I (~1' '" ~) I ' 

e 

e 

d t 
e t ~ e[ ~1 ~-~ wt~ ... ~ n  ~-+ Wn] 

and 

wi is vi with every instance of a closure closure(formals~,ck,  e[f~]) 

appearing in v¢ replaced by closure(formalsk,  ck, e'[fk]) 

and every instance of a proc-closure ProcClosure(formals,~,  cm, e[fm]) 

appearing in vl replaced by ProcCIosure( formalsm,  cm, et[fm]) 

Note the recursively defined environment e I. 
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4. P roce s s  A c t i v a t i o n  

[ A C T I V A T E ]  

] ACTIVATE 1 ¢ 

d 

[where e ~' = e"[~¢1 ~-~ vl . . . .  , zn ~ vn].] 

5. Creat ion  of  Paral le l  Processes  

[] 
e I U 

E I 

[} 

[ F O R ~ (  c, . . . .  ,c~ : cod~ )l k > 1 

K; e Z,/ 

I ''F°R~:(~', "'" '~)I~ 

6. P r o c e s s  T e r m i n a t i o n  

K: e 

C ¢1  

d [] 

• °" ¢ k  

[] 

bl 

T E R M I N A T E  ] 

[ ' ," '"TERMINATE 
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7. A l t e rna t i ve  (Non-De te rmln i s t l e )  

I ALT(bx:code F c l :code . .b~:code  F ck:code) j k > l  

1C e U 

d 

U' 

For any i e {1, ..., k} 

8. Channe l  C rea t i on  

I e L¢ 

I AsT(b~ ~ e~, ... ,b~ ~ ~ )  I c 

d 

t C H A N ( t  : type) l 

e l,t 

d 

I~,~e~o k ~ ,c, k e ~han~. I 

9. Commun{ea t lon  (Non-Dete rmln l s t i c )  

=~ I~cu{ k} 
~ 8 

e 

C 

d t 
IR~cE±w] 

/C ei ej 

~ 1 R E c ~ z v ~  I cj 

4 di 

l provided k 6 1C N chant and v C C~t. 

U ei 

cl 

c~ 
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10. C o n s t a n t s  

CONSTANT(constant) ] 

S 

lC e 

I CONSTANT( . )  ]e 

d 

is a constant . ]  where 

11. I d e n t | f i e r s  

lA 
= = ~  

K, e 

c 

d 

U 

IDENT(identifier) l 

8 

E e 

[ ±DENT(=) 
d 

where ~ = +(:). [ 

12. Saving Environments 

U e 
C 

d 

H 

K~ e /4 

d 

13. Restoring E n v i r o n m e n t s  

8 

e 

C 

bt 

RESTORE] 

s 

IC e 

[ R E S T O R E ] c  

~ d  

U 
8 

e I b~ 

c 

d 
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14. Function*CaU 

t 
[~to,~, 'e(( , , , . . . ,  , , , ) ,e , ,e , )  

tFi(vl, ... ,,,,,)I; l e M 

d 

wheree~ = e l [ z l ~ v l ,  . . . , ~ v n ] . ]  

[] 
4 
£I 

~ d  

15. R e t u r n  

R E T U R N  ] 

e 
I R E T U R N  ]e 

~ d  

16. Condi t iona l  

U 
SO 

e H 

CO 

d 

IF(cx : code, c2 : code) 

e U 

d 

e /2 

d 

I I̧ tlII  i e 
U 
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17. T u p l l n g  

TUPLE(n) ,  n >_ 2] 

Fv1. . .~-] ,  
~ e /4 

=:~ 
I TUeLE(n) I~ 

d 

Note: TUPLE(1) can be viewed as identity or a "no-op". 

TUPLE(O) can be thought of as CONSTANT( triv ) 

[(~ ..... v4], 
/¢ e 

C 

d 

18. T u p l e P r o j e c t l o n [ P R O J ( i , n ) ,  l < i < n ,  n > _ 2 [  

U 

I (vl, . . . ,vn)  Is 
1(. e 

I PROJ(i,n) I , 
d 

19. A r i t h m e t i c  

L/ 

~ 3 m ,  

V F z ~ q c  
d 

/4 

w h e r e  v = a + b, provided a, 

1¢ e 

C 

d 

E int.] 

bl 



20. S tack  M a n i p u l a t i o n  

208 

/C e 

F-f~-p-lc 
d 

U /C e /2 

c 

d 

21. C o n c u r r e n t  C o m p o s i t i o n  o f  I n d e p e n d e n t  P r o c e s s e s  

Ip rovided Ut ~ ~2 

~ 7  = ~ 7 ~  
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A p p e n d i x  B : C o m p i l i n g  F A C I L E  P r o g r a m s  

compile( Be1 ]I ... II Be~ ) 
compi le (a i r  bl : -  B e 1 %  ..... 

% b~ : -  Be~ e n d a t t  ) 
compi/e( ter luina~a)  

c o m p i l e ( a c t i v a t e  el  e2 ) 

compile(e ; Be) 

compile( id) 

compile( const ) 

~o~piZ~(h( ~ ..... ~.  ).bodu ) 

c o ~ t e ( f  e) 

compile( spawn(pr ocbody ) ) 

compile(el ! e2) 

compile( e ?) 

compile(el ; e2) 

compile(if b thon el else e2) 

compile(projec~i,,~ e) 

compile(el + e2) 

= [FORK(compile(Be1),..., compile(Be,~))ITERMINATE ] 

= [ALT(compile(bt) ~- compile(Be1),..., 

c ~ p i t e ( b , )  e compize(Be,))] 

= [TERMINATE]  

= compile(e2) ~ compile(el) @ [ACTIVATE~ 

= compile(e) @ [POP] ~ compile(Be) 

= [IDENT(id)] 

= [CONSTANT(eonst)] 

= [ ABST((xl, . . . ,zn),compile(e)@[RETVRN] ) ] 

= [PROCDEF((~I ..... $n),eompile(body))] 

= compile(e) @ compile(f) @ [ S A V E t A P P L Y I R E S T O R E  ] 

= compile(el) @ ... @compile(en) @ 

[ TUPLE(n)  tRECBIND(~I , . . . ,~)]  

= [CHAN(t)] 

= [FORK(compile(procbody))lCOYSTANT(triv)] 

= compile(el) + co~pile(e~) ~ [SEND] 
= compile(e) @ [RECEIVE] 

= compile(el) @ [POP] @ compile(e2) 

= co.pile(b) ~ [ tF(co~pile(el) ,  eompiIe(e~))] 

= eompiZ~(~) ~ ... + ~ompile(e,) + [TUPLE(~)] 

= compile(e) @ [PROJ(i, n)] 

= compile(e~) @ compile(e2) @ [PLUS] 


