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A b s t r a c t  

A number of steps together characterising a method according to which one may employ the Vi- 
enna Development Method, VDM, are formulated and briefly illustrated. The paper is a summary of 
the methodological aspects of VDM as espoused in the author's recent books: Sof t ,  are Architectures 
and Programming Systems Design, vols. I-III  incl. Only specification facets will be il lustrated. A 
subsequent paper will similarly overview the implementation facets of function transformation and 
data  reification. 

The exposition is tentative: no claim is made as to the definitiveness of the method. The author 
believes this to be a "first ~ a t t empt  to enumerate the methodological facets of VDM. It  is felt that  
few, if any, so-called methods, can claim to be methods according to the definition given in the 
current paper. The author hopes tha t  the present paper will spur more papexs on the ~true ~ na tme 
of 'programming methodology'.  
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9 Conclusion $5 

1 I n t r o d u c t i o n  

1 .1  T h e  V i e n n a  D e v e l o p m e n t  M e t h o d  

VDM stands for a relatively well propagated method for developing deterministic systems softwate, like 
compilers, database management systems, application program generators, etc., as well as major parts of 
non-determinlstic, concurrent and distributed software, such as operating systems, local area nets, ottlce 
automation systems, etc. 

VDM has developed over the yeats, from 1973 onwards. 
Currently the British Standards Institute (BSI) is readying a draft proposal for a standard for a 

VDM Specification Languages (SL). It is not quite the one you will see exemplified in this paper, but 
one that unites and moderately extends a number of slightly differing schools of SL syntaxes, notably 
the English and the Danish schools. The English school goes considerably beyond the original VDM SL 
otherwise known as Meta IV, and is exemplified in the latter works of C.B.Jones and the industry groups 
at STC/STL (Standard Telephone and Cable, ST Labs.), ICL, Praxis and Adelatd. The Danish school 
is exemplified in the works of the current author and the industry groups of Dansk Datamatik Center 
(DDC) 1 and DDC International 2. 

The CEC (Commission of the European Communities) has created a VDM Europe group, some 25-35 
VDM practitioners and researchers from industry and academia alike. This group meets thrice yearly to 
discuss (i) experience in the industrial, professional use of VDM, (ii) tool requirements and experience, 
(iii) education and training requirements and experience, (iv) mathematical foundations, and (v) possible 
standatdisations of various VDM facets. VDM Europe also organizes VDM Symposia. Two have so far 
been held: March 1987 (in Bruxelles, Belgium) and September 1988 (in Dublin, Ireland). VDM'90 will 
be held in Kiel, Federal Republic of Germany, April 1990 s. 

The Reference section lists a number of VDM references: [1], [21, [3], [4], [5]. [6] and [7] contain papers 
on VDM presented at the first 2 VDM Symposia. 

1 . 2  S o f t w a r e  A r c h i t e c t u r e s  a n d  P r o g r a m m i n g  S y s t e m s  D e s i g n  

A s e r i e s  o f  V D M  B o o k s  

The current author is presently readying a series of books for publication. The series title is: Software A r. 
chitectures and Programming Systems Design -- The VDM Approach. Volume titles are: I: Foundations, 
II: Abstraction Principles, III: Formal Models of Program and Programming Concepts, IV: Implementa- 
tion Principles, V: Programming Languages: Interpreters and Compilers, and VI: Data Models and Data 
Base Management Systems. Volumes IV-V-VI may appear as one, rather thick volume. Volumes I-II-III 
are expected out by the summer of 1989 - -  and together are expected to take up some 1400 pages ([8], 
[9], [10]). 

The current tutorial reiterates, and summarizes, within the short span of 9 pages, the extent to which 
the Methodology facets of VDM have been enunciated. See further the discussion below, in subsection 
1.4. 

tDDC is now a part of CB.I: Computer Resources International. 
2DDC International is now a company, independent of Dausk Datamatik Center. 
SOrganisation Committee chairman is Prof. Hans Langnmack, Kiel; P r o g r ~ e  Committee chairman and co-chalrman 

are the current author and Prof. C.A.R.Hoare, Oxford. The theme of VDM'90 will be VDM and Z. 



1 . 3  M o d e l - T h e o r e t i c  a n d  P r o p e r t y - O r i e n t e d  S p e c i f i c a t i o n s  

VDM is based on a model-theoretic view of specification and development - -  and can be said to be based 
on a denotational semantics viewpoint, as contrasted to for example an algebraic semantics viewpoint. 
In a model-theoretic specification the formulas explicitly give a mathematical model, that is: denote a 
mathematical object. An algebraic (or an axiomatic) specification is property-oriented, that is: it "only" 
prescribes properties that a desired (mathematical object, or) program or software system is to satisfy. 

In the DDC/ICL/NBB/STL RAISE project (ESPRIT 315), which spiritually began as a project to 
establish a firm foundation and methodology for VDM, that VDM has been "replaced" by a specification 
language (RSL, for RAISE Specification Language) and a development method, which differs rather 
radically from VDM. RSL embodies specification constructs that allow a "spectrum" of from model- 
theoretic to property-oriented specifications, of determinate, non-determinate and concurrent (parallel) 
programs and software. 

The border-line between model-theoretic and property-oriented is not sharp, as will also be illustrated 
in this tutorial exposition. 

1.4 What is a 'Method'? 
In this subsection we discuss and define the concept of 'method'.  

Although the 'M'  in VDM stands for 'method' ,  it is not quite clear whether VDM really qualifies to 
represent a full fiedged method. Let us define what we mean by a method: 

Def in i t ion 1 A method is a set of procedures for selecting and applying a number of principles, techniques 
and tools in order effectively to construct an effective mechanism (here: software). 

The present author would like, here, to emphasize that the facets of the method espoused in the current 
paper are far from definitive. 

The ultimate method would probably provide a calculus of design, much in the spirit of Leibniz -- 
calculus which uniquely determines how to express an abstract model, what to emphasize, etc., and how 
to transform such an abstraction into a realisation. 

The VDM is far from being such a method. At each step of abstraction and at each step of transfor- 
mation the developer (that is: the user of VDM) is asked to inject abstraction and realisation decisions 
that could make the specification and the implementation go one way or the other. 

A Discussion 

So VDM is far from being a method as determinate as for example Michael Jackson's Systems Design 
(JSD). Both JSD and VDM rests on fairly firm mathematical foundations -- although JSD carefully 
avoids burdening its users with having to be aware of those foundations. 

A superficial answer to a question of why VDM is not as strict a method as for example JSD would 
stress that JSD is aimed at a very well-defined, narrow segment of software development, whereas VDM 
claims to be far more widely applicable. Thus for a given application area, like for example the devlopment 
of compilers for Algol/Pascal like languages, VDM can be embellished with strict methodological steps. 

2 O v e r v i e w  o f  P r o c e d u r e s ,  P r i n c i p l e s ,  T e c h n i q u e s ,  and  "the"  
M e t h o d  

In this section we overview the components that together make up one view of what the 'Method' aspect 
of VDM is. 

2 .1  P r o c e d u r e s  

The procedures have to do with selecting among a variety of possible, or potential, principles, techniques 
and tools, and, having chosen such, with applying them according to their intentions. Thus selection 
pre-supposes that alternative principles, etc., at appropriate steps of development (specification and 
implementation), are available. We shM1 illustrate such possibilities. 



2 . 2  P r i n c i p l e s  

We distinguish betwen general, concrete, methodological and philosophical principles. 

2.2.1 G e n e r a l  P r i n c i p l e s  

General principles are centered around the model-theoretic approach: that  of constructing, using math- 
ematics, couched in some specification and programming language notation, an abstract model (an ab- 
stract specification) of the software to be implemented, and that  of transforming such a specification to 
a realisation. 

Facets of general principles include: (i) analysis of existing artifacts and theories - -  from, or bused, 
on which abstractions are constructed, (ii) combination of design and analysis, (iii) decomposition and 
reduction, (iv) abstraction, (v) limits of scope and scale, (vi) divide and conquer, (vii) the impossibility 
of capturing everything desired, etc. 

We shall, in this introductory overview, of general principles, focus on abstraction. 

2.2.2 C o n c r e t e  P r i n c i p l e s  

Concrete sub-principles are those of for example: (i) the iterative nature of development, (li) representa- 
tional and operational abstraction, (iii) denotational and computational semantics, (iv) applicative and 
imperative function definitions, (v) hierarchical and confignrational development and/or  presentation, 
(vi) identification and discharge of proof obligations, etc. 

We shall in this tutorial overview focus on items (li)-(iv) only. 

2.2.3 M e t h o d o l o g i c a l  P r i n c i p l e s  

Facets here are: (i) the reduction principles: the whole : the sum of the parts, (ii) discreteness of 
development: separation of case analysis, induction, abstraction, etc., (iii) embedded nature of software: 
impact of context, environment and enclosing system (problem domain dependencies), etc. 

In the present paper we shall not have space for il lustrating these methodological principles in detail. 

2.2.4 P h i l o s o p h i c a l  P r i n c i p l e s  

Facets here are: (i) prevention is better than cure - -  which, to us, translates into: develop provably 
correct software, ie.: (ii) proof of properties rather than test for satisfaction, (iii) provision of a method 
that  allows from strict formal, via rigorous, to relaxed systematic usage, MI the while allowing for example 
systematic method uses later to be tightened ("repaired ~) to rigorous and formal uses, etc. 

In the current overview we shall not illustrate items (i-ii), and, of (iii), only illustrate the rigorous and 
systematic uses of VDM. 

2 . 3  T e c h n i q u e s  

The techniques fall into three categories: specification, implementation, and proof techniques. 

2.3.1 Spec i f i ca t ion  Tec h n iq u es  

Within the specification techniques we can mention (i) explicit function definitions versus function defi- 
nitions by a pair of pre-/post-conditions; (ii) definition of the semantics of GOTO programming language 
constructs by means of either a direct semantics, a continuation semantics, a resumption (style) seman- 
tics, or, as was quite common in VDM, by means of a so-called exit mechanism; (iii) the definition of 
composite (set, tuple or map) objects by means of (set, tuple, respectively map) comprehension - -  as 
contrasted to recursive object constructions; etc. 

We shall illustrate a number of such techniques - -  and refer to the literature for illustrations of other 
techniques. 



2.3.2 I m p l e m e n t a t i o n  Techn iques  

The three major implementation techniques are: (i) data reiflcation - -  in which abstract objects are 
injected into (represented by) more concrete objects; (ii) function transformation - -  in which, for example, 
recursive function definitions are transformed into imperative, iterative ones; and (iii) transformations of 
pre-/post-specified operations into concrete progrvans. 

We shall very briefly illustrate data reification, and otherwise refer to the literature for illustrations 
of function and  operation transformations. 

2.3.3 Proo f  Techn iques  

Proof techniques apply either to proving properties of a specification (whether abstract, or of an imple- 
mentation), or to proving properties of a pair of specifications (one being abstract, the other supposedly 
being a step of realisation, a transformation - -  of the former). 

Subsidiary techniques relating to the latter involve the use of representation (injection) and abstraction 
(retrieval) relations, respectively functions. 

2 . 4  T o o l s  

The tools ~te either intellectual or material. The foremost intellectual tool is the specification language 
(viz.: Meta IV). Common material tools are: syntax directed editors, type checkers, etc. 

2 . 5  " T h e "  Method 
The specific methodological instantiation of procedures, principles, techniques and tools (particular to 
VDM) normally prescribes the ordered establishment of a number of specification components - -  such 
as outlined in section 8, see contents listing above for a brief summary. 

In creating definitions of semantic domains, and their invsriants, syntactic domains, and their well- 
formedness~ and of semantic and auxiliary functions, one then applies the principles, techniques and 
tools. 

m In te r lude  

Our presentation of techniques, to follow, in the next sections, 4-7, is presented eonfigurationally, bottom- 
up. Section 2, above, presented the 'problem' top-down, hierarchically. 

3 Opera t iona l  Abs t r ac t ion  

In order to usefully express manipulations of "real world" or ~imagined world" objects we must choose 
representations of (primitive) operations and (defined) functions. 

De f in i t i on  2 By an o p e r a t i o n a l  a b s t r a c t i o n  we understand a [possibly formal] specification of opera- 
tions and f~nctions [on objects] - -  again - -  (1) irrespective of any possible ezternal world manifestation; 
(2) irrespective of any computer realization of such functions; and (3) such that the function specification 
concentrates ('as far as possible') on properties, i.e. in what the function computes - -  rather than how 
it computes its result. 

That  is: we either specify functions in eztension, by defining the input/output  relation; or we give an 
abstract in intension recipe, of algorithmic nature, of how the function might achieve its results. 

Which are then the 'real', or ' imaginary',  world 'things' to which we apply the principles of operational 
abstraction? 

Again we answer by stating examples: operational abstraction is applied when specifying manipula- 
tions on objects like directories, inventories, etc. Such manipulation may e.g. be: inserting new entities 
into- or changing or deleting entities of, or from, directories and inventories, and looking up information 
contained in such inventories, etc. 



Examples of operational abstractions are those of modelling 'the look-up in a directory of a phone 
number '  by 'the application of a map to an argument of its domain', similarly for inventory search, and 
'the listing of division department names' by 'taking the defining domain of the division map obtained 
by applying the organisation map to a division name argument'.  
It is here being stressed that we have a two-by-two situation: (i) we (may) wish to abstract from how 
manipulations of 'real world' objects take place in 'reality', and (ii) fIom how we implement them inside 
the computer:, and (i ') we wish sometimes to define functions purely in extension, by what they compute, 
as opposed to (ii ') defining functions in intension, by how the achieve what they compute! 

Also in the latter cases (i '-i ") - -  in extension versus in intension - -  we still wish to be abstract! 

3 . 1  F u n c t i o n  D e f i n i t i o n s  

Previous sections and sub-sections gave examples of direct, or putative, function definitions. Other 
sections and sub-sections have presented function definitions in the style of axiomatic specifications and 
by means o f p r e - / p o s t  (predicate) specifications. Let us briefly and informally review these distinctions. 

3.1.1 Di rec t  F u n c t i o n  Def in i t ions  

Assume sq to denote a square root function defined explicitly (say algorithmics/ly, using the Newton- 
Raphsons, NR, method), that is: 

1. t y p e  : 8q: RAT -~RAT 
.1 pre - sq(r )  ~ r > 0 
.2 ,q(r) ~ ~R~.xp,(r) 

The form NRB~,(r) is intended to be an expression (w i th ,  fxec) which somehow represents the Newton- 
Raphson method for taking squeare roots. The problem with the expression N R  is that it most likely is 
a rather convolute (ie. "tricky" to understand) expression. Reading it might not reveal, very easily, that 
it indeed does perform the desired function. Thus using N R  may not be a good abstract specification, 
but perhaps a good effecient, concrete coding of the problem. 

As we shall see later in this book, one can indeed define quite a lot of functions explicitly, and 
abstractly. 

Suffice the above for the time being as an illustration of the notion of direct (explicit, putative, 
constructive) function definitions. 

3.1.2 P r e - / P o s t -  Def in i t ion  of  F u n c t i o n s  

In contrast, a p r e - / p o s t  definition of sq could like like: 

2. ure - sq(r )  ~- r > 0 
.1 p o s t - s q ( r , r ' )  _~ Cr '  x r ' )  --  r 

- expressing very explicitly that sq is (to be) a square root function. That is: the above specifies a 
function - -  which then, later, has to be implemented. As a technicality, however [that is, as something 
that has less or nothing to do with the problem of specifying versus implementing, but rather with the 
specific problems of the square root function, ie. the speific problem at hand], we must remark that the 
above is probably too stringent a specification - -  one that can never be fully satisfactorily implemented. 
The technicality is that of approximating the result r ' .  Normally we would be content with an answer, 
r ' ,  satisfying: 

3. _~ost-~q( , , , , - ' }  - -  I ," - ( , "  × , " )  I_< 

where epsilon: e is some given (globs/) small value, or • is given explicitly: 



4. t v v e :  sq: RAT x RAT ~ RAT 

.1 vre-sq(r,~) ~ ( r > 0 ) ^ ( 0 < ~ < < l )  

.2 post.sq(Cr, e},r') ~ ((1 - e) x ,  _~ r '  x , '  < (1 + ~) × , )  

where << denotes the "much, much smaller than" relational operator. 
In this chapter we shall only introduce the three function definition styles• We shall not systematically 

cover aspects of how, when and where they are used (selected for use)• This will not be done extensively 
till we reach volume II. So we now go on to the axiomatic style of defining functions. 

3.1.3 A x i o m a t i c  F u n c t i o n  Def in i t ions  

Here we illustrate some axiomatic definitions. 
The problem we wish to tackle has to do with finding substrings of strings of char~ters.  We will not 

give a model of character strings other than saying (i) that ~ represents the empty (void) string, (ii) 
that if  s and r are strings (ie.: s, ~ E String), then s"r stands for the string whose first part is the string 
s and whose remaining part is the string r. 

We wish to define two functions: B (for 'before'), and A (for 'after'): 

5. t y o e  : B : String x String --, String 
.1 t_vve : A : String × String ~ String 

such that B(r, s) yields the substring (or part) of s before the first leg-to-right occurrence of r, and 
A(r, s) yields the substring (or past) of s after the first left-to-right occurrence of r. 

To define B and A we introduce an auzAllary function/" (for initial substring): 

6. t Y D e  : 
• 1 ax iom:  

I: Str ing x String ~ BOOL 

(W,, ~ Str ing)( I (r , s ) -  (3t  ~ String)(v^t : s)) 

that  is: / ( r ,  s) is true if r is an initial substring of s. The axioms for B and A are now: 

7. ~ o m .  (w,s c string) (B(r ,s)~AA(, ,s )  = # 
.1 a x i o m :  (Vr, s t t ' , t"  E String) ((tt"rAt" = s) D I (B(r , s ) , t ' ) )  

The first axiom says that any string s containing at least one substring r, consists of a part before r, r 
itself, and a part after r. The second axiom says that B and A work with respect to the first occurrence 
of their first argument. If there is another way of decomposing s (s = t'%At ") then B(r, s) must be an 
initial part of t'. 

The specification of B and A is such that B(r, s) and A(r, s) are not specified to produce results if  r 
is not a part of s. 

Note that the two axioms "simultaneously", ie. in an "intertwined" way, define B and A. There is 
not (here) a single axiom - or a set of axioms - which only define all of B, respectively all of A. Even 
though the second axiom contains no explicit use of A, it constrains the implementation of A because of 
the way in which B and A are related by the first axiom. 

A p r e - / p o s t  definition of B, which specifies that r must be a substring of s, could look like: 

8. pre-B(r , s )  = (3~1,t2 E String)(s --41"r^t2) 
.1 vos t -B((r ,  sJ,t) ~= 
.2 ( 3t' E String) 
• 3 ((s = t ~ ^ t  ') 
.4 A('~Stl, t2 E String) 
.5 ((tl # t)^(¢'~ = t1-,^~2))) 

A similar p r e - / p o s t  definition of A is left as an exercise• 



3.1.4 Loose  [Function] Def in i t ions  

The pre-condition (vre-B) on application of B (ie.B(~, s)) is more constraining than the previous ax- 
ioms on B. And the post-condition on the square-root function, sq, permits a range (an infinity) of 
implementations. 

It is thus we see that descriptive, ie. pre-/post and axiomatic (axiom:), definitions are vague. 

But this vaguesness, in the cases shown, was on purpose. Any implementation which satisfies such 
purposefully vague definitions is acceptable. It is, however, not only descriptive function (and, in general, 
object) definitions that can be made purposefully vague. Also prescriptive (explicit, putative, or direct) 
definitions can be loosened up to allow for a range of implementations. One way of doing so is through 
operational and representational abstraction - to be treated systematically in volume II. Another way 
is through the use of non-deterministic "function" definitions - ie. in reality: relation definitions. A 
specification construct is non-deterministic (or non-determinate) if its use in some expression form may 
denote either one from a set of values. 

Definitions, like the above, which leave certain aspects unspecified are neither imprecise nor ambigu- 
ous. They specify those aspects in which we are interested and have left open those things in which we 
are not, at first, interested. Thus such definitions leave choices open for later design stages. 

We call such (purposefully vague) definitions for loose  specif icat ions .  Space does not here permit 
us to single out two sub-classes of loose specifications: non-determinate and under-specified. 

3.1.5 C o n c l u d i n g  R e m a r k s  

We have given three seemingly distinct ways of defining functions. In the previous sub-section we have 
indicated, and we shall throughout the book illustrate, that these three definition styles are but points on 
a "continuous" spectrum of definition styles. That is: a function basically defined (or planned expressed) 
in the prescriptive style may contain relational or non-deterministic constructs such that the function 
definition, as a whole, is non-determinate by containing descriptive parts. Etcetera. 

One could argue that descriptive definition styles are more abstract, and are less bound to imple- 
mentstional bias than is the presecriptive style. In fact one could successfully argue that the descriptive 
style " s pec i fy " ,  whereas the prescriptive style i m p l e m e n t s .  That is: one could think of mechanising 
the interpretation of prescriptively defined functions, but one must abandon such thoughts of evaluating 
descriptively defined functions. Mechanizing the latter would entail, in its general form, a full theorem 
proving capability of the interpreter - and this would in general not be possible. Since even the basically 
prescriptively defined functions may contain, or rely on, descriptive parts, respectively defined auxJllary 
functions, we also abandon that thought even for direct function definitions. 

So, why do we also provide a direct (prescriptive) function definition since, as we have claimed, 
the descriptive styles are more specification-oriented? The answer basically is that it turns out, when 
specifying, that there are a large majority of definition situations where it either becomes very difficult to 
ascertain whether an axiomatic definition is consistent and complete, or it becomes exceedingly tedious, 
clumsy and voluminous to define functions descriptively, or both. In a sense it therefor becomes well 
nigh "impossible", and certainly we loose transparency and thus comprehensibility. In other words: the 
prescriptive definition style in reality is often more specification-friendly! 

One could now turn the question around: since, as claimed, we shall be using the prescriptive, ie. 
the model-oriented approach more often, why do we still allow descriptive definition components? The 
answer here reflects a pragmatic attitude, and goes as follows: we do so because there are specification 
situations, especially in defining auxiliary functions, and increasingly a larger need for such auxiliary 
functions arise in design stages, where the definition of such functions is best, ie. most succinctly, done 
in the descriptive style. 

The above concluding remarks may seem abstract - as they are presented here, early on, without 
much evidence, ie. with only very few examples. We beg the reader's patience - our points will 
be amply illustrated in these volumes, and we shall then have ample opportunity to refer back to the 
discussion of the present sub-section. 
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3.2 Proof Obligations 

Prescriptive function (and other object) definitions are model-oriented. That is: the functions and hence 
all the objects it manipulates do exist, at least in some constructive, mathematical universe. This is not 
necessarily the case for the descriptive definition style, which, in analogy, we also term: property-oriented. 
In the latter the objects (incl. functions) are postulated. Since they are basically described through the 
use of predicates (axioms, p r e - / p o s t  conditions), one is faced with the burden of showing that there is 
at least one interesting, ie. non-trivial model for those axioms (etc.). We need to show so since we aim 
at implementing the specified thing within the computer. 

We say that specifying objects (incl. functions) axiomatically (ie. in general, descriptively, through 
their properties) ge ne ra t e s  a p r o o f  ob l iga t ion :  we are obliged to show existence of an object (of a 
function) which satisfies the description. Since we are concerned with computation we have, in addition, 
to show that the object (the function) is computable! 

So for every pair of p r e - / p o s t  conditions, purportedly defining a function, an i m p l e m e n t a b i l i t y  
proof obligation arises. And similar for a set of axioms together charaeterising a set of functions; also 
here implementability proof obligations arise. 

The form of the i m p l e m e n t a b i l i t y  t h e o r e m  for p r e - / p o s t  specified functions is as follows. In 
general we have: 

9. t v v e  : f  : D --* R 
.1 v r e - f  : D --, B00L 
.2 p o s t - f  : D x R  --* B00L 

The pre-condition pre- f (d)  says: 

10. p re - / (d)  D (3r  E R)( f (d)  = , )  

The post-condition p o s t - f ( d , r )  says: 

11. vos t - f ( d ,  r) D v r e - f ( d ) ) ^ (  3 f  E (D -+ R))( f (d)  : ,)  

Hence the implementability condition is: 

12. (Vd E D)((pr~-f(d)  D ( 3r E R) (pos t - f (d ,  r)))) 

4 R e p r e s e n t a t i o n a l  A b s t r a c t i o n  

D e f i n i t i o n  3 By a r e p r e s e n t a t i o n a l  a b s t r a c t i o n  we understand a [possibly formal] specification of 
domains and instances of objects (1) irrespective of a number of 'real world' properties of the modelled 
phenomena, and (2) irrespective of, or, more apprpriatelv: with no bias towards, any possible realization 
of such objects. 

To paraphrase the latter: we do not take into consideration, when specifying objects and their Domains 
abstractly, how we may wish, or be able, to implement these objects. Furthermore the representational 
abstraction attempts to model 'as closely as possible' only relevant and intrinsic properties. 

Which are the 'real', or ' imaginary',  "worldly" ' things'  to which we then apply the principles of 
representational abstraction? In an attempt to stay clear of philosophical issues (of e.g. epistemologieal 
nature) we give an operational answer to the above question. 

Examples of ' things'  subjected to representational abstractions are: (the concept of) telephone direc- 
tories, ( . . . )  inventory lists, and ( . . . )  company organizations (viz.: organisation charts). 

Examples of representational abstractions are: directories are seen as maps from names (and ad- 
dresses) of telephone subscribers to telephone numbers; inventory lists are seen as maps from part num- 
bers to quantity on hand and where stored; and company organisations are seen as maps from division 
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names to divisions, where divisions are seen as maps from department names to departments, where 
departments are seen as maps from . . .  etc. 
It is here being stressed that we deal with two abstraction concerns: (1) abstracting away what is consid- 
ered irrelevant properties of 'real world' object phenomena, and (2) abstracting from how to implement 
these inside the computer. 

We now illustrate the notion of representational abstraction while at the same time illustrating four 
basic composite data type abstractional facilities of VDM. 

4.1  S e t  A b s t r a c t i o n s  

Sets, as an abstract data  type, is an an~liaxy ~work horse", used in many contexts, as will be seen below, 
hut not itself a prime vehicle. That  is: few every day notions, such which we are to model abstractly, 
directly "asks" for one in terms of sets. But let us try anyway. 

4.1.1 A D e m o g r a p h i c  D a t a b a s e  - -  an  E~Ample  

In this example the following 8 points (i-viii) characterise the problem: 

(i) a State consists of a set of Counties; 

(ii) s County consists of a set of distinct communities (hamlets, villages, towns, and cities - all consid- 
ered on par); 

(iii) each Community consists of a distinct set of Households; 

(iv) and each Household consists of a set of Persons. 

(v) Each Person is uniquely identified - by some county-wide unique numbering system. 

(vi) No two counties have identical households. 

(vi) No two otherwise distinct Households of a State have Persons in common; 

(viii) and a Household (a core-family) may live in several counties, but not in several communities within 
the same county (don't ask why!). 

Any of the descriptions (i-vi) give rise to respective Domain definitions; descriptions (vii-viii) give rise to 
invariance definitions: 

S = C-set  (1) State 
C = V-set (2) County 
V = H-set  (3) Community ( . . . .  Village . . . .  ) 
H = P-se t  (4) Household 
P = TOKEN (5) Person 

Characterisation (vi) justify Domain definitions (1-5) since it implies no two Communities with two or 
more identical households, etc. 

Now to the invariance: 

13. inv-S(s) ~ No~HiSC(s) A NotSH2iC(s) 

The first predicate No2HiSC (short for: no two otherwise distinct households in the same state have 
persons in common) models (vii), and NotSHieC (for: not same household twice in same county) models 
(viii): 

a4. No~HiSCO) ~= (Vh,h'~ mS(s)) ((h # h') Z ((h n h') : {})) 
14.1 t y v e  : No~HiSC: S ---} BOOL 

where: 
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15. HiS(s) ~= union union s 
15.1 t y p e  : HiS: S --. H-set  

computes all households of a state. 

16. NotSH2iC(s) ~ (VcEs)(Vv, v'Ec) ((v¢v')D((vNv') = {})) 

16.1 t v v e  : NotSH2iC: S --* B00L 

If there is more than one community in a county then they must not have households in common: 

17. NotSHeiC(s) ~= (VcEs) ((e~dc>e)D('mterseetc --- {})) 

is another way of expressing (viii). That  is: functions (16.) and (17.) are identical in extension (but not 
in intension). 

4.1.2 T h e  Set  M o d e l l i n g  P r i n c i p l e  

We are ready to summarize the essence of the above example. 
The question to be answered is this: when should you use the set data type abstraction in your 

abstractions? An informal answer is for example: 

• When the object being subject to abstract modelling posseses a composite property such that it 
can be regarded as a finite collection of unordered, un-dlstingnished, but distinct elements, then a 
set abstraction seems reasonable! 

• If, furthermore, manipulations of the object may involve arbitrary selection of component (sub- 
)objects, removal or addition of distinct objects, etc., then a set abstraction seems further motivated. 

The above modelling principle is just a rule-of-thumb. It is vaguely formulated. It cannot be more 
precisely stated! Once you have digested the contents and the similar modelling principles of the next 
three subsection you will better appreciate why the principles must necessarily be approximate. 

The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if  you are 
' told':  Some facility consists of an unordered collection of distinct, further un-dgstinguished things etc., 
then yon should consider whether a model based on a set abstraction is otherwise appropriate; and (ii) 
vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly even 
inconsistent "specification", you should analyze that description with spectacles viewing "it" (the thing 
spoken about by the "specification" ) from the point of view of: is a set abstraction an appropriate choice? 
(You may find, in the latter case (ii) that it either fits, or does not; if  not, then perhaps any of the other 
composite data  types [tuples~ maps, trees] may be used.) 

4 . 2  T u p l e  A b s t r a c t i o n  

4.2.1 K e y W o r d - I n - C o n t e x t ,  K W I C ,  P r o g r a m  - -  an  E x a m p l e  

This example sub-section has several sub-parts, and otherwise presents the problem in a more pedantic 
style than were the examples above. First we are given a problem formulation. We then, very briefly, 
analyze this given formulation. From the informal formulation and, as a result of the analysis, we 
(informally, yet somehow) systematically 'derive' our formal model. Finally we discuss our particular 
model and variants thereof. The purpose of this example illustration is then to show some of the aspect 
of going from fixed, by others given problem formulations to models, and the problems posed by such 
oftentimes incomplete (or, but not in this case, inconsistent) informal formulations. 

4.2.2 T h e  G i v e n  P r o b l e m  

We are given the following informal, english language program specification: 
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"Consider a Program which generates a KWIC Index (KeyWord-In-Context). A title is a 
list of words which are either significant or non-sigmficant. A rotation of a list is a cyclic 
shift of words in the list, and a significant rotation is a rotation in which the first word is 
significant. Given a set of titles and a set of non-significant words, the program should produce 
an alphabetically sorted list of the significant rotations of titles" 

An example of input and output is then given: 

" T i t l e s  : 

THE THREE LITTLE PIGS. 

SNOW WHITE AND THE SEVEN DWARWES. 

Non-s ign i t l can t  W o r d s  : 

THE, THREE,  AND, SEVEN 

O u t p u t  : 

DWARFS. SNOW WHITE AND THE SEVEN 

LITTLE PIGS. THE THREE 

PIGS. THE THREE LITTLE 

SNOW WITHE AND THE SEVEN DWARFS. 

WHITE AND THE SEVEN DWARFS. SNOW" 

4.2.3 Discuss ion  o f  I n f o r m a l  P r o b l e m  F o r m u l a t i o n  

We now analyze the problem statement. The point of our analysis is to isolate concepts, discover incom- 
pleteness and/or  inconsistencies, etc. 

(1) The informal problem formulator already isolated some concepts; these appear itaiizised in the text. 
Other concepts potential]y useful in, or for, our further work are: List, word, cyclic shift, first, set, 
and alphabetically sorted. 

(2) Some concepts are problem-oriented: Title, words, significant, and non-significant. Other concepts 
are more abstract, explication-oriented: list, rotation, (equal to) cyclic shift, first, set, and [alpha- 
betically] sorted. (Our modelling will basically center around, or express, but not necessarily all of, 
these concepts.) 

(3) The descriptive paragraph does not deed with punctuation marl~; period ( " . ' )  is not isolated as a 
concept, but it occurs, as a marker, in the rotations. Also: words a~e not further explained. We 
take these to consist of letters. And we assume some given alphabetical order of, or among, both 
upper- and lowercase letters. Blanks appear, but noting is said about their relation to the ordering 
of titles. 

(4) Nothing is said about duplicate occurrences in the input or output. The input title "XXX XXX" 
might thus give rise to e.g. two output rotations! 

(5) Finally nothing is said about the concrete input and output presentation: carriage returns, new 
lines; respectively single or multiple column printing and display and the ordering within multiple 
columns: whether by row or by column. Etc. 

4 . 2 . 4  A s s u m p t i o n s  a n d  Dec is ions  

4 . 2 . 5  - -  P r o g r a m  A s s u m p t i o n s :  

In order to proceed into a modelling phase we make the following assumptions: 

(1) We ignore punctuation marks. 

(2) We assume 'alphabetic sorting' to apply to all of the text of a title. 

(3) We omit multiple (duplicate) occurrences of [rotated] titles in the output, i.e. we list (generate) 
only one copy. 
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4 . 2 . 6  - -  M o d e l  Dec is ions :  

Our modelling will be based on the following decisions: 

(4) We assume an ordering relation: 

1 8 .  t v v e  : WOrder:  Word x Word -* B 0 0 L  

(5) That  is, we assume a Domain of words: 

19. Word 

- not further specified. 

(6) We do not abstract away blanks - -  since blanks (in general punctuation marks) are needed to 
delineate words. 

(7) We abstract, as suggested by the informal formulation, both the presentation of input and output. 
(This issue will be a pressing one the 'closer' we get to a realization - -  and should, we seriously 
believe, be specified, in detail, before implementation is properly begun.) 

Since we ((1)) ignore punctuation marks, including end-of-title marker, such marks will not be modelled 
either. 

The major model decision is that of giving a model, in particular one in the style that this book 
advances. 

4.2.7 Model 

The presentation of the model will follow, in sequence, the way in which it was derived. That is: we 
decide, in a first, suceessfull, at tempt to model first some of the individual concepts outlined or italisized 
above. Then we bring all aspects together in the specification of the input/output Domains and the one, 
major program function (i.e. the specification of the program itself). Finally we specify the auxilliary 
functions introduced by the major program specification. 

In this example the modelling of the auxiliary concepts turned out to be of direct use in the subsequent 
[main] model. 

4 . 2 . 8  - -  A u x i l i a r y  N o t i o n s  

"A t i t le is a list of words" leads to the following (main) Domain: 

20. Tit le  = Word  + 

"A rotat ion of a list is a cyclic shift  of the words in the llst": 

21. t y p e  :Rogations: Title --* Title,  s e t  

21.1 Rota t ion , ( t )  ~ {rot( t , i }  [ i6 ind t}  

22. t y p e : r o t :  Title x N1 -* Title 

.1 rot( t , i}  ~- <t[j] I i < j <_ l e n t  >^<t[k] t I <_ k < i > 

22.2 ,,~e, rot(t,O a OemdO 

"first word": 

23. t y p e  :Firs t :  Tit le  --* Word 

23.1 Firs t ( t )  ~= h d t  
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"is significant" (w.r.t. a set of non-significant words): 

24. t y p e  :Is-Significant: Title x W o r ~ g t ~  BOOL 

24.1 Is-Significantfl, ws) ~= ~(First(t)  Ews) 

We choose to model "alphabetical  sort", rather  than "is alphabetically sorted" - -  leaving the latter as a 
variant  exercise: 

25. t y p e  :A-Sort: Ti t le-set - ,  Title + 

.1 vre.A-Sort(ta) ~ t r u e  

.2 vost -A-Sort( ts , t l )  ~= 

.3 (e lemst l  = ts) 

.4 A(lfilltl = card e lems  tl} 
25.5 A Ordered(tl) 

Line 25.3 secures tha t  all (rotated) titles in the set, and only such, appear in the t i t le output  list; and 
line 25.4 secures tha t  there are no duplicates. 

26. t y v e :  Ordered: Title+--* B00L 

• 1 Ordered(tl) ~= 
26.2 (Vi,f-Jll.dtl}O<j D T-Order(tl[i],tl[j])) 

27. t v o e  : T-Order: Title x Title --, BOOL 

Let there be given two titles t l  and t2. Assume t l # t 2 .  For T-Order(tt , t2) to hold either (i) W- 
Order(P~t~tl.hdt2) or (il) there is u proper prefix, t, of bo th  t l  and t2 such tha t  t l  = t ~ ,  emd t x = f~t 2 
such tha t  either t~ = < > and t ~  < >, or bo th  t~#  < > ~ t~ and W.Order ( k d ~ , h d ~ ) :  

2s. _ore-T-Order(t~, t2) a (< > #tl #t~ #< >) 
.1 T-Ordcr(tx, t2) 
.2 (W-Order(kf]tl ,  hdt2) 
.3 v (~t,~ A e  Title) 

.5 ^(((tq=< >)A(t',#< >)) 

.6 vCCtq# < >#tq)  ^ W-Orde,'(~ tq,l~l r2))))) 

4.2 .9  D o m a i n s  

"Given a set of titles and  a set of non-significant words": 

29. Input = Title-set x Word-$et 

"the program should produce s . . .  list . . .  of titles": 

30. Output = Title + 

4.2 ,10  T h e  M a i n  F u n c t i o n  

The main  function is expressed as: "Produce an alphabetically sorted list of the significant rotations of 
tit les": 

31. t y v e  : KWIC:  Input --* Output 
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Again we choose to express the definition of K W I C  in terms of a pair of p r e - / p o s t  conditions: 

32. pre-KWIC(in} ~- t r u e  

.1 post-KWIC(in,  out) A= 

.2 Signif-Rots(in, out) 

.3 A Ordered(out} 
32.4 A No-Duplicates(out) 

4.2.11 - -  A u x i l i a r y  Func t ions  

33. t v v e  : Signif.Rots: Input x Output --, BOOL 

.1 Signif-Rots(in, out) 

.2 All-Rots(in, out) 
33.3 A Only-Rots(in, out) 

34. t y p e  :All-Rots: Input x Output ~ BOOL 
34.1 t y v e :  Only-Rots: Input x Output --* BOQL 

The All-Rots predicate checks that the output contains all significant rotations inplied by input. The 
Only-Rots predicate cheeks that the output does not contain other such rotations: 

35. All-Rots((ts, ns),tl) ~= 
.1 (vt  ~ ts) 
.2 (¥t~ E Rotations(t) 

35.3 (Significant(t',ns} 3 (t 'E el~m~ tl)} 

36. Onlv-Rots((ts, ns),a) 
.1 (Vt'G ~lems t/) 

36.2 (3 !t E ts)(t'E Rotations(t)) AIsSignificant(t',ns)) 

37. t r u e  :No-Duplicates: Title + ~ B00L 

.1 No-Duplicates(tl) ~= 

.2 EITHI~.R: c a r d  e lemst l  = lentl 
37.3 OR: (Vi, j~indtl)(i#j  D tl[i]#tl[j]) 

Observe that although we defined it, we never actually found a need for deploying the A-Sort function. 
Such "things" happen when modelling bottom-up, configurationaUy! 

4.2.12 T h e  Tuple  M o d e l l i n g  P r inc ip l e  

The question to be answered is this: when should we apply the tuple data type in our abstractions? The 
answer goes somewhat like this: 

When the object being subject to abstraction possesses a composite property such that its 
components can best be thought of as being ordered (rather than un-ordered) and such that it 
is natural to speak of a first, a second, etc., element, then a tuple abstraction seems reasonable. 

If, furthermore, manipulations of the object may involve composing pairs (or sequences) of 
such objects, as in infix (or distributed) concatenation, or involve inquiring about its length, 
or about the set of its elements, etc., then a tuple abstraction seems further motivated. 

The above modelling principle is a guide-rule. There is nothing absolute about it. It is really not a 
law cast in concrete. To model abstractly is an art. The discussion at the end of subsection 4.1.2 apply 
equally well here. 
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The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if you are 'told': 
Some facility consists of an ordered collection of not necessarily distinct, further un-distinguished things 
etc., then you should consider whether a model based on a tuple abstraction is otherwise appropriate; and 
(ii) vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly 
even inconsistent "specification", you should analyze that description with spectacles viewing "it" (the 
thing spoken about by the "specification") from the point of view of: is a tuple abstraction an appropriate 
choice? (You may find, in the latter case (ii) that it either fits, or does not; if not, then perhaps any of 
the other composite data types [sets, maps, trees] may be used.) 

4 . 3  M a p  A b s t r a c t i o n s  

4.3.1 D i r e c t / R a n d o m  Access  Fi les  - -  an  E x a m p l e  

In this section we illustrate abstractions of rather conventional file systems: their objects (files, records, 
etc.) and operations (read, write, etc.). 

4 .3 .2  S e m a n t i c  D o m a i n s  a n d  S e m a n t i c  O b j e c t s  

- -  Fi le  s y s t e m s  

The files of our system are uniquely identified, that is two or more otherwise identical fries must be 
distinctly named. Let FILE and Fnm denote the Domains of further u-explained files, respectively file 
names. Then: 

38. fs: FS = Fnm ~ FILE 

is a Domain equation. The identifier FS (by the use of the equality sign, =) denotes the same thing as 
does the right-hand-side Domain expression, namely a Domain of maps from file names to files. Thus: 
any file system, an object (let us ca~ it fs) in FS, consists of an otherwise unordered collection of uniquely 
named files. 

Let suitably decorated f ' s  (be identifiers which) denote distinct file names, and let suitably decorated 
file's denote (not necessarily distinct) files, then the expression: 

39. [ fl ~-~ filei ,f2 ~ file2 ..... fn ~-' ]lien ] 

denotes a file system. [] denote the empty file system. 

- -  F i les ,  K e y s  a n d  R e c o r d s  

We choose to illustrate so-called random access files, ie. files whose components (which we could call 
"records" ) can be retrieved ("read") on the basis only of a so-called "key". Thus there is a notion of files 
consisting of records, and of these records being (uniquely) retrievable on the basis only of a key, which 
is often considered part of the record, and which is otherwise unique to each record of a file. We choose, 
here, to call that part of a record which is not the key (ie. the record exclusive of its key) for the data 
part of the record. A record hence consists of two parts: a key and a data part. To sum up: a file is 
an unordered collection of records. Since these are uniquely identified by their key part, we take a file 
to be a collection of uniquely keyed data parts. Let the identifiers Key and Data denote the Domains of 
respectively keys and data parts, then, on one hand: 

40. file: FILE = Key m Data 

defines files to be maps from keys to data. On the other hand, and maybe not so useful here: 

41. r: Record = (Key × Data) 
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defines a record to be a pair consisting of a key and a data part. Let suitably decorated k's and d's (be 
identifiers which) denote keys, respectively data - -  the former assumed distinct, the latter not. Then: 

[kt~-,dl,k2~-,d2,...,km~--.,dm] 

Expressions (44 . -47 . )  
could be: 

47. f i le\{k} 

were "informal". More "formal", "closed-form" descriptions of these operations 

48. t y p e  : Write: Data × FILE --* FILE x Key 

.1 t v v e  : Update: Record x FILE -~ FILE 

.2 t y p e  : Read: Key × FILE ~ Data 

48.3 t y p e  : Delete: Key × FILE -+ FILE 

where we assume (ie. edict!) that the write operation itself shall generate, use and return a suitable key: 

denotes a file, with eg.: 

42. , :  (k,d) 

denoting a record (r). We shall presently leave the Data Domain further unspecified. 

- -  P r i m i t i v e  F i l e  a n d  Fi le  S y s t e m  O p e r a t i o n s  

A number of operations will now be defined on files and file systems. First "informally" formalized, 
subsequently "closed-form" (function definition) formalized. Let potentially decorated file's, k's, d's, 
frtm's and fs 's  be identifiers which which denote files, keys, data, file names and file systems, ie. let: 

43. fileEFILE, kEKey, dGData, fnmGFnm, fsGFS 

Then i l k  is not the key ofemy record in file, ie. if  k~[l~i~ fde, then: 

44. file u [k ~ d ] 

denotes a file which is like file is except that it now also contains the record (k, d), that is: we can interpret 
(ie. understand, or take) the above expression as describing the essential aspect of writing a record to a 
file. 

If, instead, k is already a key of some record in file (namely record: (k, fde(kJ)), then: 

45. file +[ k ~-* d ] 

could be used for expressing the update of a file, file, record with key k to a new data part, d. The 
wording above is a bit "dangerous". Nothing "happens" to file fde. All we axe expressing is some other 
file which is like fde is, except that whatever the record with key k had as data  part in file, in this other 
file the record with key k ("now") has data part d. 

If  k is the key of some record in file then the data  part of that record cem be read: 

46. file(k) 

To express deletion of the record with key k from a file file we write: 
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49. Write(d, fde) ~= 
.1 ~ k E K e y \ d o m  file 

49.2 (file U [k ~-, d],k)) 

5o. Update((k,d),fil~) 
.1 i f  k ~ file 
.2 t h e n  file +[ k ~-* d ] 

50.3 e lse  u n d e f i n e d  

We could have defined update unconditionally - -  to just contain (45.) as the function definition body. 
Doing so would, however, lead to ~update" usable also for "write" purposes - -  as the map override 
operation, +,  does not require, in this ease, k, to be already in the domain of, in this case fl/e. 

51. Read(k,file) zx 
51.1 i f  k E d a m  fde t h e n  fde(k) else ~ 

52. Delete( t , f i le)  ~ 
52.1 i f  k E d a m  fde t h e n  fde\{k} else u n d e f i n e d  

Similar remarks, as for update, apply to read and delete. Applying a map to an argument not in its 
domain "automatically" yields undefined - -  but we express ourselves "defensively". And: deleting s non- 
existing record doesn't change anything: however we prefer to be told of attempts to delete non-existing 
records, and use the undefined clause as a future reference point for inserting useful diagnostics when 
actually implementing eg. this file system! 

The expressions: 

53. file~ u 1lie= 

• 1 file1+ file= 

.2 file1 \ d a m  file= 
53.3 file1 ] d a m  fi/e= 

can, as a suggestion, be understood as modelling the following transactions: (53.) The merging of two 
files of distinctly keyed records• (53.1) The update of a master file, Jilel, with a (daily) transaction file, 
file2 - -  the latter permitted, now, to contain records with keys not in fdel, is. "new" records ~to be 
written" onto the new master file! (53.2) expresses the deletion of all those records from f i let  whose keys 
are keys of records in file2 w of course nothing is physically, or actually, "deleted" - -  as before (53.2), 
and for that matter  (53.-53.3 incl.), just  expresses (~new') files. (53.2) denotes a file which is llke fi/el 
is, except that it does not "contain" those records of filel which have keys in common with records of 
file=. Finally (53.3) expresses a file which is like filex is, except it only has those records whose keys are 
in common with records of fllez. 

As we did with set- and tuple-oriented abstractions of file systems (section 2.4, respectively 3.4.3), we 
now show imperative versions of some of the above operations: 

54. d c l  file :=  [] t v v e  : F I L E  

54.1 E = file nt F I L E  

55. t y p e  : write: Data -.~ (~  --, ~ x Key)  
.1 t y p e  :update: Record--,  (~  ~ ]2) 

.2 tTpe  : read: Key  - ,  (E ~, Data) 

55.3 t v v e  : delete: Key  --, (B =, ]3) 
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56. ~ t e ( d )  
.1 ( d e f k  GKey \dom c file; 
.2 f i e  :=  c file U [b--*d]; 

56.3 re turn  k) 

57. update(k,d) tx 
• 1 i f  k E d o m  e file 
.2 t h e n  file :=  g f i e  + [ k ~ d ]  

57.3 e l se  e r r o r  

58. read(k) A 
• 1 i f  k E d o m  e file 
.2 t h e n  (e file)(k) 

58.3 else e r r o r  

59. delete(k) ~= 
.1 i f  k E d o m  ~ f i e  
.2 t h e n  r~e :=  (_¢ f i e ) \ ( k }  
.3 e ~ e  c g r o g  

Given:  

60. t v •e  : F: FILE --, FILE 

60.1 t v v e  : R: Data --* Data 

we can define file sys tem and file (ie. "record sys tem")  processing functions: 

61. t y p e  : alP: (FILE ~ FILE) x FS ~ FS 

61.1 afP(F,fs) ~= [ [ ~  F(fs(f)) I f e d o r a  fs]  

62. d ¢ l f s  :=  [] t y p e  : F S  
63. ~ = fs mFS 

64. t y p e  : i f  P: (PILE--* FILE} --* (~ --* ~)  

.1 ifP(F) 

.2 (d_fif fns: dom_~  fs; 

.3 f o r  al l  f e f n s  d.__Q fs :=  e fs + ~f ~--*F((c fs)(f))]) 

65. 

.1 
65.2 

t y p e  : arP: (Data ~ Data) × FS --* FS 

arP(R,fs) 
[f~--~ [b-~R((fs(f))(k)) k E d o m  (fs(f))]l . fEdora  .fs] 

66. 
67. 
68. 

dc_._]l fs := [] t v v e  : FS; 
dc_.~l file := [] t Y v e  : PILE; 
E = (fs --* FS) t.J (file m FILE) 
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69. t y p e :  irP: (Data ~ Data) --* ~2--, ~)  
.1 irP(R) 
.2 (deffns: dora  e fs; 
.3 for ~U f ~ / ~ s  do 
.4 (f~e :=  []; 
.5 de_._f ks: dora  ((c fs)([)); 
.6 for  all k ~ ks do  

.7 file := ,: me u [~R( ( (~  f~)(f))(k))]; 
69.8 f~ : =  e f~ + [.ft--,g me])) 

4.3.3 T h e  M a p  M o d e l l i n g  P r i n c i p l e  

The question to be answered is this: when should we use the map data type in our abstractions? The 
answer goes somewhat like this: 

When the object being subject to abstraction possesses a composite property such that it can 
be regarded as a finite collection of uniquely distinguished elements then a map abstraction 
seems reasonable. 

If, furthermore, manipulations of the object may involve searching for a distinguished element, 
or extending the object with yet another such new, uniquely distinguishable element, etc., then 
s map abstraction seems further motivated. 

As was discussed earlier, the above modelling principle is a guide-rule, etc. The discussion at the end 
of subsection 4.1.2 applies equally well here! 

The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if  yon are 
' told':  Some facility consists of an unordered collection of distinct, uniquely distinguished things etc., 
then you should consider whether a model based on a map abstraction is otherwise appropriate; and (ii) 
vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly even 
inconsistent "specification", you should analyze that description with spectacles viewing "it" (the thing 
spoken about by the "specification") from the point of view of: is a map abstraction an appropriate 
choice? (You may find, in the latter ease (ii) that it either fits, or does not; if not, then perhaps any of 
the other composite data types [sets, tuples, trees] may be used.) 

4 . 4  T r e e  A b s t r a c t i o n s  

4.4.1 P r o g r A m m i n g  L a n g u a g e  C o n s t r n e t s  - -  an  Exa~aple  

The basic idea is to abstract from any concretely written form. How eg. statements are written: 

70. var : :  expression 
• 1 let var be expression 
.2 assisn expression to vat 
.3 expression ~ oar 

70.4 compute expression in oar 

or some such way, cannot be important• At least not when the "real" issue is "what does assignment 
mean?". Common to all of the above (70.-.1-.2-.3-.4), ie. the case of the assignment statement, is that 
it consists of two parts: one being the variable reference (denoting the location to which the assignment 
update shall occur), the other being an expression (denoting . . .  etc.). Thus, instead of writing some 
BNF grammer, like: 

71. < Assignment > ::= < Variable > : =  < Expression > 

which denotes text-string generation or analysis for the first (70.) of the above concrete forms, we write: 

72. Asgn :: Vid x Ezpv 
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Either of the above four concrete text string representations of assignment statements are now abstracted 
by the one abstract t~ee expression: 

73. mk-Asgn(var, ezpression ) 

where vat is the abstraction of 'vax', and ezpression the abstraction of 'expression'. 

We have just  iUustrated the representational abstraction of assignment statements. We now go on to 
illustrate the representational abstraction of other, typical, source language statements: 

74. I~ :: Ezpr x Iccons:Stmt x s-air:Strut 

abstracts the Domain of if-then-else statements, which syntatically consists of an expression and two (the 
consequence, and the alternative) statements. 

The 'while loop' statement Domain is (eg.) abstracted as: 

75. Wh :: Ezpr x Strut + 

That  is: a while-loop apparently consists of an expression and a statement list - -  concretely one such 
while loop statement could look like; 

76. 'while e do sl; s2; . . .  ; s~ od'  

or llke: 

77. " D O  WHILE (e); sl; s2; . . . ;  s,,; END " 

Observe that although we have written the Ezpr befoie the Strut" that does not always mean that in 
a(ny or some) concrete representation the corresponding concrete text for Ezpr precede text for Strut +. 
The example of the contrary is the 3rd, 4th, and 5th example (70.2-.3-.4) of concrete assignments versus 
the abstract Domain of Asgn. 

Observe also that whereas a BNF grammar generally specifies text strings (strings of characters), as 
opposed to eg. phrase-tree structures (ie. text strings annotated with their underlying phrase-stmeture), 
our tree Domain equations specify structured, eomposite, objects, ie. objects not subject to any "parsing" 
or analysis with respect to which structure they (might) have. This last point is often overlooked, or 
missed. Tree Domain specifications of the syntactic constructs of an(y) object language is a specification 
of already analysed (parsed) objects, ie. a specification of parse-trees rather than text strings. As we shall 
later see, we also use the tree data type for other than specifying (and manipulating) syntactic objects. 

To round up our example of illustrating the statement constructs of an ALGOL-like language we 
throw in some further examples, including some concerned with expressions: 

78. For :: Vid x Spec+× Strat+ 

is intended to define the Domain of abstract, ALGOL-60--1ike ~for loops", a concrete, schematic example 
of which is shown in figure 1. 

The dashed boxes enclose various, so designated phrase type components. (We shall later, in volume III 
chapter 4, explain and formalize the semantics of t l g o l  60-1ike for loops.) (The above dashed boxes and 
italicized words (at the root of arrows) are extraneous to the concrete example, but should illustrate the 
parts corresponding to the abstract tree Domain For.) Thus: 
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Figure 1: A Schematic, General For-Loop 

For Vid Spec + 

: ,.~.: .~_~.:..~. _ t_ :_~_ .~: . . . . . . . . . . . .  
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Strut + 

79. Spec = BT-Spec ] B-Spec ] Ezpr [ T-Spec 
80. BT-Spec :: Ezpr x Ezpr x Ezpr 
81. B-Spec :: Ezpr x Ezpr 
82. T-Spec :: Ezpr x Ezpr 
83. Ezpr  = . . .  

Since we apparently assume tha t  B-Spec (only by) and T-Spec (only to) specifications imply distinct 
semantics we must enable such a distinction syntactically. This distinction is afforded by the axiom on 
tree Domains: even though we use the same expression el and e2 in both by and to specifications: 

84. mk-B-Spec(q,  e2), 
84.1 ink .  T-Spec(et, e2). 

By the mere distinctness of the identifiers B-Spec and T.Spec the above two tree objects are distinct, and 
hence distinguishable. 

The Domain of all s ta tements  is referred to above as Strut, its proper definition is: 

as.  strut = a s g .  I I / I  w h  I For I . . .  

86. Asgn :: Vid × gzpr 
87. I f  :: Ezpr × Strut x Strat 
88. Wh :: Ezpr  x Strut + 
89. For :: Vid x Spec+x Strut + 

etcetera. Among expressions we have simple variables, constants, pre-, in- and suffix-expressions, condi- 
t ional expressions, etcetera: 
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90. E,~p,- : va,-  I C o n a  I P ,~  I zn /  I S u f  l Cond I . . .  
91. Vat :: Vid 
92. Const = Int9 I Bool ] . . .  
93. Pre :: Pop x Ezpr 
94. In f  :: Ezpr × lop x Ezpr 
95. Su] :: Ezpr x Sop 
96. Cond :: s_z-tst:Ezpr × s_.=cons:Ezpr x s_:-alt:Ezpr 
97. Pop = MINUS [NOT 1 . . .  
98. lop = ADD I SUB I MPY I DIv I AND l OR I . . -  
99. Sop : FAC I ' -  

100. lntg :: IITG 
101. Bool :: BOOL 

Some comments are in order: instead of defining syntactic designators for integers, ie. instead of defining 
numerals, and instead of defining similar designators for t ru th  values, we prescribe the denoted objects 
directly! T h a t  is we abstract  numerals by their denoted values: integers (or rat ional numbers, etc.). And 
we abstract  the syntactic markers designating t ru th  values by their denoted values. 

Note also tha t  we have jus t  used the meta-language quotat ion data  type: the underlined words, or 
identifiers, listed in the Pop, lop and Sop Domain definitions, are intended to abstract  the operator 
symbols which in some source language might be represented by - , - ~ , . . . ,  + , - ,  * , / ,  and, or, [ . . . . .  
i We refer to section 3.6 volume I chapter 3, for a concise t reatment  of this so-called QUOT data  type. 
Suffice it here to repeat tha t  QUOT objects s tand for themselves. 

Finally we note an "extreme" ease of a (cartesian product, or tree) Domain expression involving three 
occurrences of the same Domain identifier: Ezpr x Ezpr x Ezpr. For ease of (future) reference, ie. as an 
aid in documentat ion,  hinting at the various r61es the individual Ezpressions of conditional Ezpressions 
serve, we have "annotated" the Domain definition by suitably daosen mnemonics for the sub-component 
functions wMeh select the: "test",  "consequence" and "alternative" expressions. 

Our final syntactic Domain definition is intended to bring the whole apparatus  of set, tuple, map 
and tree da ta  type abstractions together, into one single Domain definition. The point is to il lustrate 
how abstract  we may wish to go when defining even syntactic objects, objects for which we are used 
to a rather pedantic,  concrete representation. The case in point is the ALGOL-like language construct 
"blocks". To carry our message as forcefully and clearly as possible, we think of a block as consisting of 
three things: declaration of variables, definition of procedures and a statementlist  body. 

102. Block :: Vars x Procs x Body 

We think, in this, very simplifying, case, of variables being declared by jus t  listing their identifiers (no 
type or other information), and we think of the order of listing of variable identifiers to be (semantically) 
immateriM: 

103. Vats : V/d-set 

We think of procedure definitions as consisting of two parts: a procedure identifier (the definiendum) 
and the rest: formal parameter specification and a procedure body (which is a block), and we call, ie. 
name the Domain of these rest's, Prc. Since we think of no two procedures of a block to have the same 
identifier we abstract  the procedure definitions as a map from identifiers to "rests": 

104. Procs : Pid m Prc 

Finally: 

105. Body = Stmt  + 

By subst i tut ing the last three definitions (back) into tha t  of Block we get 
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106. Block :: V/d-set x (Pid  m Prc) x Strut + 

where we "smuggled" in some (precedence-breaking-, or at least "text '-grouping-) parentheses around 
Procs. Here they cause no change in what is being defined. The above, last, Block definition wraps 
up all four abstract data types of the recta-language in one definition: trees, sets, maps and tuples. 
Although actual, ie. concrete representation of blocks syntactically must be linear, ie. ultimately ordered 
(in extreme: tuples of characters), we have here, in our abstraction, not only abstracted away concrete 
syntactic markers such as keywords and other delimiters, and ordering of sub-phrases, but two additional, 
similar, things have been obtained: the fact that no two variable declarations are (usually) allowed 
to introduce the same identifier (twice), and the fact that no two (or more) procedure definitions are 
(usually) allowed to use, ie. define the same procedure identifier (twice or more). We say that some of 
the contezt sensitive conditions of eg. a BNF specification have been solved, ie. done away with, in our, 
more abstract Domain specifications. Not all such context conditions can, however, be solved merely by 
using abstraction. 

To wrap up some, but not all loose ends of the Block Domain definition we partially complete: 

107. Prc :: F /d*x Block 
108. Strut = . . .  I Call 
109. Call :: Pid x Ezpr* 

4.4.2 T h e  Tree  M o d e l l i n g  P r i n c i p l e  

The question now to be answered is tiffs: when, in specifying software abstractly, do we use the tree data 
types? The answer goes something like this: 

When the object to be modelled - -  of some external, "real" world, or of some programming 
world, possesses a composite structure, and when that structure is fixed, ie. consists of a fixed 
number of components (of arbitrary composite or atomic nature), then a tree abstraction 
seems possible. 

If, further, manipulation of the object being modelled consists basically in taking it apart, 
into its constituent components, and comparing two structures (for equality, for example), 
then the tree abstraction seems justified. 

Etcetera. 

5 Applicative and Imperative Definitions 

A model, a specification, is applicative iff it is expressed solely in the applicative style, ie. based only on 
applicative constructs. A model is imperative if  it contains at least one imperative construct. 

Several examples have been give above using either style of definition. Hence: 
What  determines our choosing either the applicative or the imperative style? The question to be 

answered here is: when do we choose to introduce global state variables? 
The answer, is based on pragmatics, has several parts, and covers several facets, and goes somewhat 

like this: 

1. If the concept modelled (i) exhibits scqucntialism, ie. that certain object manipulations are done 
in certain orders, and (ii) if past creation of object values, once consumed, ie. once used in the 
subsequent (ordered, sequential) creation of new values, are never again used, then a meta state 
may be a proper thing to introduce. We shall illustrate this rule in volume IV chapter 3 on 
sequentialism! 

There are actually two notions involved here: (i) sequentialism and (ii) states. They obviously 
intertwine. Sequentialism cannot go without a state. 

2. The balance between having few versus many global variables is a choice determined by stylistic 
concerns: many variables lead to a need for few parameters to functions, and to few components of 
returned values. Few variables lead to many parameters and many result components. The more 
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global variables that are used in any one function definition, the more fide-effects are "potentially" 
hidden. 

6 Denota t iona l  and Computat ional  Definit ions 

Def in i t ion  4 A denotational semantics definition of, say a programming language, assigns to each prim- 
tive construct of the language (viz.: identifiers of variables, labels, procedures, etc.) a mathematical 
function (the denotation of the identifier), and otherwise ezpresses the semantics of composite constructs 
(homomorphicaUy) as a function of the semantics of each of the components of such composite constructs. 

Thus a denotational semantics ascribes functions, usually input /output  functions, that describe the i / i  
function of constructs. 

De f in i t i on  5 A computational semantics, in contrast, describes the ezecution behaviour of programming 
language constructs in terms of state sequences undergone while computing according to ~ m  (con- 
struct} prescription. 

We illustrate the important notions of Denotational and Computational Semantics by giving semantics 
to a common language of expressions. 

6 . 1  S y n t a c t i c  D o m a i n s  

Our example source language consists, syntactically, of expressions. Expressions ate either constants, 
identifiers or pre- or infix operator/operand expressions. Constants are (for simplicity) integers. Identifiers 
are just that. Prefix expressions has two parts: a monadic operator and an expression. Infix expressions 
has three parts: a dyadic operator and two expressions. Monadie (dyadic) operators are "plus", "minus", 
"factorial", etc. (and "add ' ,  "subtract", "multiply", etc.): 

110. Ezpr = Const I I d ]  Pre I Inf 
111. Const :: INTG 
112. ID :: TOKEN 

113. Pre :: MOp x Ezpr 
114. In/ :: Ezpr x DOp x Ezpr 
115. MOp = PLUS I MINUS I FAcT I ' ' '  
116. DOp = ADD I S0B I M r Y  I . . .  

(The above equations display, or exhibit, almost neghgeable representational abstraction: little "room" 
is given in this example for doing abstraction!) 

We observe how expressions have been recursively defined - - j u s t  as would be expected in a standard, 
concrete BNF grammar definition. 

6 . 2  S e m a n t i c  D o m a i n s  

Only constants have been representationally abstracted: instead of specifying numerals, we (directly) 
specify the integer numbers denoted. 

Identifiers occurring in expressions are bound to integer values, in something we shall call an environ- 
ment: 

117. p: ENV = Id m INTG 

The primitives of the language are: constants, identifiers and operators. Constants denote themselves. 
Identifiers denote integers - -  with their denotation being recorded in the environment. 
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6 . 3  The Denotational Semantics 

6.3.1 A u x i l i a r y  D e n o t a t i o n  F u n c t i o n s  

Operators denote certain arithmetic functions. 

118. DenOp(op) zx 
.i cases op : 
.2 PLUS ~ Az.z 
.3 MINUS ---* AZ.-Z 
.4 FACT -~ Az.z! 
.5 ... --# ... 

.6 ADD -~ Az.Ay.z+y 

.7 SuB --. Az.zy.z-y 

.8 MPY ~ Az.Ay.zx y 

.9 .,. --~ oo. 

.10 t y p e :  (MOp --* ( I l l r 6 ~  I~ITG)) I 
118.11 (DOp --* ('rllTGx "rlITG.... INTG)) 

In order that the semantic function can find the meaning (i.e. value) of an identifier it must refer to an 
environment which is therefore an axgument to the semantic function. 

6.3 .2  T h e  S e m a n t i c  E l a b o r a t i o n  F u n c t i o n s  

Without much ado we present the semantic function which, since expressions were recursively defined, 
itself is reeursively defined. 

119. 
.1 
.2 
.3 
.4 

.5 
119.6 

Vat-Ezpr(e)p = ~" 
c a s e s e :  

i n k - C o a s t ( i )  --. i, 
m k - I d ( t )  -~ p(e),  
m k - P ~ C , . , e ' ~  DenOp(, .)CVaZ-F~zpr(. ' )p) ,  
mi~-ln/(l,d,r) --* DenOp(d)(Val-Ezpr(1)p, Val-Ezpr(r}p) 

type : Ezpr -~ (ENV -% INTG) 

The functions M and F alluded to in the introduction (section 10.1) can now be stated: M is Val-Ezpr 
when the syntactic construct is an expression, and is DenOp when it is an operator. F is functional 
composition for the case of  prefix expressions: 

120. F(DenOp(m), Val-Ezpr(e)p) = 
120.1 DenOp(m )( Val.Ezpr(ejp} 

f u a ~ i o n  c e m p  o s i ~ i o n  

F is the composite of the "pairing" function with functional composition when the composite is an infix 
expression: 

121. F(Val-Ezpr(lJp, DenOp(d), Val-Ezpr(r)p) : 
121.1 DenOp(d )( Val-Ezpr(l/p Vat-Ezpr{r)p) 

That  is: we view the prefixing of an expression with a monadic operator, respectively the infixing of two 
expressions with a dyadic operator as (syntactic) operators - -  not explicitly written. And we then assign 
the meaning: 
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122. ~/ .~, . / ( , )  

to the (invisible) prefixing operator, and: 

123. ,Xz.Af.Ay.f(z,y) 

as the meaning of the (invisible) infixing operator. 
Instead of "juggling" around with the DenOp function and with what  to us are rather  convolute 

formulae of Val-Ezpr we syntactically sugar Val-Ezpr while factoring DenOp into the new V-Erpr: 

124. V-Ezpr(e)p ,x 
.1 c a s e s  e : 

.2 mk-Const( i )  --* i, 

.3 mk.Zd(t)  -4 p(e), 

.4 mk .Pre(m,e '  --* (lea v = v-gzpv(e')p ill 

.5 c a s e s  m : 

.6 PLUS --* v, 

.7 MINUS --* -v, 

.8 FACT ~ v/), 

.9 mk-Inf(l ,d,r)  ~ ~ Iv = V-Ezpr(l)p, 

.10 rv -- V-Ezpr(r)p ill 

.11 eases  d : 

.12 .4.pI~ ---* lv÷rv, 

.13 Sol~ -* lv-rv, 

.14 MPY ~ Iv×rv, 

.15 . . . . . . .  ) 
124.16 t v u e  : Ezpr ~ ( E N V ~  INTG) 

We are finally ready to summarize the type of the denotation of expressions, whether constants, 
identifiers or opera tor /operand  expressions. That  (general) type can be read directly from the type of 
the semantic function (119 or 124) above. The type of the meaning of an expression, i.e. its semantic 
type, is tha t  of a function from environments to integers: 

125. Ezpr: ENV z~ INT6 

The function is part ial  in t ha t  expression identifiers not in the domain of the environment lead to unde- 
finedness. For a constant ,  mk-Const(i),  expression the function is the constant  function which ~maps" 
any environment,  p, into i. For an identifier, mk-Id(t) ,  expression, e, the function maps any environment, 
p, into the integer, p(e), which that  identifier is associated with in those environments. If the identifier 
is not in the environment  u n d e f m e d i s  yielded. For the remaining expressions we refer the reader to the 
formulae of e.g. (124.), from which we also "read" the meaning functions of the two previous sentences. 

6 . 3 . 3  A n  E x t e n s i o n  

For the sake of making the computational semantics example a bit more interesting than it would other- 
wise be with the present source language of expressions, we extend this language. The extension amounts 
to the introduction of conditional expressions: 

126. Ezpr . . . .  [ Cond 
127. Cond :: Ezpr x Ezpr x Ezpr 

where we think of the semantics of "if  et t h e n  e, e lse  e~" as really specifying: " if  et=O t h e n  ee else 
e~ ' !  Thus: 
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128. 
.1 
.2 
.3 
.4 
.5 
.6 

V-E=pr(e)pE 
cases e : 

ink- Cond(t, c, a) -~ (I¢.t b = V.E=pr(qp i a  
i f  b=O 
then V-Ezpr(c)p 
else V-Ezpr(a)p), 

Thus F of a conditional expressions' semantic is that of "delaying" the evaluation of either the consequence- 
or the alternative expression till the value of the test expression has been obtained. More precisely: 

129. 
.1 

129.2 

M(t,c,a) 
= F(M(t ) ,M(c) ,M(a) )  
= Ap.('L¢ M(t)p---O then M(c)p else M(a)p) 

whereby F is expressible as: 

130. ,~p.~rna.~mc.Ara,.if m,(p) = 0 then ra=(p) d~e m=(p) 

where rr~, mc and m= now are the "meanings" of the "correspondingly" named syntactic objects: t, c 
and a. Observe how the "delay" is afforded by the "encapsulation" of final evaluations of c and a. 

6 . 4  A C o m p u t a t i o n a l  S e m a n t i c s  

6.4.1 I n t r o d u c t i o n  

The basic idea of the example of the next 2 sections is that of realizing the recursion of V-Ezpr of sections 
10.3-4 by means of ~tachs . Many realizations of the recursion of V-Ezpr are possible. We will, rather 
arbitrarily, select one. Volumes IV-V-VI will explore the unfolding of recursion onto stacks in a more 
systematic fashion. 

Before proceeding into a description of which stacks to create and how they are used we note that our 
stacks are not to be used for sorting out precedence of operators. Since we work only on abstract syntactic 
objects, all such precedence has already been resolved, and is "hidden" in the (invisibly) parenthesized 
sub-expressions. 

Thus we remove recursion in the function definition (of V-Ezpr) by introducing (one or more) stacks. 
At the same time we change our definitional style from applicative to imperative. This is not an intrinsic 
consequence of choosing stacks, but a pragmatic one. In doing so we can, at the same time simply change 
the recursive function definitions into iterative. The imperative/iterative nature of the resulting definition 
further gives it an air of being "mechanical". 

6 .4 .2  T h e  C o m p u t a t i o n a l  S t a t e  

One stack is the value stack . It is motivated by the "stacking" of temporaries (cf. (124.4), (124.8-124.9)) 
due to recursion in V-Ezpr. 

Another stack is a control , or operator/operand-ezprcssion stack. It is motivated by recursion over 
syntactical expression objects. 

Thus we make two decisions: first to state the model imperatively, in terms of some globally declared 
variables. Then to express the computational semantics in terms of two stack variables and a constant 
environment. 

131. dc__~l opestk :-- < > t v v e  : (MOp ] DOp I Ezpr [ I T E  )*, 
.I valstk :-- < > t y p e  : INTG*; 

131.2 le..~t env -- [... ] m____... 
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Why we made those two, and not other, among quite a few other possible, decisions will not be explained 
much further! We reserve such discussions to volumes IV and V. 

In our computational semantics, as imperatively stated, we must necessarily choose an elaboration 
order for operand expressions of infix expressions. This order was left "unspecified" by V.Ezpv of section 
10.3. 

6.4.3 M o t i v a t i n g  the Control  Stack 

The idea of the operator/operand stack is now that the topmost dement is either an expression, to be 
evaluated, or an operator to be applied to either the operator/operand or to the value stacks. 

If the top of the operator/operand stack is an expression then it is either elementary or composite. If 
it is elementary, i.e. a constant or an identifier then the associated value is pushed onto the value stack, 
while the expression is being popped off the operator/operand stack. If it is composite, i.e. a prefix, infix 
or conditional expression, then those expressions are decomposed, with the decomposition replacing it 
on the operator/operand stack. Hence the control stack will consist of a sequence of operators and their 
operands, in what turns out to be some variant of a so-called post-fix polish "notation". 

1: A prellz ezpression is replaced by two elements on this stack: the monadic operator and the (sub-) 
expression (on top). 

2: An inllz ezpression is replaced by three elements: the dyadic operator and the two (sub-) expres- 
sions (in some order, on top). 

3: A conditional expression is replaced by four dements, in order from top towards bottom: the test 
expression, a "meta-"operator (ITE)~ and the consequence and alternative expressions - -  the latter 
two in arbitrary, but fixed, order. The idea of the I T E  operator will be explained presently. 

4: If the top of the operator/operand stack is a monadic operator , then the denoted operation is 
applied to the top of the value stack. (Thus if the operator is Minus the top of the value stack 
is replaced by its complemented ("negative") value.) [It follows from the opcrator/operand stack 
manipulations that the value stack top is the value of the expression to which the monadic operator 
was once prefixed.] 

5: If the top of the operator/  operand stack is a dyadic operator , then the denoted operation is 
applied, in an appropriate way, to the two topmost values of the value stack - -  with the result 
replacing these values. 

6: Finally if the operator/operand stack top element is I T E  then it means that the value of the test 
expression of the conditional expression, whose manipulation gave rise to this I T E  operator, is on 
the top of the value stack. If it, the latter, is 0 then we compute only the consequence expression, 
otherwise we compute only the alternative expression. These are the next two elements on the 
operator/operand stack. The appropriate one is thrown away together with the value stack top. 

6.4.4 T h e  E l a b o r a t i o n  Func t ions  

Computation proceeds based, as always, on the top element of the operator/operand stack. And compu- 
tation proceeds as long as there are elements on the operator/operand stack. When it becomes empty the 
computed value is the top value of the value stack. The function informally described in this paragraph 
is called Compute, it is defined formally below. 

Let us call the function which transforms the system state dependent on the top of the opera- 
tor/operand stack for Transform, then: 

132. t y p e  : Compute: Ezpr ~ (~ -~ ~× INTG) 
.1 t y p e  : Transform: ~ ~ 

133. ~ = opestk m" (MOp [ DOp [ Ezpr I ITE )* 
134. ~ valstk ~ INTG* 
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135. Compute(e) ~= 
.I  (opestk := <e>; 
.2 whi le  e opestk ¢ < > doTransformO; 
.3 c hd  valstk ) 

To facilitate the statement of Transform we define four auziliary stack functions : 

136. 
.1 
.2 

136.3 

PopO 0 ~ (clef oe : hd_copestk; 
opestk :=  t l  eopestk;  
r e tu rnoe )  

t v v e :  ~--* (~ x (MOp l DOp I Ezpr l I T E  )) 

137. PopV 0 ~ (de fy  : hdeva l s t k ;  
.1 valstk :=  t l  cvals tk ;  
.2 r e t u r n v )  

137.3 t y v e  : E ~  E x INTG 

138. PushO(oel} ~= opestk :=  oel ^(£opestk) 
138.1 t v g e :  (MOp 1 DOp I S~r I ITE )*--, (E---, E) 

139. PushV(v) ,a valstk := <v>"~vals tk  
139.1 t y p e  : INTG--, ( ~ - ,  E)  

Now to the main function: 

140. Transform 0 ~= 
.1 ~ oe : PopO0; 
,2 cases oe : 
.3 ink- Const(i) ---, 
.4 mk.~rd(t) --. 
.5 mk-Pre(m,e ')  - .  
.6 ~- In f ( l ,d , r , )  
.7 mk-  Cond(t,c,a,) -+ 
.8 MINUS -+ 
.9 
.10 . . .  -~ 
.11 ~ p p  -~ 
.12 
.13 
,14 . . .  

.15 I T E  --* 

.16 

.17 

.18 

Push V(i), 
p.sh  V(e.~(o~)), 
PushO(< e ' ,m >), 
PushO(< r,l,d > ), 
PushO(< t ,ITE ,c,a, >), 
(deal v : pop vO; 
PushY(. .)) ,  

(~,~_f Iv : PopVO; 
clef to : PopVO; 
Push V(lv+rv)), 

(def  b : Pop V(); 
de___f c : PopO0; 

a : PopO O, 
PushO[xf b=O t h e n  c else a)) 

6 . 4 . 5  A D i s c u s s i o n  

We observe that the above definition does not satisfy the denotational principle. Instead we should get 
a rather operational "feeling" for how one might mechanically pursue an interpretation of expressions - -  
resulting, after some iterations, rather than reeursions, in its value. 
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7 Hierarchical and Configurational Developments and Presen- 
tations 

7 . 1  D e f i n i t i o n s  

Definition 6 By 'construction' we here mean the process of developing a specification, or, in general, 
the process of developing software. 

Def in i t i on  7 By 'presentation' we here mean the documentation resultin 9 from construction, and pre- 
sented to the readers. 

D e f i n i t i on  8 'Hierarchical' (or 'hierarchal') is basically an intellectual concept, and conjures that some- 
thing should be conceived from the top-down. 

Def in i t ion  9 'Configurational' is basicalt v a a mechanical concept, and conjures that something should 
be conceived from the bottom-up. 

Well-known, familiar artifacts, such as would be yet another P a s c a l / A l g o l  60 like programming lan- 
guage, or a similarly classically conceived relational data base system, - -  such "well-known" notions 
- -  can be both hierarchically developed and presented. Rather "newish" concepts, as might for ex- 
ample be a so-called P e t r i - N e t  based office automation system architecture based on some form (and 
document) flow concept, might be both developed and presented in a configurational manner. Finally 
there may be software architectures that are configurationally developed, but once developed, and hence 
well-understood, they might be hierarchically presented. 

The example of the Tuple Abstraction section was configurationa]ly developed and presented. The 
example DenotationM Semantics was partly hierarchically, partly configurationally presented. 

8 Specification Components 
The basic components of system models are: 

I. semantic Domain equations, 

2. invariant predicate definitions (over semantic Domains), 

3. syntactic Domain specifications, 

4. well-formedness predicate definitions (over syntactic Domains), 

5. semantic elaboration function type definitions, 

6. semantic function (body) definitions. 

7. and usually a number of auxiliary functions 

The above examples abundantly illustrates this decomposition of a specification. 

8 . 1  S e m a n t i c  D o m a i n s  

We give a hierarchical presentation, 

8.1 .1  A D a t a  M a n a g e m e n t  S y s t e m  S ta t e  - -  an  E x a m p l e  

The state of a simple Data Management System consists of a Dictionary and a File System. The Dictio- 
nary maps File Names to File Types, and the File System maps File Names to Files. Files are sequences 
of groups, each group being a sequence of either Boolean, Integer or Character Values. The File Type of 
a File describe, for each group its Type, whether BOOLBAN, INTEGER, or ~HARACTSR, and its maximum 
sequence length. See figure 2. 
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Figure 2: Abstract  Syntax for a Data  Management System State 

141. D M S  :: D I C T  x D A T A  
142. D I C T  = Fn  m FTyp  
143. F T y p  = (DTyp  × Length) + 
144. DTyp  = BOOLEAN ] INTEGER I CHARACTER 
145. Length = NI 
146. D A T A  = Fn  m F I L E  
147. F I L E  = Data + 
148. Data  = Bool I Intg I Char 
149. Bool  = B00L + 
1 5 0 .  Intg = INTG + 
151. Char = TOKEN + 

Figure 3: Data  Management System State Invariant 

152. i n v - D M S ( m k - D M S ( d , f s ) }  ~= 
.1 (domfs  C_ d o m d )  
.2 ^ ( ¥ f n  e d o m f s )  
.3 ( l e t  # = d(f . ) ,  
.4 file = f~(Jn) i l l  
.5 ,~.~ = ~a.~le) 
.6 ^(vi E~dft) 
.7 ~ (t,t) = #[i],  
• 8 g rp  = f i le[ i]  i a  

9 a.~agrp <0 
152.10 A Same Typ( t ,hdgrp)  

All files are defined. 
For each file, 

its number of groups is correct, 
For each group, 

it is within length, 
and of right value type 

153. SameTyp ( t , v )  = a 
.1 ( ( t=BooLEA N )AIs-BOOL(v)) V 
.2 ((t:INTEGER)AIs_._=INTG(v)) V 
.3 ((t=CHARACTER)A~:.TOKEN(v)) 

153.4 t y p e  : SameTyp:  DTgp × (B00LIINTG]TOKEN) --. B00L 

BOOL value iff BOOL type 
INTG value iff INTG. type 

TOKEN value if[ Character type 

8.2 Semantic  Invariance 

The "connection" between the two related system components: the dictionary and the file system, namely 
tha t  the former describes the latter,  leads to an invariant  predicate. It is given in figure 3. 

We shall often see the need for relating, through an inv-ar ian t  predicate, the context-sensitive information 
needed between otherwise context-free specified components of for example abstract  trees. 

8.3 Syntactic D o m a i n s  

Let us model a very simple-minded concept of programming language blocks. Blocks consists of a set of 
variables, defined by their variable identifiers, and a list of assignment statement,  which consists of a 1ha 
variable (identifier), and  a r h s  expression: 

154. Block :: Vid~set x Asgn + 
156. Asgn  :: Vid x Ezpr  



34 

Let us (before we turn to a technique whereby we solve the expression of the constraint problem) 
further compound the last example. Assume that expressions are either just variables or infix expressions: 

156. Ezpr : Vat [Infiz 
157. Vat :: Vid 
158. Infix :: Ezpr x (AND !MPY [ . . . )  x Ezpr 

8 . 4  S y n t a c t i c  W e l l - f o r m e d n e s s  

The constraint on blocks is now that all variables of assignment statements (presently their 1ha 's) must 
be defined, ie. must be those mentioned in the block. This constraint is not captured, and cannot be 
expressed by context free Domain equations. 

The constraint on expressions (of blocks) is that they mention only defined variables. This mutual 
inter-dependency between the two parts of a block cannot be formulated within the technique of Domain 
equations. 

Whenever we define a function type to take, say Domain A arguments, or yield A results, where A 
has some inv-  or is-wf- constraint "attached" to it (ie. is-wf-A or inv-A has been defined), then we 
mean, not the entire Domain A, but the constrained subset Domain A'. 

Thus defining a function involving A gives rise to one or more proof obligations: namely to show that 
the defined function indeed is total over A ~, respectively oldy yields A ~ objects. 

159. is-wE-Block [mk-Block(vs, al)] ~= 
.1 (¥mk-As#n(v,e) eelemsa 0 
.2 ((,, e,,s) 

1 5 9 . 3  ^i~,-wf-E=p,. ~ e](~,)) 

160. tyve: is.wf-Ezpr: Ezpr -+ (Vid.set -. BOOL) 

.1 i s -wf-Ezpr[  e l (v , )  

.2  c a s e s  e : 

.4 u Ev*, 

.5 mk-Znf=(z,,,) 
160.6 ~S-wf-Ezpr [ l](vs) A is-wf-Ezpr  [ r] (v,))) 

Lines (159.1-3) could be rephrased in terms of an i s -wf-A,gn function (which, in turn appeals to 
is- wf- Ezpr): 

161. is .wf .Bloek[mk-Block(va,  al)] i, 
161.1 (Va E elemsal)Os-wf-A,gn~ a](vs)) 

162. t y p e  : is-wf-Asgn: Asgn --. (Vial-set --. B00L) 

.1 i s -wf -A ,ga[mk-Asgn(v ,e )] (vs]  ~= 

162.3 Ais-wf- Ezpr i el(v*)) 

163. is-wr-E=p,~ d(~O 
.1 fis-- W,(~) - .  is-,~f, r~ , i  ,](~,),  

163.2 is-InfizCe) --, is-wf-Infiz[ e](vs)) 

164. is-wf- v . , imk -  Va~(~) ](~O ~= (v e ~*) 

165. is-wf-Inf iz[mk-Inf iz( l , ,r)](va)  A 
165 .1  0s-,,,f-E=p, i l l  (~0 ^is-wf-E,p, E,](vO) 
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where the types of the latter three functions are: 

168. t ype  : ~-wf-Ezpr: Ezpr --* ( V i d - ~  --* BOOL) 
.1 tyve  : ~s~wf- Par: Vat --* (Vial-set -* BOOL} 

.2 t ype  : is,wf.lnfiz: Infiz - ,  (Vial.set -* BOOL) 
and: 

166.3 tvve  : i~-wf-Bloclz: Block --. BOOL 

Formulation (161.-165.) correspond directly to our "requirement" of associating with each defined Domain 
name a constraint function. Formulation (159.-160.) is a short-cut expressing the same. 

We observe two things: (i) the constraint functions are always total; and (ii) they sometimes =act" 
on some eontezt. 

8 .5  S e m a n t i c  F u n c t i o n s  

The sub-section on Denotational Semantics amply illustrated some Semantic Functions. 

8 . 6  A u x i l i a r y  F u n c t i o n s  

The sub-section on Computational Semantics amply illustrated some Auxiliary Functions. 

9 Conclusion 

We have illustrate but a few of the principles, techniques, and tools characterizing denotational semantics 
based, model oriented, in particular VDM style specifications. 

Many facets have not been shown, nor have we had the space to enunciate when to choose for example 
denotational over computational specifications, etc. 

Instead we refer to our forthcoming books: Software Architectures and Programming Systems Design, 
vols. blI-III for a more complete story. 

Also we have totally omitted any reference to the developmental aspects: transformation and reifica- 
tion of functions and operations, respectively data (structures) from abstract specifications towards more 
concrete realisations. 

Devcelopmental facets are covered in vols. IV-V. VI of the above referenced book. 
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