
Towards a Meaning of 'M' in VDM
Specification Methodology Aspects

of
the Vienna Development Method

Invited Tutorial

Dines Bjorner
Department of Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark

A b s t r a c t

A number of steps together characterising a method according to which one may employ the Vi-
enna Development Method, VDM, are formulated and briefly illustrated. The paper is a summary of
the methodological aspects of VDM as espoused in the author's recent books: Sof t , are Architectures
and Programming Systems Design, vols. I-III incl. Only specification facets will be il lustrated. A
subsequent paper will similarly overview the implementation facets of function transformation and
data reification.

The exposition is tentative: no claim is made as to the definitiveness of the method. The author
believes this to be a "first ~ a t t empt to enumerate the methodological facets of VDM. It is felt that
few, if any, so-called methods, can claim to be methods according to the definition given in the
current paper. The author hopes tha t the present paper will spur more papexs on the ~true ~ na tme
of 'programming methodology'.

C o n t e n t s

I n t r o d u c t i o n $
1.1 The Vienna Development Method . 3
1.2 Software Architectures and Programming Systems Design . 3
1.3 Model-Theoretic and Property-Oriented Specifications . 4
1.4 What is a 'Method '? . 4

O v e r v i e w o f P r o c e d u r e s , P r i n c i p l e s , T e c h n i q u e s , and " t h e " M e t h o d 4
2.1 Procedures . 4
2.2 Principles . 5

2.2.1 General Principles . 5
2.2.2 Concrete Principles . 5
2.2.3 Methodological Principles . 5
2.2.4 Philosophical Principles . 5

2.3 Techniques . 5
2.3.1 Specification Techniques . 5

2.4

,2.5

2.3.2 I m p l e m e n t a t i o n Techniques .

2.3.3 P roo f Techniques .

Tools .

" T h e " Me thod .

O p e r a t i o n a l Abstraction

3.1 Function Definit ions .

3.1.1 Direct Func t ion Definitions .

3.1.2 P r e - / P o s t - Definition of Functions .

3.1.3 Ax ioma t i c Funct ion Definitions .

3.1.4 Loose [~nnction] Definitions .

3.1.5 Concluding Remarks .

3.2 P r o o f Obl iga t ions .

R e p r e s e n t a t i o n a l A b s t r a c t i o n

4.1

6

6

6

6

6

7

7

7

8

9

9

I0

10

Set Abs t rac t ions . 11

4.1.1 A Demograph ic Da tabase - - an Example . 11

4.1.2 T h e Set Modell ing Principle . 12

4.2 Tuple Abs t r ac t ion . 12

4.2.1 KeyWord - In -Con tex t , K W l C , P r o g r a m - - an E x a m p l e . 12

4.2.2 T h e G iven P r o b l e m . 13

4.2.3 Discussion of Informal P rob l em Formula t ion . 13

4.2.4 Assumpt ions and Decisions . 13

4.2.5 - - P r o g r a m Assumptions: . 13

4.2,6 - - Model Decisions: . 14

4.2.7 Model . 14

4.2.8 - - Auxi l ia ry Notions . 14

4.2.9 Domains . 15

4.2.10 T h e Main Funct ion . 15

4.2.11 - - Auxi l ia ry Functions . 16

4.2.12 The Tuple Modelling Principle . 16

4.3 Map Abs t rac t ions . 17

4.3.1 D i r e c t / R a n d o m Access Files - - an Example . 17

4.3.2 Semant ic Doma ins and Semant ic Objects . 17

4.3.3 T h e M a p Modell ing Principle . 21

4.4 Tree Abs t rac t ions . 21

4.4.1 P r o g r a m m i n g Language Constructs - - an Example . 21

4.4.2 T h e Tree Modell ing Principle . 25

A p p l i c a t i v e a n d I m p e r a t i v e D e f i n i t i o n s 25

D e n o t a t l o n a l a n d C o m p u t a t i o n a l D e f i n i t i o n s 26
6.1 Syntactic Domains ... 26

6.2 Semantic Domains ... 26

6.3 The Denotations] Semantics . 27

6.3.1 Auxiliary Denotation Functions . 37

6.3.2 The Semantic Elaboration Functions . 27

6.3.3 A n Extension . 28

6.4 A C o m p u t a t i o n a l Semant ics . 29

6.4.1 In t roduc t ion . 29

6.4.2 T h e C o m p u t a t i o n a l State . 29

6.4.3 Mot iva t ing the Control Stack . 30

6.4.4 T h e E labora t ion Functions . 30

6.4.5 A Discussion . 31

H i e r a r c h i c a l a n d C o n f l g u r a t i o n a l D e v e l o p m e n t s a n d P r e s e n t a t i o n s $2

7.1 Definit ions . 32

Specification Components 82
8.1 Semantic Domains . 32

8.1.1 A Data Management System State - - an Example . 32
8.2 Semantic Invariance . 33
8.3 Syntactic Domains . 33
8.4 Syntactic Well-formedness . 34
8.5 Semantic Functions . 35
8.6 Auxiliary Functions . 35

9 Conclusion $5

1 I n t r o d u c t i o n

1 .1 T h e V i e n n a D e v e l o p m e n t M e t h o d

VDM stands for a relatively well propagated method for developing deterministic systems softwate, like
compilers, database management systems, application program generators, etc., as well as major parts of
non-determinlstic, concurrent and distributed software, such as operating systems, local area nets, ottlce
automation systems, etc.

VDM has developed over the yeats, from 1973 onwards.
Currently the British Standards Institute (BSI) is readying a draft proposal for a standard for a

VDM Specification Languages (SL). It is not quite the one you will see exemplified in this paper, but
one that unites and moderately extends a number of slightly differing schools of SL syntaxes, notably
the English and the Danish schools. The English school goes considerably beyond the original VDM SL
otherwise known as Meta IV, and is exemplified in the latter works of C.B.Jones and the industry groups
at STC/STL (Standard Telephone and Cable, ST Labs.), ICL, Praxis and Adelatd. The Danish school
is exemplified in the works of the current author and the industry groups of Dansk Datamatik Center
(DDC) 1 and DDC International 2.

The CEC (Commission of the European Communities) has created a VDM Europe group, some 25-35
VDM practitioners and researchers from industry and academia alike. This group meets thrice yearly to
discuss (i) experience in the industrial, professional use of VDM, (ii) tool requirements and experience,
(iii) education and training requirements and experience, (iv) mathematical foundations, and (v) possible
standatdisations of various VDM facets. VDM Europe also organizes VDM Symposia. Two have so far
been held: March 1987 (in Bruxelles, Belgium) and September 1988 (in Dublin, Ireland). VDM'90 will
be held in Kiel, Federal Republic of Germany, April 1990 s.

The Reference section lists a number of VDM references: [1], [21, [3], [4], [5]. [6] and [7] contain papers
on VDM presented at the first 2 VDM Symposia.

1 . 2 S o f t w a r e A r c h i t e c t u r e s a n d P r o g r a m m i n g S y s t e m s D e s i g n

A s e r i e s o f V D M B o o k s

The current author is presently readying a series of books for publication. The series title is: Software A r.
chitectures and Programming Systems Design -- The VDM Approach. Volume titles are: I: Foundations,
II: Abstraction Principles, III: Formal Models of Program and Programming Concepts, IV: Implementa-
tion Principles, V: Programming Languages: Interpreters and Compilers, and VI: Data Models and Data
Base Management Systems. Volumes IV-V-VI may appear as one, rather thick volume. Volumes I-II-III
are expected out by the summer of 1989 - - and together are expected to take up some 1400 pages ([8],
[9], [10]).

The current tutorial reiterates, and summarizes, within the short span of 9 pages, the extent to which
the Methodology facets of VDM have been enunciated. See further the discussion below, in subsection
1.4.

tDDC is now a part of CB.I: Computer Resources International.
2DDC International is now a company, independent of Dausk Datamatik Center.
SOrganisation Committee chairman is Prof. Hans Langnmack, Kiel; P r o g r ~ e Committee chairman and co-chalrman

are the current author and Prof. C.A.R.Hoare, Oxford. The theme of VDM'90 will be VDM and Z.

1 . 3 M o d e l - T h e o r e t i c a n d P r o p e r t y - O r i e n t e d S p e c i f i c a t i o n s

VDM is based on a model-theoretic view of specification and development - - and can be said to be based
on a denotational semantics viewpoint, as contrasted to for example an algebraic semantics viewpoint.
In a model-theoretic specification the formulas explicitly give a mathematical model, that is: denote a
mathematical object. An algebraic (or an axiomatic) specification is property-oriented, that is: it "only"
prescribes properties that a desired (mathematical object, or) program or software system is to satisfy.

In the DDC/ICL/NBB/STL RAISE project (ESPRIT 315), which spiritually began as a project to
establish a firm foundation and methodology for VDM, that VDM has been "replaced" by a specification
language (RSL, for RAISE Specification Language) and a development method, which differs rather
radically from VDM. RSL embodies specification constructs that allow a "spectrum" of from model-
theoretic to property-oriented specifications, of determinate, non-determinate and concurrent (parallel)
programs and software.

The border-line between model-theoretic and property-oriented is not sharp, as will also be illustrated
in this tutorial exposition.

1.4 What is a 'Method'?
In this subsection we discuss and define the concept of 'method'.

Although the 'M' in VDM stands for 'method' , it is not quite clear whether VDM really qualifies to
represent a full fiedged method. Let us define what we mean by a method:

Def in i t ion 1 A method is a set of procedures for selecting and applying a number of principles, techniques
and tools in order effectively to construct an effective mechanism (here: software).

The present author would like, here, to emphasize that the facets of the method espoused in the current
paper are far from definitive.

The ultimate method would probably provide a calculus of design, much in the spirit of Leibniz --
calculus which uniquely determines how to express an abstract model, what to emphasize, etc., and how
to transform such an abstraction into a realisation.

The VDM is far from being such a method. At each step of abstraction and at each step of transfor-
mation the developer (that is: the user of VDM) is asked to inject abstraction and realisation decisions
that could make the specification and the implementation go one way or the other.

A Discussion

So VDM is far from being a method as determinate as for example Michael Jackson's Systems Design
(JSD). Both JSD and VDM rests on fairly firm mathematical foundations -- although JSD carefully
avoids burdening its users with having to be aware of those foundations.

A superficial answer to a question of why VDM is not as strict a method as for example JSD would
stress that JSD is aimed at a very well-defined, narrow segment of software development, whereas VDM
claims to be far more widely applicable. Thus for a given application area, like for example the devlopment
of compilers for Algol/Pascal like languages, VDM can be embellished with strict methodological steps.

2 O v e r v i e w o f P r o c e d u r e s , P r i n c i p l e s , T e c h n i q u e s , and "the"
M e t h o d

In this section we overview the components that together make up one view of what the 'Method' aspect
of VDM is.

2 .1 P r o c e d u r e s

The procedures have to do with selecting among a variety of possible, or potential, principles, techniques
and tools, and, having chosen such, with applying them according to their intentions. Thus selection
pre-supposes that alternative principles, etc., at appropriate steps of development (specification and
implementation), are available. We shM1 illustrate such possibilities.

2 . 2 P r i n c i p l e s

We distinguish betwen general, concrete, methodological and philosophical principles.

2.2.1 G e n e r a l P r i n c i p l e s

General principles are centered around the model-theoretic approach: that of constructing, using math-
ematics, couched in some specification and programming language notation, an abstract model (an ab-
stract specification) of the software to be implemented, and that of transforming such a specification to
a realisation.

Facets of general principles include: (i) analysis of existing artifacts and theories - - from, or bused,
on which abstractions are constructed, (ii) combination of design and analysis, (iii) decomposition and
reduction, (iv) abstraction, (v) limits of scope and scale, (vi) divide and conquer, (vii) the impossibility
of capturing everything desired, etc.

We shall, in this introductory overview, of general principles, focus on abstraction.

2.2.2 C o n c r e t e P r i n c i p l e s

Concrete sub-principles are those of for example: (i) the iterative nature of development, (li) representa-
tional and operational abstraction, (iii) denotational and computational semantics, (iv) applicative and
imperative function definitions, (v) hierarchical and confignrational development and/or presentation,
(vi) identification and discharge of proof obligations, etc.

We shall in this tutorial overview focus on items (li)-(iv) only.

2.2.3 M e t h o d o l o g i c a l P r i n c i p l e s

Facets here are: (i) the reduction principles: the whole : the sum of the parts, (ii) discreteness of
development: separation of case analysis, induction, abstraction, etc., (iii) embedded nature of software:
impact of context, environment and enclosing system (problem domain dependencies), etc.

In the present paper we shall not have space for il lustrating these methodological principles in detail.

2.2.4 P h i l o s o p h i c a l P r i n c i p l e s

Facets here are: (i) prevention is better than cure - - which, to us, translates into: develop provably
correct software, ie.: (ii) proof of properties rather than test for satisfaction, (iii) provision of a method
that allows from strict formal, via rigorous, to relaxed systematic usage, MI the while allowing for example
systematic method uses later to be tightened ("repaired ~) to rigorous and formal uses, etc.

In the current overview we shall not illustrate items (i-ii), and, of (iii), only illustrate the rigorous and
systematic uses of VDM.

2 . 3 T e c h n i q u e s

The techniques fall into three categories: specification, implementation, and proof techniques.

2.3.1 Spec i f i ca t ion Tec h n iq u es

Within the specification techniques we can mention (i) explicit function definitions versus function defi-
nitions by a pair of pre-/post-conditions; (ii) definition of the semantics of GOTO programming language
constructs by means of either a direct semantics, a continuation semantics, a resumption (style) seman-
tics, or, as was quite common in VDM, by means of a so-called exit mechanism; (iii) the definition of
composite (set, tuple or map) objects by means of (set, tuple, respectively map) comprehension - - as
contrasted to recursive object constructions; etc.

We shall illustrate a number of such techniques - - and refer to the literature for illustrations of other
techniques.

2.3.2 I m p l e m e n t a t i o n Techn iques

The three major implementation techniques are: (i) data reiflcation - - in which abstract objects are
injected into (represented by) more concrete objects; (ii) function transformation - - in which, for example,
recursive function definitions are transformed into imperative, iterative ones; and (iii) transformations of
pre-/post-specified operations into concrete progrvans.

We shall very briefly illustrate data reification, and otherwise refer to the literature for illustrations
of function and operation transformations.

2.3.3 Proo f Techn iques

Proof techniques apply either to proving properties of a specification (whether abstract, or of an imple-
mentation), or to proving properties of a pair of specifications (one being abstract, the other supposedly
being a step of realisation, a transformation - - of the former).

Subsidiary techniques relating to the latter involve the use of representation (injection) and abstraction
(retrieval) relations, respectively functions.

2 . 4 T o o l s

The tools ~te either intellectual or material. The foremost intellectual tool is the specification language
(viz.: Meta IV). Common material tools are: syntax directed editors, type checkers, etc.

2 . 5 " T h e " Method
The specific methodological instantiation of procedures, principles, techniques and tools (particular to
VDM) normally prescribes the ordered establishment of a number of specification components - - such
as outlined in section 8, see contents listing above for a brief summary.

In creating definitions of semantic domains, and their invsriants, syntactic domains, and their well-
formedness~ and of semantic and auxiliary functions, one then applies the principles, techniques and
tools.

m In te r lude

Our presentation of techniques, to follow, in the next sections, 4-7, is presented eonfigurationally, bottom-
up. Section 2, above, presented the 'problem' top-down, hierarchically.

3 Opera t iona l Abs t r ac t ion

In order to usefully express manipulations of "real world" or ~imagined world" objects we must choose
representations of (primitive) operations and (defined) functions.

De f in i t i on 2 By an o p e r a t i o n a l a b s t r a c t i o n we understand a [possibly formal] specification of opera-
tions and f~nctions [on objects] - - again - - (1) irrespective of any possible ezternal world manifestation;
(2) irrespective of any computer realization of such functions; and (3) such that the function specification
concentrates ('as far as possible') on properties, i.e. in what the function computes - - rather than how
it computes its result.

That is: we either specify functions in eztension, by defining the input/output relation; or we give an
abstract in intension recipe, of algorithmic nature, of how the function might achieve its results.

Which are then the 'real', or ' imaginary', world 'things' to which we apply the principles of operational
abstraction?

Again we answer by stating examples: operational abstraction is applied when specifying manipula-
tions on objects like directories, inventories, etc. Such manipulation may e.g. be: inserting new entities
into- or changing or deleting entities of, or from, directories and inventories, and looking up information
contained in such inventories, etc.

Examples of operational abstractions are those of modelling 'the look-up in a directory of a phone
number ' by 'the application of a map to an argument of its domain', similarly for inventory search, and
'the listing of division department names' by 'taking the defining domain of the division map obtained
by applying the organisation map to a division name argument'.
It is here being stressed that we have a two-by-two situation: (i) we (may) wish to abstract from how
manipulations of 'real world' objects take place in 'reality', and (ii) fIom how we implement them inside
the computer:, and (i ') we wish sometimes to define functions purely in extension, by what they compute,
as opposed to (ii ') defining functions in intension, by how the achieve what they compute!

Also in the latter cases (i '-i ") - - in extension versus in intension - - we still wish to be abstract!

3 . 1 F u n c t i o n D e f i n i t i o n s

Previous sections and sub-sections gave examples of direct, or putative, function definitions. Other
sections and sub-sections have presented function definitions in the style of axiomatic specifications and
by means o f p r e - / p o s t (predicate) specifications. Let us briefly and informally review these distinctions.

3.1.1 Di rec t F u n c t i o n Def in i t ions

Assume sq to denote a square root function defined explicitly (say algorithmics/ly, using the Newton-
Raphsons, NR, method), that is:

1. t y p e : 8q: RAT -~RAT
.1 pre - sq(r) ~ r > 0
.2 ,q(r) ~ ~R~.xp,(r)

The form NRB~,(r) is intended to be an expression (w i th , fxec) which somehow represents the Newton-
Raphson method for taking squeare roots. The problem with the expression N R is that it most likely is
a rather convolute (ie. "tricky" to understand) expression. Reading it might not reveal, very easily, that
it indeed does perform the desired function. Thus using N R may not be a good abstract specification,
but perhaps a good effecient, concrete coding of the problem.

As we shall see later in this book, one can indeed define quite a lot of functions explicitly, and
abstractly.

Suffice the above for the time being as an illustration of the notion of direct (explicit, putative,
constructive) function definitions.

3.1.2 P r e - / P o s t - Def in i t ion of F u n c t i o n s

In contrast, a p r e - / p o s t definition of sq could like like:

2. ure - sq(r) ~- r > 0
.1 p o s t - s q (r , r ') _~ Cr ' x r ') -- r

- expressing very explicitly that sq is (to be) a square root function. That is: the above specifies a
function - - which then, later, has to be implemented. As a technicality, however [that is, as something
that has less or nothing to do with the problem of specifying versus implementing, but rather with the
specific problems of the square root function, ie. the speific problem at hand], we must remark that the
above is probably too stringent a specification - - one that can never be fully satisfactorily implemented.
The technicality is that of approximating the result r ' . Normally we would be content with an answer,
r ' , satisfying:

3. _~ost-~q(, , , , - ' } - - I ," - (, " × , ") I_<

where epsilon: e is some given (globs/) small value, or • is given explicitly:

4. t v v e : sq: RAT x RAT ~ RAT

.1 vre-sq(r,~) ~ (r > 0) ^ (0 < ~ < < l)

.2 post.sq(Cr, e},r') ~ ((1 - e) x , _~ r ' x , ' < (1 + ~) × ,)

where << denotes the "much, much smaller than" relational operator.
In this chapter we shall only introduce the three function definition styles• We shall not systematically

cover aspects of how, when and where they are used (selected for use)• This will not be done extensively
till we reach volume II. So we now go on to the axiomatic style of defining functions.

3.1.3 A x i o m a t i c F u n c t i o n Def in i t ions

Here we illustrate some axiomatic definitions.
The problem we wish to tackle has to do with finding substrings of strings of char~ters. We will not

give a model of character strings other than saying (i) that ~ represents the empty (void) string, (ii)
that if s and r are strings (ie.: s, ~ E String), then s"r stands for the string whose first part is the string
s and whose remaining part is the string r.

We wish to define two functions: B (for 'before'), and A (for 'after'):

5. t y o e : B : String x String --, String
.1 t_vve : A : String × String ~ String

such that B(r, s) yields the substring (or part) of s before the first leg-to-right occurrence of r, and
A(r, s) yields the substring (or past) of s after the first left-to-right occurrence of r.

To define B and A we introduce an auzAllary function/" (for initial substring):

6. t Y D e :
• 1 ax iom:

I: Str ing x String ~ BOOL

(W,, ~ Str ing)(I (r , s) - (3t ~ String)(v^t : s))

that is: / (r , s) is true if r is an initial substring of s. The axioms for B and A are now:

7. ~ o m . (w,s c string) (B(r ,s)~AA(, ,s) = #
.1 a x i o m : (Vr, s t t ' , t" E String) ((tt"rAt" = s) D I (B(r , s) , t '))

The first axiom says that any string s containing at least one substring r, consists of a part before r, r
itself, and a part after r. The second axiom says that B and A work with respect to the first occurrence
of their first argument. If there is another way of decomposing s (s = t'%At ") then B(r, s) must be an
initial part of t'.

The specification of B and A is such that B(r, s) and A(r, s) are not specified to produce results if r
is not a part of s.

Note that the two axioms "simultaneously", ie. in an "intertwined" way, define B and A. There is
not (here) a single axiom - or a set of axioms - which only define all of B, respectively all of A. Even
though the second axiom contains no explicit use of A, it constrains the implementation of A because of
the way in which B and A are related by the first axiom.

A p r e - / p o s t definition of B, which specifies that r must be a substring of s, could look like:

8. pre-B(r , s) = (3~1,t2 E String)(s --41"r^t2)
.1 vos t -B((r , sJ,t) ~=
.2 (3t' E String)
• 3 ((s = t ~ ^ t ')
.4 A('~Stl, t2 E String)
.5 ((tl # t)^(¢'~ = t1-,^~2)))

A similar p r e - / p o s t definition of A is left as an exercise•

3.1.4 Loose [Function] Def in i t ions

The pre-condition (vre-B) on application of B (ie.B(~, s)) is more constraining than the previous ax-
ioms on B. And the post-condition on the square-root function, sq, permits a range (an infinity) of
implementations.

It is thus we see that descriptive, ie. pre-/post and axiomatic (axiom:), definitions are vague.

But this vaguesness, in the cases shown, was on purpose. Any implementation which satisfies such
purposefully vague definitions is acceptable. It is, however, not only descriptive function (and, in general,
object) definitions that can be made purposefully vague. Also prescriptive (explicit, putative, or direct)
definitions can be loosened up to allow for a range of implementations. One way of doing so is through
operational and representational abstraction - to be treated systematically in volume II. Another way
is through the use of non-deterministic "function" definitions - ie. in reality: relation definitions. A
specification construct is non-deterministic (or non-determinate) if its use in some expression form may
denote either one from a set of values.

Definitions, like the above, which leave certain aspects unspecified are neither imprecise nor ambigu-
ous. They specify those aspects in which we are interested and have left open those things in which we
are not, at first, interested. Thus such definitions leave choices open for later design stages.

We call such (purposefully vague) definitions for loose specif icat ions . Space does not here permit
us to single out two sub-classes of loose specifications: non-determinate and under-specified.

3.1.5 C o n c l u d i n g R e m a r k s

We have given three seemingly distinct ways of defining functions. In the previous sub-section we have
indicated, and we shall throughout the book illustrate, that these three definition styles are but points on
a "continuous" spectrum of definition styles. That is: a function basically defined (or planned expressed)
in the prescriptive style may contain relational or non-deterministic constructs such that the function
definition, as a whole, is non-determinate by containing descriptive parts. Etcetera.

One could argue that descriptive definition styles are more abstract, and are less bound to imple-
mentstional bias than is the presecriptive style. In fact one could successfully argue that the descriptive
style " s pec i fy " , whereas the prescriptive style i m p l e m e n t s . That is: one could think of mechanising
the interpretation of prescriptively defined functions, but one must abandon such thoughts of evaluating
descriptively defined functions. Mechanizing the latter would entail, in its general form, a full theorem
proving capability of the interpreter - and this would in general not be possible. Since even the basically
prescriptively defined functions may contain, or rely on, descriptive parts, respectively defined auxJllary
functions, we also abandon that thought even for direct function definitions.

So, why do we also provide a direct (prescriptive) function definition since, as we have claimed,
the descriptive styles are more specification-oriented? The answer basically is that it turns out, when
specifying, that there are a large majority of definition situations where it either becomes very difficult to
ascertain whether an axiomatic definition is consistent and complete, or it becomes exceedingly tedious,
clumsy and voluminous to define functions descriptively, or both. In a sense it therefor becomes well
nigh "impossible", and certainly we loose transparency and thus comprehensibility. In other words: the
prescriptive definition style in reality is often more specification-friendly!

One could now turn the question around: since, as claimed, we shall be using the prescriptive, ie.
the model-oriented approach more often, why do we still allow descriptive definition components? The
answer here reflects a pragmatic attitude, and goes as follows: we do so because there are specification
situations, especially in defining auxiliary functions, and increasingly a larger need for such auxiliary
functions arise in design stages, where the definition of such functions is best, ie. most succinctly, done
in the descriptive style.

The above concluding remarks may seem abstract - as they are presented here, early on, without
much evidence, ie. with only very few examples. We beg the reader's patience - our points will
be amply illustrated in these volumes, and we shall then have ample opportunity to refer back to the
discussion of the present sub-section.

10

3.2 Proof Obligations

Prescriptive function (and other object) definitions are model-oriented. That is: the functions and hence
all the objects it manipulates do exist, at least in some constructive, mathematical universe. This is not
necessarily the case for the descriptive definition style, which, in analogy, we also term: property-oriented.
In the latter the objects (incl. functions) are postulated. Since they are basically described through the
use of predicates (axioms, p r e - / p o s t conditions), one is faced with the burden of showing that there is
at least one interesting, ie. non-trivial model for those axioms (etc.). We need to show so since we aim
at implementing the specified thing within the computer.

We say that specifying objects (incl. functions) axiomatically (ie. in general, descriptively, through
their properties) ge ne ra t e s a p r o o f ob l iga t ion : we are obliged to show existence of an object (of a
function) which satisfies the description. Since we are concerned with computation we have, in addition,
to show that the object (the function) is computable!

So for every pair of p r e - / p o s t conditions, purportedly defining a function, an i m p l e m e n t a b i l i t y
proof obligation arises. And similar for a set of axioms together charaeterising a set of functions; also
here implementability proof obligations arise.

The form of the i m p l e m e n t a b i l i t y t h e o r e m for p r e - / p o s t specified functions is as follows. In
general we have:

9. t v v e : f : D --* R
.1 v r e - f : D --, B00L
.2 p o s t - f : D x R --* B00L

The pre-condition pre- f (d) says:

10. p re - / (d) D (3r E R)(f (d) = ,)

The post-condition p o s t - f (d , r) says:

11. vos t - f (d , r) D v r e - f (d)) ^ (3 f E (D -+ R))(f (d) : ,)

Hence the implementability condition is:

12. (Vd E D)((pr~-f(d) D (3r E R) (pos t - f (d , r))))

4 R e p r e s e n t a t i o n a l A b s t r a c t i o n

D e f i n i t i o n 3 By a r e p r e s e n t a t i o n a l a b s t r a c t i o n we understand a [possibly formal] specification of
domains and instances of objects (1) irrespective of a number of 'real world' properties of the modelled
phenomena, and (2) irrespective of, or, more apprpriatelv: with no bias towards, any possible realization
of such objects.

To paraphrase the latter: we do not take into consideration, when specifying objects and their Domains
abstractly, how we may wish, or be able, to implement these objects. Furthermore the representational
abstraction attempts to model 'as closely as possible' only relevant and intrinsic properties.

Which are the 'real', or ' imaginary', "worldly" ' things' to which we then apply the principles of
representational abstraction? In an attempt to stay clear of philosophical issues (of e.g. epistemologieal
nature) we give an operational answer to the above question.

Examples of ' things' subjected to representational abstractions are: (the concept of) telephone direc-
tories, (. . .) inventory lists, and (. . .) company organizations (viz.: organisation charts).

Examples of representational abstractions are: directories are seen as maps from names (and ad-
dresses) of telephone subscribers to telephone numbers; inventory lists are seen as maps from part num-
bers to quantity on hand and where stored; and company organisations are seen as maps from division

11

names to divisions, where divisions are seen as maps from department names to departments, where
departments are seen as maps from . . . etc.
It is here being stressed that we deal with two abstraction concerns: (1) abstracting away what is consid-
ered irrelevant properties of 'real world' object phenomena, and (2) abstracting from how to implement
these inside the computer.

We now illustrate the notion of representational abstraction while at the same time illustrating four
basic composite data type abstractional facilities of VDM.

4.1 S e t A b s t r a c t i o n s

Sets, as an abstract data type, is an an~liaxy ~work horse", used in many contexts, as will be seen below,
hut not itself a prime vehicle. That is: few every day notions, such which we are to model abstractly,
directly "asks" for one in terms of sets. But let us try anyway.

4.1.1 A D e m o g r a p h i c D a t a b a s e - - an E~Ample

In this example the following 8 points (i-viii) characterise the problem:

(i) a State consists of a set of Counties;

(ii) s County consists of a set of distinct communities (hamlets, villages, towns, and cities - all consid-
ered on par);

(iii) each Community consists of a distinct set of Households;

(iv) and each Household consists of a set of Persons.

(v) Each Person is uniquely identified - by some county-wide unique numbering system.

(vi) No two counties have identical households.

(vi) No two otherwise distinct Households of a State have Persons in common;

(viii) and a Household (a core-family) may live in several counties, but not in several communities within
the same county (don't ask why!).

Any of the descriptions (i-vi) give rise to respective Domain definitions; descriptions (vii-viii) give rise to
invariance definitions:

S = C-set (1) State
C = V-set (2) County
V = H-set (3) Community (. . . . Village)
H = P-se t (4) Household
P = TOKEN (5) Person

Characterisation (vi) justify Domain definitions (1-5) since it implies no two Communities with two or
more identical households, etc.

Now to the invariance:

13. inv-S(s) ~ No~HiSC(s) A NotSH2iC(s)

The first predicate No2HiSC (short for: no two otherwise distinct households in the same state have
persons in common) models (vii), and NotSHieC (for: not same household twice in same county) models
(viii):

a4. No~HiSCO) ~= (Vh,h'~ mS(s)) ((h # h') Z ((h n h') : {}))
14.1 t y v e : No~HiSC: S ---} BOOL

where:

12

15. HiS(s) ~= union union s
15.1 t y p e : HiS: S --. H-set

computes all households of a state.

16. NotSH2iC(s) ~ (VcEs)(Vv, v'Ec) ((v¢v')D((vNv') = {}))

16.1 t v v e : NotSH2iC: S --* B00L

If there is more than one community in a county then they must not have households in common:

17. NotSHeiC(s) ~= (VcEs) ((e~dc>e)D('mterseetc --- {}))

is another way of expressing (viii). That is: functions (16.) and (17.) are identical in extension (but not
in intension).

4.1.2 T h e Set M o d e l l i n g P r i n c i p l e

We are ready to summarize the essence of the above example.
The question to be answered is this: when should you use the set data type abstraction in your

abstractions? An informal answer is for example:

• When the object being subject to abstract modelling posseses a composite property such that it
can be regarded as a finite collection of unordered, un-dlstingnished, but distinct elements, then a
set abstraction seems reasonable!

• If, furthermore, manipulations of the object may involve arbitrary selection of component (sub-
)objects, removal or addition of distinct objects, etc., then a set abstraction seems further motivated.

The above modelling principle is just a rule-of-thumb. It is vaguely formulated. It cannot be more
precisely stated! Once you have digested the contents and the similar modelling principles of the next
three subsection you will better appreciate why the principles must necessarily be approximate.

The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if you are
' told': Some facility consists of an unordered collection of distinct, further un-dgstinguished things etc.,
then yon should consider whether a model based on a set abstraction is otherwise appropriate; and (ii)
vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly even
inconsistent "specification", you should analyze that description with spectacles viewing "it" (the thing
spoken about by the "specification") from the point of view of: is a set abstraction an appropriate choice?
(You may find, in the latter case (ii) that it either fits, or does not; if not, then perhaps any of the other
composite data types [tuples~ maps, trees] may be used.)

4 . 2 T u p l e A b s t r a c t i o n

4.2.1 K e y W o r d - I n - C o n t e x t , K W I C , P r o g r a m - - an E x a m p l e

This example sub-section has several sub-parts, and otherwise presents the problem in a more pedantic
style than were the examples above. First we are given a problem formulation. We then, very briefly,
analyze this given formulation. From the informal formulation and, as a result of the analysis, we
(informally, yet somehow) systematically 'derive' our formal model. Finally we discuss our particular
model and variants thereof. The purpose of this example illustration is then to show some of the aspect
of going from fixed, by others given problem formulations to models, and the problems posed by such
oftentimes incomplete (or, but not in this case, inconsistent) informal formulations.

4.2.2 T h e G i v e n P r o b l e m

We are given the following informal, english language program specification:

13

"Consider a Program which generates a KWIC Index (KeyWord-In-Context). A title is a
list of words which are either significant or non-sigmficant. A rotation of a list is a cyclic
shift of words in the list, and a significant rotation is a rotation in which the first word is
significant. Given a set of titles and a set of non-significant words, the program should produce
an alphabetically sorted list of the significant rotations of titles"

An example of input and output is then given:

" T i t l e s :

THE THREE LITTLE PIGS.

SNOW WHITE AND THE SEVEN DWARWES.

Non-s ign i t l can t W o r d s :

THE, THREE, AND, SEVEN

O u t p u t :

DWARFS. SNOW WHITE AND THE SEVEN

LITTLE PIGS. THE THREE

PIGS. THE THREE LITTLE

SNOW WITHE AND THE SEVEN DWARFS.

WHITE AND THE SEVEN DWARFS. SNOW"

4.2.3 Discuss ion o f I n f o r m a l P r o b l e m F o r m u l a t i o n

We now analyze the problem statement. The point of our analysis is to isolate concepts, discover incom-
pleteness and/or inconsistencies, etc.

(1) The informal problem formulator already isolated some concepts; these appear itaiizised in the text.
Other concepts potential]y useful in, or for, our further work are: List, word, cyclic shift, first, set,
and alphabetically sorted.

(2) Some concepts are problem-oriented: Title, words, significant, and non-significant. Other concepts
are more abstract, explication-oriented: list, rotation, (equal to) cyclic shift, first, set, and [alpha-
betically] sorted. (Our modelling will basically center around, or express, but not necessarily all of,
these concepts.)

(3) The descriptive paragraph does not deed with punctuation marl~; period (" . ') is not isolated as a
concept, but it occurs, as a marker, in the rotations. Also: words a~e not further explained. We
take these to consist of letters. And we assume some given alphabetical order of, or among, both
upper- and lowercase letters. Blanks appear, but noting is said about their relation to the ordering
of titles.

(4) Nothing is said about duplicate occurrences in the input or output. The input title "XXX XXX"
might thus give rise to e.g. two output rotations!

(5) Finally nothing is said about the concrete input and output presentation: carriage returns, new
lines; respectively single or multiple column printing and display and the ordering within multiple
columns: whether by row or by column. Etc.

4 . 2 . 4 A s s u m p t i o n s a n d Dec is ions

4 . 2 . 5 - - P r o g r a m A s s u m p t i o n s :

In order to proceed into a modelling phase we make the following assumptions:

(1) We ignore punctuation marks.

(2) We assume 'alphabetic sorting' to apply to all of the text of a title.

(3) We omit multiple (duplicate) occurrences of [rotated] titles in the output, i.e. we list (generate)
only one copy.

14

4 . 2 . 6 - - M o d e l Dec is ions :

Our modelling will be based on the following decisions:

(4) We assume an ordering relation:

1 8 . t v v e : WOrder: Word x Word -* B 0 0 L

(5) That is, we assume a Domain of words:

19. Word

- not further specified.

(6) We do not abstract away blanks - - since blanks (in general punctuation marks) are needed to
delineate words.

(7) We abstract, as suggested by the informal formulation, both the presentation of input and output.
(This issue will be a pressing one the 'closer' we get to a realization - - and should, we seriously
believe, be specified, in detail, before implementation is properly begun.)

Since we ((1)) ignore punctuation marks, including end-of-title marker, such marks will not be modelled
either.

The major model decision is that of giving a model, in particular one in the style that this book
advances.

4.2.7 Model

The presentation of the model will follow, in sequence, the way in which it was derived. That is: we
decide, in a first, suceessfull, at tempt to model first some of the individual concepts outlined or italisized
above. Then we bring all aspects together in the specification of the input/output Domains and the one,
major program function (i.e. the specification of the program itself). Finally we specify the auxilliary
functions introduced by the major program specification.

In this example the modelling of the auxiliary concepts turned out to be of direct use in the subsequent
[main] model.

4 . 2 . 8 - - A u x i l i a r y N o t i o n s

"A t i t le is a list of words" leads to the following (main) Domain:

20. Tit le = Word +

"A rotat ion of a list is a cyclic shift of the words in the llst":

21. t y p e :Rogations: Title --* Title, s e t

21.1 Rota t ion , (t) ~ {rot(t , i } [i6 ind t}

22. t y p e : r o t : Title x N1 -* Title

.1 rot(t , i} ~- <t[j] I i < j <_ l e n t >^<t[k] t I <_ k < i >

22.2 ,,~e, rot(t,O a OemdO

"first word":

23. t y p e :Firs t : Tit le --* Word

23.1 Firs t (t) ~= h d t

15

"is significant" (w.r.t. a set of non-significant words):

24. t y p e :Is-Significant: Title x W o r ~ g t ~ BOOL

24.1 Is-Significantfl, ws) ~= ~(First(t) Ews)

We choose to model "alphabetical sort", rather than "is alphabetically sorted" - - leaving the latter as a
variant exercise:

25. t y p e :A-Sort: Ti t le-set - , Title +

.1 vre.A-Sort(ta) ~ t r u e

.2 vost -A-Sort(ts , t l) ~=

.3 (e lemst l = ts)

.4 A(lfilltl = card e lems tl}
25.5 A Ordered(tl)

Line 25.3 secures tha t all (rotated) titles in the set, and only such, appear in the t i t le output list; and
line 25.4 secures tha t there are no duplicates.

26. t y v e : Ordered: Title+--* B00L

• 1 Ordered(tl) ~=
26.2 (Vi,f-Jll.dtl}O<j D T-Order(tl[i],tl[j]))

27. t v o e : T-Order: Title x Title --, BOOL

Let there be given two titles t l and t2. Assume t l # t 2 . For T-Order(tt , t2) to hold either (i) W-
Order(P~t~tl.hdt2) or (il) there is u proper prefix, t, of bo th t l and t2 such tha t t l = t ~ , emd t x = f~t 2
such tha t either t~ = < > and t ~ < >, or bo th t~# < > ~ t~ and W.Order (k d ~ , h d ~) :

2s. _ore-T-Order(t~, t2) a (< > #tl #t~ #< >)
.1 T-Ordcr(tx, t2)
.2 (W-Order(kf]tl , hdt2)
.3 v (~t,~ A e Title)

.5 ^(((tq=< >)A(t',#< >))

.6 vCCtq# < >#tq) ^ W-Orde,'(~ tq,l~l r2)))))

4.2 .9 D o m a i n s

"Given a set of titles and a set of non-significant words":

29. Input = Title-set x Word-$et

"the program should produce s . . . list . . . of titles":

30. Output = Title +

4.2 ,10 T h e M a i n F u n c t i o n

The main function is expressed as: "Produce an alphabetically sorted list of the significant rotations of
tit les":

31. t y v e : KWIC: Input --* Output

16

Again we choose to express the definition of K W I C in terms of a pair of p r e - / p o s t conditions:

32. pre-KWIC(in} ~- t r u e

.1 post-KWIC(in, out) A=

.2 Signif-Rots(in, out)

.3 A Ordered(out}
32.4 A No-Duplicates(out)

4.2.11 - - A u x i l i a r y Func t ions

33. t v v e : Signif.Rots: Input x Output --, BOOL

.1 Signif-Rots(in, out)

.2 All-Rots(in, out)
33.3 A Only-Rots(in, out)

34. t y p e :All-Rots: Input x Output ~ BOOL
34.1 t y v e : Only-Rots: Input x Output --* BOQL

The All-Rots predicate checks that the output contains all significant rotations inplied by input. The
Only-Rots predicate cheeks that the output does not contain other such rotations:

35. All-Rots((ts, ns),tl) ~=
.1 (vt ~ ts)
.2 (¥t~ E Rotations(t)

35.3 (Significant(t',ns} 3 (t 'E el~m~ tl)}

36. Onlv-Rots((ts, ns),a)
.1 (Vt'G ~lems t/)

36.2 (3 !t E ts)(t'E Rotations(t)) AIsSignificant(t',ns))

37. t r u e :No-Duplicates: Title + ~ B00L

.1 No-Duplicates(tl) ~=

.2 EITHI~.R: c a r d e lemst l = lentl
37.3 OR: (Vi, j~indtl)(i#j D tl[i]#tl[j])

Observe that although we defined it, we never actually found a need for deploying the A-Sort function.
Such "things" happen when modelling bottom-up, configurationaUy!

4.2.12 T h e Tuple M o d e l l i n g P r inc ip l e

The question to be answered is this: when should we apply the tuple data type in our abstractions? The
answer goes somewhat like this:

When the object being subject to abstraction possesses a composite property such that its
components can best be thought of as being ordered (rather than un-ordered) and such that it
is natural to speak of a first, a second, etc., element, then a tuple abstraction seems reasonable.

If, furthermore, manipulations of the object may involve composing pairs (or sequences) of
such objects, as in infix (or distributed) concatenation, or involve inquiring about its length,
or about the set of its elements, etc., then a tuple abstraction seems further motivated.

The above modelling principle is a guide-rule. There is nothing absolute about it. It is really not a
law cast in concrete. To model abstractly is an art. The discussion at the end of subsection 4.1.2 apply
equally well here.

17

The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if you are 'told':
Some facility consists of an ordered collection of not necessarily distinct, further un-distinguished things
etc., then you should consider whether a model based on a tuple abstraction is otherwise appropriate; and
(ii) vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly
even inconsistent "specification", you should analyze that description with spectacles viewing "it" (the
thing spoken about by the "specification") from the point of view of: is a tuple abstraction an appropriate
choice? (You may find, in the latter case (ii) that it either fits, or does not; if not, then perhaps any of
the other composite data types [sets, maps, trees] may be used.)

4 . 3 M a p A b s t r a c t i o n s

4.3.1 D i r e c t / R a n d o m Access Fi les - - an E x a m p l e

In this section we illustrate abstractions of rather conventional file systems: their objects (files, records,
etc.) and operations (read, write, etc.).

4 .3 .2 S e m a n t i c D o m a i n s a n d S e m a n t i c O b j e c t s

- - Fi le s y s t e m s

The files of our system are uniquely identified, that is two or more otherwise identical fries must be
distinctly named. Let FILE and Fnm denote the Domains of further u-explained files, respectively file
names. Then:

38. fs: FS = Fnm ~ FILE

is a Domain equation. The identifier FS (by the use of the equality sign, =) denotes the same thing as
does the right-hand-side Domain expression, namely a Domain of maps from file names to files. Thus:
any file system, an object (let us ca~ it fs) in FS, consists of an otherwise unordered collection of uniquely
named files.

Let suitably decorated f ' s (be identifiers which) denote distinct file names, and let suitably decorated
file's denote (not necessarily distinct) files, then the expression:

39. [fl ~-~ filei ,f2 ~ file2 fn ~-']lien]

denotes a file system. [] denote the empty file system.

- - F i les , K e y s a n d R e c o r d s

We choose to illustrate so-called random access files, ie. files whose components (which we could call
"records") can be retrieved ("read") on the basis only of a so-called "key". Thus there is a notion of files
consisting of records, and of these records being (uniquely) retrievable on the basis only of a key, which
is often considered part of the record, and which is otherwise unique to each record of a file. We choose,
here, to call that part of a record which is not the key (ie. the record exclusive of its key) for the data
part of the record. A record hence consists of two parts: a key and a data part. To sum up: a file is
an unordered collection of records. Since these are uniquely identified by their key part, we take a file
to be a collection of uniquely keyed data parts. Let the identifiers Key and Data denote the Domains of
respectively keys and data parts, then, on one hand:

40. file: FILE = Key m Data

defines files to be maps from keys to data. On the other hand, and maybe not so useful here:

41. r: Record = (Key × Data)

18

defines a record to be a pair consisting of a key and a data part. Let suitably decorated k's and d's (be
identifiers which) denote keys, respectively data - - the former assumed distinct, the latter not. Then:

[kt~-,dl,k2~-,d2,...,km~--.,dm]

Expressions (44 . -47 .)
could be:

47. f i le\{k}

were "informal". More "formal", "closed-form" descriptions of these operations

48. t y p e : Write: Data × FILE --* FILE x Key

.1 t v v e : Update: Record x FILE -~ FILE

.2 t y p e : Read: Key × FILE ~ Data

48.3 t y p e : Delete: Key × FILE -+ FILE

where we assume (ie. edict!) that the write operation itself shall generate, use and return a suitable key:

denotes a file, with eg.:

42. , : (k,d)

denoting a record (r). We shall presently leave the Data Domain further unspecified.

- - P r i m i t i v e F i l e a n d Fi le S y s t e m O p e r a t i o n s

A number of operations will now be defined on files and file systems. First "informally" formalized,
subsequently "closed-form" (function definition) formalized. Let potentially decorated file's, k's, d's,
frtm's and fs 's be identifiers which which denote files, keys, data, file names and file systems, ie. let:

43. fileEFILE, kEKey, dGData, fnmGFnm, fsGFS

Then i l k is not the key ofemy record in file, ie. if k~[l~i~ fde, then:

44. file u [k ~ d]

denotes a file which is like file is except that it now also contains the record (k, d), that is: we can interpret
(ie. understand, or take) the above expression as describing the essential aspect of writing a record to a
file.

If, instead, k is already a key of some record in file (namely record: (k, fde(kJ)), then:

45. file +[k ~-* d]

could be used for expressing the update of a file, file, record with key k to a new data part, d. The
wording above is a bit "dangerous". Nothing "happens" to file fde. All we axe expressing is some other
file which is like fde is, except that whatever the record with key k had as data part in file, in this other
file the record with key k ("now") has data part d.

If k is the key of some record in file then the data part of that record cem be read:

46. file(k)

To express deletion of the record with key k from a file file we write:

19

49. Write(d, fde) ~=
.1 ~ k E K e y \ d o m file

49.2 (file U [k ~-, d],k))

5o. Update((k,d),fil~)
.1 i f k ~ file
.2 t h e n file +[k ~-* d]

50.3 e lse u n d e f i n e d

We could have defined update unconditionally - - to just contain (45.) as the function definition body.
Doing so would, however, lead to ~update" usable also for "write" purposes - - as the map override
operation, +, does not require, in this ease, k, to be already in the domain of, in this case fl/e.

51. Read(k,file) zx
51.1 i f k E d a m fde t h e n fde(k) else ~

52. Delete(t , f i le) ~
52.1 i f k E d a m fde t h e n fde\{k} else u n d e f i n e d

Similar remarks, as for update, apply to read and delete. Applying a map to an argument not in its
domain "automatically" yields undefined - - but we express ourselves "defensively". And: deleting s non-
existing record doesn't change anything: however we prefer to be told of attempts to delete non-existing
records, and use the undefined clause as a future reference point for inserting useful diagnostics when
actually implementing eg. this file system!

The expressions:

53. file~ u 1lie=

• 1 file1+ file=

.2 file1 \ d a m file=
53.3 file1] d a m fi/e=

can, as a suggestion, be understood as modelling the following transactions: (53.) The merging of two
files of distinctly keyed records• (53.1) The update of a master file, Jilel, with a (daily) transaction file,
file2 - - the latter permitted, now, to contain records with keys not in fdel, is. "new" records ~to be
written" onto the new master file! (53.2) expresses the deletion of all those records from f i let whose keys
are keys of records in file2 w of course nothing is physically, or actually, "deleted" - - as before (53.2),
and for that matter (53.-53.3 incl.), just expresses (~new') files. (53.2) denotes a file which is llke fi/el
is, except that it does not "contain" those records of filel which have keys in common with records of
file=. Finally (53.3) expresses a file which is like filex is, except it only has those records whose keys are
in common with records of fllez.

As we did with set- and tuple-oriented abstractions of file systems (section 2.4, respectively 3.4.3), we
now show imperative versions of some of the above operations:

54. d c l file := [] t v v e : F I L E

54.1 E = file nt F I L E

55. t y p e : write: Data -.~ (~ --, ~ x Key)
.1 t y p e :update: Record--, (~ ~]2)

.2 tTpe : read: Key - , (E ~, Data)

55.3 t v v e : delete: Key --, (B =,]3)

20

56. ~ t e (d)
.1 (d e f k GKey \dom c file;
.2 f i e := c file U [b--*d];

56.3 re turn k)

57. update(k,d) tx
• 1 i f k E d o m e file
.2 t h e n file := g f i e + [k ~ d]

57.3 e l se e r r o r

58. read(k) A
• 1 i f k E d o m e file
.2 t h e n (e file)(k)

58.3 else e r r o r

59. delete(k) ~=
.1 i f k E d o m ~ f i e
.2 t h e n r~e := (_¢ f i e) \ (k }
.3 e ~ e c g r o g

Given:

60. t v •e : F: FILE --, FILE

60.1 t v v e : R: Data --* Data

we can define file sys tem and file (ie. "record sys tem") processing functions:

61. t y p e : alP: (FILE ~ FILE) x FS ~ FS

61.1 afP(F,fs) ~= [[~ F(fs(f)) I f e d o r a fs]

62. d ¢ l f s := [] t y p e : F S
63. ~ = fs mFS

64. t y p e : i f P: (PILE--* FILE} --* (~ --* ~)

.1 ifP(F)

.2 (d_fif fns: dom_~ fs;

.3 f o r al l f e f n s d.__Q fs := e fs + ~f ~--*F((c fs)(f))])

65.

.1
65.2

t y p e : arP: (Data ~ Data) × FS --* FS

arP(R,fs)
[f~--~ [b-~R((fs(f))(k)) k E d o m (fs(f))]l . fEdora .fs]

66.
67.
68.

dc_._]l fs := [] t v v e : FS;
dc_.~l file := [] t Y v e : PILE;
E = (fs --* FS) t.J (file m FILE)

21

69. t y p e : irP: (Data ~ Data) --* ~2--, ~)
.1 irP(R)
.2 (deffns: dora e fs;
.3 for ~U f ~ / ~ s do
.4 (f~e := [];
.5 de_._f ks: dora ((c fs)([));
.6 for all k ~ ks do

.7 file := ,: me u [~R(((~ f~)(f))(k))];
69.8 f~ : = e f~ + [.ft--,g me]))

4.3.3 T h e M a p M o d e l l i n g P r i n c i p l e

The question to be answered is this: when should we use the map data type in our abstractions? The
answer goes somewhat like this:

When the object being subject to abstraction possesses a composite property such that it can
be regarded as a finite collection of uniquely distinguished elements then a map abstraction
seems reasonable.

If, furthermore, manipulations of the object may involve searching for a distinguished element,
or extending the object with yet another such new, uniquely distinguishable element, etc., then
s map abstraction seems further motivated.

As was discussed earlier, the above modelling principle is a guide-rule, etc. The discussion at the end
of subsection 4.1.2 applies equally well here!

The above rules, in actual modelling situations "translates" as follows, in two ways: (i) if yon are
' told': Some facility consists of an unordered collection of distinct, uniquely distinguished things etc.,
then you should consider whether a model based on a map abstraction is otherwise appropriate; and (ii)
vice-versa: in deciphering somebody else's unstructured, informal, ad-hoc, incomplete and possibly even
inconsistent "specification", you should analyze that description with spectacles viewing "it" (the thing
spoken about by the "specification") from the point of view of: is a map abstraction an appropriate
choice? (You may find, in the latter ease (ii) that it either fits, or does not; if not, then perhaps any of
the other composite data types [sets, tuples, trees] may be used.)

4 . 4 T r e e A b s t r a c t i o n s

4.4.1 P r o g r A m m i n g L a n g u a g e C o n s t r n e t s - - an Exa~aple

The basic idea is to abstract from any concretely written form. How eg. statements are written:

70. var : : expression
• 1 let var be expression
.2 assisn expression to vat
.3 expression ~ oar

70.4 compute expression in oar

or some such way, cannot be important• At least not when the "real" issue is "what does assignment
mean?". Common to all of the above (70.-.1-.2-.3-.4), ie. the case of the assignment statement, is that
it consists of two parts: one being the variable reference (denoting the location to which the assignment
update shall occur), the other being an expression (denoting . . . etc.). Thus, instead of writing some
BNF grammer, like:

71. < Assignment > ::= < Variable > : = < Expression >

which denotes text-string generation or analysis for the first (70.) of the above concrete forms, we write:

72. Asgn :: Vid x Ezpv

22

Either of the above four concrete text string representations of assignment statements are now abstracted
by the one abstract t~ee expression:

73. mk-Asgn(var, ezpression)

where vat is the abstraction of 'vax', and ezpression the abstraction of 'expression'.

We have just iUustrated the representational abstraction of assignment statements. We now go on to
illustrate the representational abstraction of other, typical, source language statements:

74. I~ :: Ezpr x Iccons:Stmt x s-air:Strut

abstracts the Domain of if-then-else statements, which syntatically consists of an expression and two (the
consequence, and the alternative) statements.

The 'while loop' statement Domain is (eg.) abstracted as:

75. Wh :: Ezpr x Strut +

That is: a while-loop apparently consists of an expression and a statement list - - concretely one such
while loop statement could look like;

76. 'while e do sl; s2; . . . ; s~ od'

or llke:

77. " D O WHILE (e); sl; s2; . . . ; s,,; END "

Observe that although we have written the Ezpr befoie the Strut" that does not always mean that in
a(ny or some) concrete representation the corresponding concrete text for Ezpr precede text for Strut +.
The example of the contrary is the 3rd, 4th, and 5th example (70.2-.3-.4) of concrete assignments versus
the abstract Domain of Asgn.

Observe also that whereas a BNF grammar generally specifies text strings (strings of characters), as
opposed to eg. phrase-tree structures (ie. text strings annotated with their underlying phrase-stmeture),
our tree Domain equations specify structured, eomposite, objects, ie. objects not subject to any "parsing"
or analysis with respect to which structure they (might) have. This last point is often overlooked, or
missed. Tree Domain specifications of the syntactic constructs of an(y) object language is a specification
of already analysed (parsed) objects, ie. a specification of parse-trees rather than text strings. As we shall
later see, we also use the tree data type for other than specifying (and manipulating) syntactic objects.

To round up our example of illustrating the statement constructs of an ALGOL-like language we
throw in some further examples, including some concerned with expressions:

78. For :: Vid x Spec+× Strat+

is intended to define the Domain of abstract, ALGOL-60--1ike ~for loops", a concrete, schematic example
of which is shown in figure 1.

The dashed boxes enclose various, so designated phrase type components. (We shall later, in volume III
chapter 4, explain and formalize the semantics of t l g o l 60-1ike for loops.) (The above dashed boxes and
italicized words (at the root of arrows) are extraneous to the concrete example, but should illustrate the
parts corresponding to the abstract tree Domain For.) Thus:

23

Figure 1: A Schematic, General For-Loop

For Vid Spec +

: ,.~.: .~_~.:..~. _ t_ :_~_ .~:
,,

i _ _ d o ~'" :'~'i; : ' t ' ; f ' . : - 7 i ' t '~"'i o d

/

Strut +

79. Spec = BT-Spec] B-Spec] Ezpr [T-Spec
80. BT-Spec :: Ezpr x Ezpr x Ezpr
81. B-Spec :: Ezpr x Ezpr
82. T-Spec :: Ezpr x Ezpr
83. Ezpr = . . .

Since we apparently assume tha t B-Spec (only by) and T-Spec (only to) specifications imply distinct
semantics we must enable such a distinction syntactically. This distinction is afforded by the axiom on
tree Domains: even though we use the same expression el and e2 in both by and to specifications:

84. mk-B-Spec(q, e2),
84.1 ink . T-Spec(et, e2).

By the mere distinctness of the identifiers B-Spec and T.Spec the above two tree objects are distinct, and
hence distinguishable.

The Domain of all s ta tements is referred to above as Strut, its proper definition is:

as. strut = a s g . I I / I w h I For I . . .

86. Asgn :: Vid × gzpr
87. I f :: Ezpr × Strut x Strat
88. Wh :: Ezpr x Strut +
89. For :: Vid x Spec+x Strut +

etcetera. Among expressions we have simple variables, constants, pre-, in- and suffix-expressions, condi-
t ional expressions, etcetera:

24

90. E,~p,- : va,- I C o n a I P ,~ I zn / I S u f l Cond I . . .
91. Vat :: Vid
92. Const = Int9 I Bool] . . .
93. Pre :: Pop x Ezpr
94. In f :: Ezpr × lop x Ezpr
95. Su] :: Ezpr x Sop
96. Cond :: s_z-tst:Ezpr × s_.=cons:Ezpr x s_:-alt:Ezpr
97. Pop = MINUS [NOT 1 . . .
98. lop = ADD I SUB I MPY I DIv I AND l OR I . . -
99. Sop : FAC I ' -

100. lntg :: IITG
101. Bool :: BOOL

Some comments are in order: instead of defining syntactic designators for integers, ie. instead of defining
numerals, and instead of defining similar designators for t ru th values, we prescribe the denoted objects
directly! T h a t is we abstract numerals by their denoted values: integers (or rat ional numbers, etc.). And
we abstract the syntactic markers designating t ru th values by their denoted values.

Note also tha t we have jus t used the meta-language quotat ion data type: the underlined words, or
identifiers, listed in the Pop, lop and Sop Domain definitions, are intended to abstract the operator
symbols which in some source language might be represented by - , - ~ , . . . , + , - , * , / , and, or, [.
i We refer to section 3.6 volume I chapter 3, for a concise t reatment of this so-called QUOT data type.
Suffice it here to repeat tha t QUOT objects s tand for themselves.

Finally we note an "extreme" ease of a (cartesian product, or tree) Domain expression involving three
occurrences of the same Domain identifier: Ezpr x Ezpr x Ezpr. For ease of (future) reference, ie. as an
aid in documentat ion, hinting at the various r61es the individual Ezpressions of conditional Ezpressions
serve, we have "annotated" the Domain definition by suitably daosen mnemonics for the sub-component
functions wMeh select the: "test", "consequence" and "alternative" expressions.

Our final syntactic Domain definition is intended to bring the whole apparatus of set, tuple, map
and tree da ta type abstractions together, into one single Domain definition. The point is to il lustrate
how abstract we may wish to go when defining even syntactic objects, objects for which we are used
to a rather pedantic, concrete representation. The case in point is the ALGOL-like language construct
"blocks". To carry our message as forcefully and clearly as possible, we think of a block as consisting of
three things: declaration of variables, definition of procedures and a statementlist body.

102. Block :: Vars x Procs x Body

We think, in this, very simplifying, case, of variables being declared by jus t listing their identifiers (no
type or other information), and we think of the order of listing of variable identifiers to be (semantically)
immateriM:

103. Vats : V/d-set

We think of procedure definitions as consisting of two parts: a procedure identifier (the definiendum)
and the rest: formal parameter specification and a procedure body (which is a block), and we call, ie.
name the Domain of these rest's, Prc. Since we think of no two procedures of a block to have the same
identifier we abstract the procedure definitions as a map from identifiers to "rests":

104. Procs : Pid m Prc

Finally:

105. Body = Stmt +

By subst i tut ing the last three definitions (back) into tha t of Block we get

25

106. Block :: V/d-set x (Pid m Prc) x Strut +

where we "smuggled" in some (precedence-breaking-, or at least "text '-grouping-) parentheses around
Procs. Here they cause no change in what is being defined. The above, last, Block definition wraps
up all four abstract data types of the recta-language in one definition: trees, sets, maps and tuples.
Although actual, ie. concrete representation of blocks syntactically must be linear, ie. ultimately ordered
(in extreme: tuples of characters), we have here, in our abstraction, not only abstracted away concrete
syntactic markers such as keywords and other delimiters, and ordering of sub-phrases, but two additional,
similar, things have been obtained: the fact that no two variable declarations are (usually) allowed
to introduce the same identifier (twice), and the fact that no two (or more) procedure definitions are
(usually) allowed to use, ie. define the same procedure identifier (twice or more). We say that some of
the contezt sensitive conditions of eg. a BNF specification have been solved, ie. done away with, in our,
more abstract Domain specifications. Not all such context conditions can, however, be solved merely by
using abstraction.

To wrap up some, but not all loose ends of the Block Domain definition we partially complete:

107. Prc :: F /d*x Block
108. Strut = . . . I Call
109. Call :: Pid x Ezpr*

4.4.2 T h e Tree M o d e l l i n g P r i n c i p l e

The question now to be answered is tiffs: when, in specifying software abstractly, do we use the tree data
types? The answer goes something like this:

When the object to be modelled - - of some external, "real" world, or of some programming
world, possesses a composite structure, and when that structure is fixed, ie. consists of a fixed
number of components (of arbitrary composite or atomic nature), then a tree abstraction
seems possible.

If, further, manipulation of the object being modelled consists basically in taking it apart,
into its constituent components, and comparing two structures (for equality, for example),
then the tree abstraction seems justified.

Etcetera.

5 Applicative and Imperative Definitions

A model, a specification, is applicative iff it is expressed solely in the applicative style, ie. based only on
applicative constructs. A model is imperative if it contains at least one imperative construct.

Several examples have been give above using either style of definition. Hence:
What determines our choosing either the applicative or the imperative style? The question to be

answered here is: when do we choose to introduce global state variables?
The answer, is based on pragmatics, has several parts, and covers several facets, and goes somewhat

like this:

1. If the concept modelled (i) exhibits scqucntialism, ie. that certain object manipulations are done
in certain orders, and (ii) if past creation of object values, once consumed, ie. once used in the
subsequent (ordered, sequential) creation of new values, are never again used, then a meta state
may be a proper thing to introduce. We shall illustrate this rule in volume IV chapter 3 on
sequentialism!

There are actually two notions involved here: (i) sequentialism and (ii) states. They obviously
intertwine. Sequentialism cannot go without a state.

2. The balance between having few versus many global variables is a choice determined by stylistic
concerns: many variables lead to a need for few parameters to functions, and to few components of
returned values. Few variables lead to many parameters and many result components. The more

26

global variables that are used in any one function definition, the more fide-effects are "potentially"
hidden.

6 Denota t iona l and Computat ional Definit ions

Def in i t ion 4 A denotational semantics definition of, say a programming language, assigns to each prim-
tive construct of the language (viz.: identifiers of variables, labels, procedures, etc.) a mathematical
function (the denotation of the identifier), and otherwise ezpresses the semantics of composite constructs
(homomorphicaUy) as a function of the semantics of each of the components of such composite constructs.

Thus a denotational semantics ascribes functions, usually input /output functions, that describe the i / i
function of constructs.

De f in i t i on 5 A computational semantics, in contrast, describes the ezecution behaviour of programming
language constructs in terms of state sequences undergone while computing according to ~ m (con-
struct} prescription.

We illustrate the important notions of Denotational and Computational Semantics by giving semantics
to a common language of expressions.

6 . 1 S y n t a c t i c D o m a i n s

Our example source language consists, syntactically, of expressions. Expressions ate either constants,
identifiers or pre- or infix operator/operand expressions. Constants are (for simplicity) integers. Identifiers
are just that. Prefix expressions has two parts: a monadic operator and an expression. Infix expressions
has three parts: a dyadic operator and two expressions. Monadie (dyadic) operators are "plus", "minus",
"factorial", etc. (and "add ' , "subtract", "multiply", etc.):

110. Ezpr = Const I I d] Pre I Inf
111. Const :: INTG
112. ID :: TOKEN

113. Pre :: MOp x Ezpr
114. In/ :: Ezpr x DOp x Ezpr
115. MOp = PLUS I MINUS I FAcT I ' ' '
116. DOp = ADD I S0B I M r Y I . . .

(The above equations display, or exhibit, almost neghgeable representational abstraction: little "room"
is given in this example for doing abstraction!)

We observe how expressions have been recursively defined - - j u s t as would be expected in a standard,
concrete BNF grammar definition.

6 . 2 S e m a n t i c D o m a i n s

Only constants have been representationally abstracted: instead of specifying numerals, we (directly)
specify the integer numbers denoted.

Identifiers occurring in expressions are bound to integer values, in something we shall call an environ-
ment:

117. p: ENV = Id m INTG

The primitives of the language are: constants, identifiers and operators. Constants denote themselves.
Identifiers denote integers - - with their denotation being recorded in the environment.

27

6 . 3 The Denotational Semantics

6.3.1 A u x i l i a r y D e n o t a t i o n F u n c t i o n s

Operators denote certain arithmetic functions.

118. DenOp(op) zx
.i cases op :
.2 PLUS ~ Az.z
.3 MINUS ---* AZ.-Z
.4 FACT -~ Az.z!
.5 ... --# ...

.6 ADD -~ Az.Ay.z+y

.7 SuB --. Az.zy.z-y

.8 MPY ~ Az.Ay.zx y

.9 .,. --~ oo.

.10 t y p e : (MOp --* (I l l r 6 ~ I~ITG)) I
118.11 (DOp --* ('rllTGx "rlITG.... INTG))

In order that the semantic function can find the meaning (i.e. value) of an identifier it must refer to an
environment which is therefore an axgument to the semantic function.

6.3 .2 T h e S e m a n t i c E l a b o r a t i o n F u n c t i o n s

Without much ado we present the semantic function which, since expressions were recursively defined,
itself is reeursively defined.

119.
.1
.2
.3
.4

.5
119.6

Vat-Ezpr(e)p = ~"
c a s e s e :

i n k - C o a s t (i) --. i,
m k - I d (t) -~ p(e),
m k - P ~ C , . , e ' ~ DenOp(, .)CVaZ-F~zpr(. ')p) ,
mi~-ln/(l,d,r) --* DenOp(d)(Val-Ezpr(1)p, Val-Ezpr(r}p)

type : Ezpr -~ (ENV -% INTG)

The functions M and F alluded to in the introduction (section 10.1) can now be stated: M is Val-Ezpr
when the syntactic construct is an expression, and is DenOp when it is an operator. F is functional
composition for the case of prefix expressions:

120. F(DenOp(m), Val-Ezpr(e)p) =
120.1 DenOp(m)(Val.Ezpr(ejp}

f u a ~ i o n c e m p o s i ~ i o n

F is the composite of the "pairing" function with functional composition when the composite is an infix
expression:

121. F(Val-Ezpr(lJp, DenOp(d), Val-Ezpr(r)p) :
121.1 DenOp(d)(Val-Ezpr(l/p Vat-Ezpr{r)p)

That is: we view the prefixing of an expression with a monadic operator, respectively the infixing of two
expressions with a dyadic operator as (syntactic) operators - - not explicitly written. And we then assign
the meaning:

28

122. ~/ .~, . / (,)

to the (invisible) prefixing operator, and:

123. ,Xz.Af.Ay.f(z,y)

as the meaning of the (invisible) infixing operator.
Instead of "juggling" around with the DenOp function and with what to us are rather convolute

formulae of Val-Ezpr we syntactically sugar Val-Ezpr while factoring DenOp into the new V-Erpr:

124. V-Ezpr(e)p ,x
.1 c a s e s e :

.2 mk-Const(i) --* i,

.3 mk.Zd(t) -4 p(e),

.4 mk .Pre(m,e ' --* (lea v = v-gzpv(e')p ill

.5 c a s e s m :

.6 PLUS --* v,

.7 MINUS --* -v,

.8 FACT ~ v/),

.9 mk-Inf(l ,d,r) ~ ~ Iv = V-Ezpr(l)p,

.10 rv -- V-Ezpr(r)p ill

.11 eases d :

.12 .4.pI~ ---* lv÷rv,

.13 Sol~ -* lv-rv,

.14 MPY ~ Iv×rv,

.15)
124.16 t v u e : Ezpr ~ (E N V ~ INTG)

We are finally ready to summarize the type of the denotation of expressions, whether constants,
identifiers or opera tor /operand expressions. That (general) type can be read directly from the type of
the semantic function (119 or 124) above. The type of the meaning of an expression, i.e. its semantic
type, is tha t of a function from environments to integers:

125. Ezpr: ENV z~ INT6

The function is part ial in t ha t expression identifiers not in the domain of the environment lead to unde-
finedness. For a constant , mk-Const(i), expression the function is the constant function which ~maps"
any environment, p, into i. For an identifier, mk-Id(t) , expression, e, the function maps any environment,
p, into the integer, p(e), which that identifier is associated with in those environments. If the identifier
is not in the environment u n d e f m e d i s yielded. For the remaining expressions we refer the reader to the
formulae of e.g. (124.), from which we also "read" the meaning functions of the two previous sentences.

6 . 3 . 3 A n E x t e n s i o n

For the sake of making the computational semantics example a bit more interesting than it would other-
wise be with the present source language of expressions, we extend this language. The extension amounts
to the introduction of conditional expressions:

126. Ezpr [Cond
127. Cond :: Ezpr x Ezpr x Ezpr

where we think of the semantics of "if et t h e n e, e lse e~" as really specifying: " if et=O t h e n ee else
e~ ' ! Thus:

29

128.
.1
.2
.3
.4
.5
.6

V-E=pr(e)pE
cases e :

ink- Cond(t, c, a) -~ (I¢.t b = V.E=pr(qp i a
i f b=O
then V-Ezpr(c)p
else V-Ezpr(a)p),

Thus F of a conditional expressions' semantic is that of "delaying" the evaluation of either the consequence-
or the alternative expression till the value of the test expression has been obtained. More precisely:

129.
.1

129.2

M(t,c,a)
= F(M(t) ,M(c) ,M(a))
= Ap.('L¢ M(t)p---O then M(c)p else M(a)p)

whereby F is expressible as:

130. ,~p.~rna.~mc.Ara,.if m,(p) = 0 then ra=(p) d~e m=(p)

where rr~, mc and m= now are the "meanings" of the "correspondingly" named syntactic objects: t, c
and a. Observe how the "delay" is afforded by the "encapsulation" of final evaluations of c and a.

6 . 4 A C o m p u t a t i o n a l S e m a n t i c s

6.4.1 I n t r o d u c t i o n

The basic idea of the example of the next 2 sections is that of realizing the recursion of V-Ezpr of sections
10.3-4 by means of ~tachs . Many realizations of the recursion of V-Ezpr are possible. We will, rather
arbitrarily, select one. Volumes IV-V-VI will explore the unfolding of recursion onto stacks in a more
systematic fashion.

Before proceeding into a description of which stacks to create and how they are used we note that our
stacks are not to be used for sorting out precedence of operators. Since we work only on abstract syntactic
objects, all such precedence has already been resolved, and is "hidden" in the (invisibly) parenthesized
sub-expressions.

Thus we remove recursion in the function definition (of V-Ezpr) by introducing (one or more) stacks.
At the same time we change our definitional style from applicative to imperative. This is not an intrinsic
consequence of choosing stacks, but a pragmatic one. In doing so we can, at the same time simply change
the recursive function definitions into iterative. The imperative/iterative nature of the resulting definition
further gives it an air of being "mechanical".

6 .4 .2 T h e C o m p u t a t i o n a l S t a t e

One stack is the value stack . It is motivated by the "stacking" of temporaries (cf. (124.4), (124.8-124.9))
due to recursion in V-Ezpr.

Another stack is a control , or operator/operand-ezprcssion stack. It is motivated by recursion over
syntactical expression objects.

Thus we make two decisions: first to state the model imperatively, in terms of some globally declared
variables. Then to express the computational semantics in terms of two stack variables and a constant
environment.

131. dc__~l opestk :-- < > t v v e : (MOp] DOp I Ezpr [I T E)*,
.I valstk :-- < > t y p e : INTG*;

131.2 le..~t env -- [...] m____...

30

Why we made those two, and not other, among quite a few other possible, decisions will not be explained
much further! We reserve such discussions to volumes IV and V.

In our computational semantics, as imperatively stated, we must necessarily choose an elaboration
order for operand expressions of infix expressions. This order was left "unspecified" by V.Ezpv of section
10.3.

6.4.3 M o t i v a t i n g the Control Stack

The idea of the operator/operand stack is now that the topmost dement is either an expression, to be
evaluated, or an operator to be applied to either the operator/operand or to the value stacks.

If the top of the operator/operand stack is an expression then it is either elementary or composite. If
it is elementary, i.e. a constant or an identifier then the associated value is pushed onto the value stack,
while the expression is being popped off the operator/operand stack. If it is composite, i.e. a prefix, infix
or conditional expression, then those expressions are decomposed, with the decomposition replacing it
on the operator/operand stack. Hence the control stack will consist of a sequence of operators and their
operands, in what turns out to be some variant of a so-called post-fix polish "notation".

1: A prellz ezpression is replaced by two elements on this stack: the monadic operator and the (sub-)
expression (on top).

2: An inllz ezpression is replaced by three elements: the dyadic operator and the two (sub-) expres-
sions (in some order, on top).

3: A conditional expression is replaced by four dements, in order from top towards bottom: the test
expression, a "meta-"operator (ITE)~ and the consequence and alternative expressions - - the latter
two in arbitrary, but fixed, order. The idea of the I T E operator will be explained presently.

4: If the top of the operator/operand stack is a monadic operator , then the denoted operation is
applied to the top of the value stack. (Thus if the operator is Minus the top of the value stack
is replaced by its complemented ("negative") value.) [It follows from the opcrator/operand stack
manipulations that the value stack top is the value of the expression to which the monadic operator
was once prefixed.]

5: If the top of the operator/ operand stack is a dyadic operator , then the denoted operation is
applied, in an appropriate way, to the two topmost values of the value stack - - with the result
replacing these values.

6: Finally if the operator/operand stack top element is I T E then it means that the value of the test
expression of the conditional expression, whose manipulation gave rise to this I T E operator, is on
the top of the value stack. If it, the latter, is 0 then we compute only the consequence expression,
otherwise we compute only the alternative expression. These are the next two elements on the
operator/operand stack. The appropriate one is thrown away together with the value stack top.

6.4.4 T h e E l a b o r a t i o n Func t ions

Computation proceeds based, as always, on the top element of the operator/operand stack. And compu-
tation proceeds as long as there are elements on the operator/operand stack. When it becomes empty the
computed value is the top value of the value stack. The function informally described in this paragraph
is called Compute, it is defined formally below.

Let us call the function which transforms the system state dependent on the top of the opera-
tor/operand stack for Transform, then:

132. t y p e : Compute: Ezpr ~ (~ -~ ~× INTG)
.1 t y p e : Transform: ~ ~

133. ~ = opestk m" (MOp [DOp [Ezpr I ITE)*
134. ~ valstk ~ INTG*

31

135. Compute(e) ~=
.I (opestk := <e>;
.2 whi le e opestk ¢ < > doTransformO;
.3 c hd valstk)

To facilitate the statement of Transform we define four auziliary stack functions :

136.
.1
.2

136.3

PopO 0 ~ (clef oe : hd_copestk;
opestk := t l eopestk;
r e tu rnoe)

t v v e : ~--* (~ x (MOp l DOp I Ezpr l I T E))

137. PopV 0 ~ (de fy : hdeva l s t k ;
.1 valstk := t l cvals tk ;
.2 r e t u r n v)

137.3 t y v e : E ~ E x INTG

138. PushO(oel} ~= opestk := oel ^(£opestk)
138.1 t v g e : (MOp 1 DOp I S~r I ITE)*--, (E---, E)

139. PushV(v) ,a valstk := <v>"~vals tk
139.1 t y p e : INTG--, (~ - , E)

Now to the main function:

140. Transform 0 ~=
.1 ~ oe : PopO0;
,2 cases oe :
.3 ink- Const(i) ---,
.4 mk.~rd(t) --.
.5 mk-Pre(m,e ') - .
.6 ~- In f (l ,d , r ,)
.7 mk- Cond(t,c,a,) -+
.8 MINUS -+
.9
.10 . . . -~
.11 ~ p p -~
.12
.13
,14 . . .

.15 I T E --*

.16

.17

.18

Push V(i),
p.sh V(e.~(o~)),
PushO(< e ' ,m >),
PushO(< r,l,d >),
PushO(< t ,ITE ,c,a, >),
(deal v : pop vO;
PushY(. .)) ,

(~,~_f Iv : PopVO;
clef to : PopVO;
Push V(lv+rv)),

(def b : Pop V();
de___f c : PopO0;

a : PopO O,
PushO[xf b=O t h e n c else a))

6 . 4 . 5 A D i s c u s s i o n

We observe that the above definition does not satisfy the denotational principle. Instead we should get
a rather operational "feeling" for how one might mechanically pursue an interpretation of expressions - -
resulting, after some iterations, rather than reeursions, in its value.

32

7 Hierarchical and Configurational Developments and Presen-
tations

7 . 1 D e f i n i t i o n s

Definition 6 By 'construction' we here mean the process of developing a specification, or, in general,
the process of developing software.

Def in i t i on 7 By 'presentation' we here mean the documentation resultin 9 from construction, and pre-
sented to the readers.

D e f i n i t i on 8 'Hierarchical' (or 'hierarchal') is basically an intellectual concept, and conjures that some-
thing should be conceived from the top-down.

Def in i t ion 9 'Configurational' is basicalt v a a mechanical concept, and conjures that something should
be conceived from the bottom-up.

Well-known, familiar artifacts, such as would be yet another P a s c a l / A l g o l 60 like programming lan-
guage, or a similarly classically conceived relational data base system, - - such "well-known" notions
- - can be both hierarchically developed and presented. Rather "newish" concepts, as might for ex-
ample be a so-called P e t r i - N e t based office automation system architecture based on some form (and
document) flow concept, might be both developed and presented in a configurational manner. Finally
there may be software architectures that are configurationally developed, but once developed, and hence
well-understood, they might be hierarchically presented.

The example of the Tuple Abstraction section was configurationa]ly developed and presented. The
example DenotationM Semantics was partly hierarchically, partly configurationally presented.

8 Specification Components
The basic components of system models are:

I. semantic Domain equations,

2. invariant predicate definitions (over semantic Domains),

3. syntactic Domain specifications,

4. well-formedness predicate definitions (over syntactic Domains),

5. semantic elaboration function type definitions,

6. semantic function (body) definitions.

7. and usually a number of auxiliary functions

The above examples abundantly illustrates this decomposition of a specification.

8 . 1 S e m a n t i c D o m a i n s

We give a hierarchical presentation,

8.1 .1 A D a t a M a n a g e m e n t S y s t e m S ta t e - - an E x a m p l e

The state of a simple Data Management System consists of a Dictionary and a File System. The Dictio-
nary maps File Names to File Types, and the File System maps File Names to Files. Files are sequences
of groups, each group being a sequence of either Boolean, Integer or Character Values. The File Type of
a File describe, for each group its Type, whether BOOLBAN, INTEGER, or ~HARACTSR, and its maximum
sequence length. See figure 2.

33

Figure 2: Abstract Syntax for a Data Management System State

141. D M S :: D I C T x D A T A
142. D I C T = Fn m FTyp
143. F T y p = (DTyp × Length) +
144. DTyp = BOOLEAN] INTEGER I CHARACTER
145. Length = NI
146. D A T A = Fn m F I L E
147. F I L E = Data +
148. Data = Bool I Intg I Char
149. Bool = B00L +
1 5 0 . Intg = INTG +
151. Char = TOKEN +

Figure 3: Data Management System State Invariant

152. i n v - D M S (m k - D M S (d , f s) } ~=
.1 (domfs C_ d o m d)
.2 ^ (¥ f n e d o m f s)
.3 (l e t # = d(f .) ,
.4 file = f~(Jn) i l l
.5 ,~.~ = ~a.~le)
.6 ^(vi E~dft)
.7 ~ (t,t) = #[i],
• 8 g rp = f i le[i] i a

9 a.~agrp <0
152.10 A Same Typ(t ,hdgrp)

All files are defined.
For each file,

its number of groups is correct,
For each group,

it is within length,
and of right value type

153. SameTyp (t , v) = a
.1 ((t=BooLEA N)AIs-BOOL(v)) V
.2 ((t:INTEGER)AIs_._=INTG(v)) V
.3 ((t=CHARACTER)A~:.TOKEN(v))

153.4 t y p e : SameTyp: DTgp × (B00LIINTG]TOKEN) --. B00L

BOOL value iff BOOL type
INTG value iff INTG. type

TOKEN value if[Character type

8.2 Semantic Invariance

The "connection" between the two related system components: the dictionary and the file system, namely
tha t the former describes the latter, leads to an invariant predicate. It is given in figure 3.

We shall often see the need for relating, through an inv-ar ian t predicate, the context-sensitive information
needed between otherwise context-free specified components of for example abstract trees.

8.3 Syntactic D o m a i n s

Let us model a very simple-minded concept of programming language blocks. Blocks consists of a set of
variables, defined by their variable identifiers, and a list of assignment statement, which consists of a 1ha
variable (identifier), and a r h s expression:

154. Block :: Vid~set x Asgn +
156. Asgn :: Vid x Ezpr

34

Let us (before we turn to a technique whereby we solve the expression of the constraint problem)
further compound the last example. Assume that expressions are either just variables or infix expressions:

156. Ezpr : Vat [Infiz
157. Vat :: Vid
158. Infix :: Ezpr x (AND !MPY [. . .) x Ezpr

8 . 4 S y n t a c t i c W e l l - f o r m e d n e s s

The constraint on blocks is now that all variables of assignment statements (presently their 1ha 's) must
be defined, ie. must be those mentioned in the block. This constraint is not captured, and cannot be
expressed by context free Domain equations.

The constraint on expressions (of blocks) is that they mention only defined variables. This mutual
inter-dependency between the two parts of a block cannot be formulated within the technique of Domain
equations.

Whenever we define a function type to take, say Domain A arguments, or yield A results, where A
has some inv- or is-wf- constraint "attached" to it (ie. is-wf-A or inv-A has been defined), then we
mean, not the entire Domain A, but the constrained subset Domain A'.

Thus defining a function involving A gives rise to one or more proof obligations: namely to show that
the defined function indeed is total over A ~, respectively oldy yields A ~ objects.

159. is-wE-Block [mk-Block(vs, al)] ~=
.1 (¥mk-As#n(v,e) eelemsa 0
.2 ((,, e,,s)

1 5 9 . 3 ^i~,-wf-E=p,. ~ e](~,))

160. tyve: is.wf-Ezpr: Ezpr -+ (Vid.set -. BOOL)

.1 i s -wf-Ezpr[e l (v ,)

.2 c a s e s e :

.4 u Ev*,

.5 mk-Znf=(z,,,)
160.6 ~S-wf-Ezpr [l](vs) A is-wf-Ezpr [r] (v,)))

Lines (159.1-3) could be rephrased in terms of an i s -wf-A,gn function (which, in turn appeals to
is- wf- Ezpr):

161. is .wf .Bloek[mk-Block(va, al)] i,
161.1 (Va E elemsal)Os-wf-A,gn~ a](vs))

162. t y p e : is-wf-Asgn: Asgn --. (Vial-set --. B00L)

.1 i s -wf -A ,ga[mk-Asgn(v ,e)] (vs] ~=

162.3 Ais-wf- Ezpr i el(v*))

163. is-wr-E=p,~ d(~O
.1 fis-- W,(~) - . is-,~f, r~ , i ,](~,),

163.2 is-InfizCe) --, is-wf-Infiz[e](vs))

164. is-wf- v . , imk - Va~(~)](~O ~= (v e ~*)

165. is-wf-Inf iz[mk-Inf iz(l , ,r)](va) A
165 .1 0s-,,,f-E=p, i l l (~0 ^is-wf-E,p, E,](vO)

35

where the types of the latter three functions are:

168. t ype : ~-wf-Ezpr: Ezpr --* (V i d - ~ --* BOOL)
.1 tyve : ~s~wf- Par: Vat --* (Vial-set -* BOOL}

.2 t ype : is,wf.lnfiz: Infiz - , (Vial.set -* BOOL)
and:

166.3 tvve : i~-wf-Bloclz: Block --. BOOL

Formulation (161.-165.) correspond directly to our "requirement" of associating with each defined Domain
name a constraint function. Formulation (159.-160.) is a short-cut expressing the same.

We observe two things: (i) the constraint functions are always total; and (ii) they sometimes =act"
on some eontezt.

8 .5 S e m a n t i c F u n c t i o n s

The sub-section on Denotational Semantics amply illustrated some Semantic Functions.

8 . 6 A u x i l i a r y F u n c t i o n s

The sub-section on Computational Semantics amply illustrated some Auxiliary Functions.

9 Conclusion

We have illustrate but a few of the principles, techniques, and tools characterizing denotational semantics
based, model oriented, in particular VDM style specifications.

Many facets have not been shown, nor have we had the space to enunciate when to choose for example
denotational over computational specifications, etc.

Instead we refer to our forthcoming books: Software Architectures and Programming Systems Design,
vols. blI-III for a more complete story.

Also we have totally omitted any reference to the developmental aspects: transformation and reifica-
tion of functions and operations, respectively data (structures) from abstract specifications towards more
concrete realisations.

Devcelopmental facets are covered in vols. IV-V. VI of the above referenced book.

References

[1] D.Bjerner & C.BJones (eds.): The Vienna Development Method: The Meta Language Springer
Verlag, LNCS61, 1978.

[2] C.B.Jones: Software Development: A Rigorous Approach Prentice Hall International, 1980.

[3] Towards a Formal Description of Ada ed. D.Bjerner g: Ole N. Oest, Springer Verlag, LNCS98,
1980.

[4] D.Bjerner & C.B. Jones: Formal Specification ~# Software Deeelopment Prentice Hall Interna-
tional, 1982.

[5] C.B.Jones: Systematic Development using VDM Prentice Hall International, 1986

[fi] VDM'87: A FormalMethod at Work Proceedings (eds. D.Bjorner et al.), VDM Europe Sympo-
sium, Brussels, Springer Verlag, LNCS252, 1987.

[7] VDM'88: VDM -- The Way Ahead Proceedings (eds. R.Bloomfield et at.), VDM Europe Sym-
posium, Dubhn, Springer Verlag, LNCS328, 1988.

[8] D.Bjerner: Software Architectures and Programming Systems Design, vol.I: Foundations To be
published 1989.

[9] D.Bjerner: Software Architectures and Programming Systems Design, vol.II: Basic Abstraction
Principles To be published 1989.

[10] D.Bjerner: Software Architectures and Programming Systems Design, vol.III: Formal Description
of Program and Programming Concepts To be published 1989.

