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1 M o t i v a t i o n  

The modal mu-calculus, due to Prat t  and Kozen [Pr, Ko], is a natural extension of dynamic 
logic. It is also one method of obtaining a branching time temporal logic from a modal logic 
[EL]. Furthermore, it extends Hennessy-Milner logic, thereby offering a natural temporal logic for 
Milner's CCS, and process systems in general. (Discussion of the uses of the mu-calculus for CCS 
can be found in [GS,Ho,La,St,Sti2].) Within this context we are especially interested in whether or 
not a particular state, or process, in a finite model satisfies a mu-calculus formula. This is a different 
enterprise from that  addressed by Emerson and Lei [EL] who ask if a given formula is satisfiable 
in a given finite model. Their model checker appeals to standard approximation techniques for 
computing the set of states which satisfy a fixpoint formula. But then one has to compute all the 
states or processes in the model which satisfy that  formula. 

In this paper we present a local model checker for the mu-calculus, as a tableau system. It checks 
whether or not a particular state satisfies a formula. Instead of using approximation techniques 
there is an implicit use of fixpoint induction (inspired by [La]). A maximal fixpoint formula, in 
effect, expresses a safety property. One shows that the assumption that  a state has such a property 
leads to no unforeseen consequences. In contrast, a minimal fixpoint formula expresses a liveness 
property. Therefore one has to establish that the property holds of a particular state. Formulae 
involving alternating fixpoints [EL] introduce subtleties. However the resulting tableau system is 
natural and an equivalent version of it has been implemented by Rance Cleaveland [C1]. 

In section 2 we describe the syntax and semantics of the modal mu-calculus. A small extension 
to the calculus, the addition of propositional constants, is detailed in section 3. The model checker, 
presented as a tableau system, is given in section 4, while the proofs of its soundness, completeness 
and decidability are the topic of section 6. Finally, in section 5 we use the model checker to analyse 
a mutual exclusion algorithm when translated into CCS. 

2 T h e  m o d a l  m u o c a l c u l u s  

The set of formulae of the modal mu-calculus is defined by: 

A ::= Z t Q I "A I A A A  I [alA I vZ.A 

where Z ranges over propositional variables, Q over atomic propositions, and a over a set of (action) 
labels. One restriction on vZ. A is that  each free occurrence of Z in A lies within the scope of an 
even number of negations. Derived operators are defined in the familiar way: AV B is -~(-~AA -~B); 
(a)A is --[aI-~A; and #Z. A is ~ Z .  ~A[Z := -~Z], where A[Z := -~Z] is the result of substituting 
--Z for each free occurrence of Z in A. 
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The mu-calculus, with action labels drawn from a set Act, is interpreted on labelled transition 
systems T which are pairs of the form T = (S, {-241 a e Act}). S (or ST) is a nonempty set of 
states, and for each a E Act, - -~  is a transition relation on states. We write s - -~  s'  instead of 
(s~ 8 l) E -?  ~. Labelled transition systems are popular structures for modelling concurrent systems, 
[Mi, Pn], including process algebras such as CCS. S is then a set (or algebra) of processes and 
s - ~  # means that process s may become s' by preforming the action a. In this context the 
mu-calculus can be viewed as a branching time temporal logic for CCS, a natural extension of the 
modal logic in [HM]. 

A model A4 for the mu-calculus is a pair A4 = (T, V) where T (or T~) is a transition system and 
V (or V~) is a valuation assigning sets of states to atomic propositions and variables: V(Q) C ST 
and V(Z)  C ST. We assume the customary updating notation: V[S'/Z] is the valuation V' which 
agrees with V except that V'(Z)  = S'. Finally the set of states satisfying A in a model 2¢f = (T, V) 
is inductively defined as ] A ~v 7 (where for ease of notation we drop the index T which is assumed 
to be fixed): 

IlZlv = v ( z )  
IQIv = v(Q) 

I-~AIv = s t -  UAUv 
I A A B I v  = I A l v n ~ B l l v  

n[a]AIv = {s e S r  l Ys'. if s --~ s' then s' ellAlJv} 
I~Z.AIv  = U{S'C_STIS'C_IAIvE,,/z~} 

The expected clause for the derived operator/JZ, is: 

I~Z.AHv= N{s' c_ ST IIIAIIv[s,/zjc_ S'} 

A simple example is the model M = (T, V) where T is 

t b u 8 a ) 
. , . 

and V(Q) = ¢ for all a t o n e  Q. Let R be the formula (b)true. Let A and B be the formulae 

A =-- vZ .#Y . (a ) ( (RA  Z) V Y)  

B - #r.  t,Z. (a)((R V Y)  A Z) 

Now 

IAI~ = {~,t} 

IBI~ = 0 

The formula A expresses that on some a ~ path J{ holds infinitely often, while B expresses that on 
some a" path R holds almost always. In CCS, where states are processes, u represents the process 
0 (Nil) which can preform no actions, while s and t are the processes 

s = fixZ. a . (b .O+a.Z)  

t = f i xZ .b .O+a.a .Z  
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Hence both processes s and t have the property expressed by A. 
A model is finite if its set of states is finite. Our interest is in the particular question: does 

state, or process, s have the property expressed by the formula A in the finite model 2¢t = (T, V), 
i.e. is s E[ A ~ ?  A natural technique is to compute the set ~ A ~v, [EL], using approximation 
techniques when A contains fixpoint subformulae. For instance, using semantic approximants, if 
V is a valuation let V0 = V[S~'/Z] and ~+1 = V~[[ A ]~ /Z ] .  Then because the model is finite we 
know that 

IvZ. Anv = ~ V~(Z) 
fRO 

Also by finiteness we know that there is i ~ 0 such that ~(Z)  = ~+I(Z),  and for such an i, 
v~(z) ---II t,z. AIIv. Finally one just needs to check whether or not the required state s is in this 
set. (A minimal fixpoint formula -,t,Z. A can be dealt with by computing either S~r- II ~z. A Iv 
or Llt~0 V~(Z) where V0 = V[O/Z] and Vi+l = V~[]-,A[Z := -,Z l I n / g ] . )  But this technique is not 
intended to be sensitive to the fact that we are interested only in whether or not the particular 
state s lies in l a i r .  

An apparent localisation is to appeal, instead, to syntactic approximants. Let (vZ. A) ° = t rue  
and (t,Z. A) t+l = A[Z := (vZ. A)i]. Then again because of finiteness we know that 

s el~Z.Allv iffVi >_ 0.s ~U(~Z,A)~IIv 

But again it is necessary to compute the complete fixpoint set, i.e. the set S' =[ (t~Z. A) i [v where 
n(vz. A) t Uv=l (gZ. A) '+~ Nv. For there is no guarantee that if for some ~, s E~ (vZ. A) ~' [v fl 
U(~z. A)J+I llv then also s ~ll~Z. Air.  

An alternative, more local, approach to model checking (which does not depend on computing 
complete fixpoint sets) is to appeal to fixpoint induction. The idea. is that s E~ t,Z. A ~v if the 
assumption that s E~ vZ. A Iv implies s E~ A[Z := vZ..4] ~v; and in the case of a minimal fixpoint 
formula, s E~ #Y.A ~v if the assumption that s ~ gY.A ~v implies s E~ A[Y := gY.A] Iv. This 
technique is used by Larsen [La] for a logic which disallows alternating fixpoints: each formula 
contains only maximal fixpoints or only minimal fixpoints. The major problem here, especially 
in the presence of formulae containing alternating fixpoints, is that of logically understanding 
assumptions of the form s E~ t,Z. AIIv and s ~[ gY. A ~v as well as the notion of implication. The 
simple local tableau technique which we offer below not only caters for the full modal mu-calculus 
but also has a natural logical interpretation. There is, however, a small cost: a need to extend the 
mu-calculus to include propositional constants and definition lists. 

3 Adding constants and definition lists 

The syntax of the mu-calculus is extended to embrace a family of propositional constant symbols. 
Associated with a constant U is a declaration of the form U = A where A is a closed formula, 
possibly containing previously declared constant symbols. A definition list is a sequence A of dec- 
larations U1 = Az, . . . ,  U~ = A~ such that Ut # Uj whenever i # j and such that each constant 
occurring in At is one of U1,..., Ui-1. This means that a prefix of a definition list is itself a defini- 
tion list. When A as above is such a list we let dora(A) = {U1,..., U~} and A(Ut) = At. Moreover, 
if A is a definition list, U ~. dora(A) and each constant occurring in A is in dora(A), then A. U = A 
is the definition list which is the result of appending U = A to A. A definition list A is admissible 
for B if every constant occurring in B is declared in A. In this circumstance we let Ba be the 
formula B in the 'environment' A (see Definition 1). The interpretation of formulae is now ex- 
tended to formulae relative to admissible definition lists by, in effect, treating constants as variables. 
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Def in i t ion  1 If A : U1 = A a , . . . ,  U~ = A,  is admissible for B then ] Ba  I[v=dl[[ B ]Iv, where V0 = V 
and  Y~+l = Y~[ll A,+I ~v~/Ui+x]. 

This interpretation accords with the expected meaning of B/` in terms of syntactic substitution. 

L e m m a  2 ~Ba.u=A [Iv =] (B[U := A])a [Iv" 

Proof: By induction on the structure of B. [] 

A corollary, invoked later, is that if U does not occur in B then BA.U=A has the same meaning as 

4 T h e  m o d e l  c h e c k e r  

The model checker is a tableau system for testing whether or not a state s has the property 
expressed by a closed formula A in a finite model .~4. As is common in tableau systems, the rules 
are inverse natural deduction type rules. Here they are built from 'sequents' of the form s t-a M A, 
proof-theoretic analogues of s EII AA ~y T. Each rule is of the form 

s t - ~ A  

sl t -~  A1. . .  sk t - ~  Ak 

where k > 0, possibly with side conditions. The premise sequent 8 t -~ A is the goal to be achieved 
while the consequents are the subgoals, which are determined by the structure of the model 'near 8,' 
the definition list A and the structure of A. Often, in the sequel, the index M is dropped from the 
sequents. The intermediate use of definition lists is essential, as they keep track of the 'dynamically 
changing' subformulae as fixpoints are unrolled. This is the key to the technique. Condition C, the 
side-condition on the constant rules, is explained later as it is a condition on proof trees, rather 
than on the particular sequents of the premises. 

8 t-a -~-~A 

8 t-/` A 

8 t-/, --,(A ̂  B) 
8 t-/, -~A 

8 t- a [a]A 

st t-/, A . . .  8n t-/, A 

st-/, A A B  
8 b a A 8 b/` B 

8 t-/, --(A A B)  

s t-/, -~B 

{8~,...,  8,} = {~'l 8 _2~ 8'} 

s t-A ~[a]A s --~ 8' 
s I ~t, ",A 

s t - / ` v Z . A  A ' i s A . U = v Z . A  
st-/,, U 

s ~-a -',uZ. A A'  is A .  U = --,uZ. A 
s t- /,, U 

8t-a U 
C and A(U) = vZ. A 

s t-A A[Z := U] 
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s t - a U  
s t- a -~A[Z := "-U] 

C and A(U) = "~,Z. A 

A tableau for s ~-2~ A is a maximal proof tree whose root is labelled with the sequent s ~-~ A 
(where we omit the definition list when, as here, it is empty). The sequents labelling the immediate 
successors of a node labelled s t -~  A are determined by an application of one of the rules, dependent 
on the structure of A. For simplicity we have allowed non-determinism in the result sequents in 
the cases of -~(A A B) and -~[a]A, rather than entangling proof trees with or-branching as well as 
and-branching. Maximality means that no rule applies to a sequent labelling a leaf of a tableau. 
The rules for booleans and modal operators are straightforward. New constants are introduced 
in the case of fixpoint formulae, while the rules for constants unroll the fixpoints they abbreviate 
when condition C holds. This condition is just that  no node above the current premise, s t -~  U, in 
the proof tree is labelled s ~-~ U for some A' .  So failure of the condition, when there is a sequent 
s ~-~ U above s t -~  U, enforces termination. In fact the presence of condition C guarantees that 
when A4 is finite any tableau for s F 2~ A is of finite depth. Notice that  all the rules are backwards 
sound. For example, in the case of the rule for maximal fixpoints, if A'  is A • U = uZ. A and 
s ell va, IIv, then by Lemma 2, s E[ uZ. Aa Iv" Hence if the leaves of a (finite) tableau are true, i.e. 
if whenever s ~-a A labels a leaf, s E[ Aa Nv, then so is the root. 

A successful tableau for s ~-~ A is a finite tableau in which every leaf is labelled by a sequent 
t ~-~ B fulfilling one of the following requirements: 

(i) B = Q and t E V.~(Q) 
(ii) S = -~Q and t ~_ V:/(Q) 
(iii) B = [alC 
(iv) B = V and a ( V )  = ~Z. C 

A successful tableau contains only true leaves. This is clear for leaves fulfilling (i) and (ii). Max- 
imality of a tableau guarantees it for leaves satisfying (iii), because then {t '  I t __2_, t'} = 0. Of 
more interest is (iv): if t t -~  U labels a node in a tableau above a node labelled t ~-~ U where 
A(U) = I/Z.A, then indeed t E[ Ua Iv~ (provided that the other leaves beneath t t -~  U are 
also true). An unsuccessful tableau has at least one false leaf, such as a leaf labelled t F-~ Q 
where t ~. V,~(Q). Again, the most interesting failure is when a leaf is labelled t F-~ U where 
A(U) = -~uZ. A and above it is a node labelled t ~-~ U. 

Tableau rules for the derived operators are just reformulations of some of the negation rules: 

s b a A V B  s b a A V B  
s P a A  s P a B  

s ~-A (a)A s - -~  s' 
s I ~':, A 

s t - a # Z ' A  A ' i s A . U = # Z . A  
st-:,, U 

s t-z, U 
C and A(U) = #Z. A 

s [-~ A[Z := U] 

If these operators were also taken as primitive (as in the case of normal forms) then the definition 
of successful tableau would remain unchanged. 
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The two important theorems follow. Their proofs axe given in section 6 below. For both we 
assume that  A,i is finite. Theorem 4 affirms soundness and completeness, while Theorem 3 amounts 
to decidability (since there can be only a finite number of tableaux for s t - ~  A, up to renaming of 
constants). Discussion of the complexity of the model checker will be contained in the full version 
of the paper. 

T h e o r e m  3 Every tableau for s b ~ A is finite. 

T h e o r e m  4 s k 1~ A has a successful tableau if and only if s E[A]tv~. 

By employing more complex sequents the side condition C on the two constant rules can be 
replaced with a condition on sequents. Let an extended sequent have the form 

a - - ,  s~-a A 

where a is a finite set of sequents, each of which is of the form t ~-A, U: the idea is that  a contains 
all sequents above s F" a A whose formula is a constant. The rules earlier can be trivially expanded 
to extended sequents. Two sample examples axe: 

a---+ s~-a A A B  
a - - - . s~ -aA  a - - , s P a B  

a--~ st-a U 
a,st_aU__+s~. A[Z:=U] sba'U~f°ranyA'andA(U)=uZ'A 

Now the side condition C is replaced by: 8 ~-a, U Ig a for any A I. This simple reformulation of 
the rules is akin to the formalisation of sequent calculi from natural deduction systems. It is also 
possible to dispense with the use of constants but at the expense of a complex subformula test [C1]. 

5 Applications 
We begin with two examples to illustrate the tableau method. Suppose Ad = (T, V) is the model 
where T may be pictured as 

~ d  V(Q) = {~}. Consider the formulae 

A -= ,,Z. ~Y. [a]((Q ̂  Z) V Y) 

B - u Y . ~ , z . N ( ( Q v Y ) ^ Z )  

which in A4 express, respectively, that  on all paths Q holds infinitely often, and that  on all paths 
Q holds almost always. We present a successful tableau for s ~-~ A and show that every tableau 
for t ~_)a B is unsuccessful. 

In the following successful tableau for s }_M A, 

Aa = (Ux = A) 
A2 = h a "  (U2 = As) 
As = As-  (Us--  AI) 
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where A1 =/~Y. [a]((Q A U1) V Y). 

s i - A  

8 f-a~ U1 

s hal A1 

sFa~ U2 

~,,, N((Q ^ u,) v u,) 

t~-a~ (Q^ u~)v u~ 

t i-a2 QAU1 

ti-a~ Q 

, , , , , , , ,  ,, 

t Fa~ Q 

t ~-a, U1 

t ~-a~ A1 

t ~-a~ U3 

~-A~ [a]((Q A U~) V U~ 

s l-a3 ( Q A U1) V Ua 

sFA~ U~ 

~-~ [4((Q A U~) V U~) 

t~-~ (QA U,) V U~ 

. . . . . .  ,  3 Au1 . . . . .  

In the following unsuccessful tableau for s t - ~  B, 

% = (v~ = B) 
~2 = A~. (V~ = B~) 
,% = &~. (V3= B1) 

where B1 = ~,Z. [a]((Q v U1) A Z). 

t F~3 U1 
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t k B  

t ka~ U1 

t kt, ~ Bx 

t ka2 U2 

F-,,, [a]((Q v u1) ^ u,) 

s I-A~ (Q V UI) A U2 

s ka2 B1 

s i-a3 [a]((Q v U1) A Us) 

t l-As (Q v UI) A U3 

t t-a~ Q v uI 

t I-~ Q 

t I-a. Ua 

t l-h s [a]((Q V UI) A U3) 
i . . . . . . . . . . .  

81-a. (Qv UD ̂  Us 

sFA~ U~ 

8 I-a. Q v U1 s t-A. Ua 

8 ka~ Vl 

An important area of application of the model checker is to Milner's CCS [Mi]. An equiva- 
lent version of the checker has been implemented by Rance Cleaveland [C1] in the Concurrency 
Workbench (a joint UK SERC venture between Sussex and Edinburgh Universities [CPS]). The 
operational semantics of CCS is given in Cerms of labelled transition systems. However, there is 
more than one tr&usition system associated with CCS according to whether or not the ~" action is 
observable. This distinction is marked by the differing transition relations - ~  and = ~  for a E Act. 
In fact, the action sets differ too: there is the relation _Z_, but not = ~ ;  and there is the relation = ~ ,  
me_~ning zero or more silent moves, but not --~.  Thus, there are two different Hennessy-Milner 
logics for CCS [HM], each characterising the appropriate (strong or weak) bisimulation equivalence. 
Their extension to include fixpoints preserves this characterisation [Sti2]. These are sublanguages 
of the modal mu-ealculus--for their sole atomic sentence is the constant t rue.  

We now offer a more substantial example: an analysis of Knuth's mutual exclusion algorithm 
~Kn] when translated into CCS. Kuuth's algorithm is given by the concurrent composition of the 
two programs when i = 1 and i = 2, and where j is the index of the other program: 
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while  true do  
begin  

( noncritical section ) ; 
L0: cl := 1 ; 
LI: if  k = i then goto  L~ ; 
if cj ~ 0 then goto  L1 ; 
L2: ci := 2 ; 
i f  cj = 2 t hen  go to  L0 ; 
k : = i ;  
( critical section ) ; 
k : = j ;  
ci : = 0  ; 

end ; 

The variable cl (c~) of program one (two) may take the values 0,1 or 2; initially its value is 
0. When translated into CCS [Mi,Wa], the algorithm, assuming the initial value of k to be 1, 
becomes the agent Knuth below. For the exampte we let capita] letters range over CCS processes 
(states of the CCS transition system). Here we are assuming that  ~" is not observable (so the 
transition relations are of the form =~) .  Each program variable is represented a family of agents. 
Thus the variable k with current value 1 is represented as an agent K1 which may perform actions 
corresponding to the reading of the value 1 and the writing of the wlues 1 and 2 by the two 
programs. The agents are: 

gnuth =~I (Pl I P2 I g l  I C10 I C20)\L 

where L is the union of the sorts of the variables and 

K1 =so kwl. K1 + kw2. K2 4- "ffw'T. K1 
K2 =dl kwl. K1 4- kw2. K2 4- kw2. K2 

e l0  =d0 t ClW0.610 4- ClWl. e l l  4- clw2. C12 + c-~-~. C10 
C11 =~ clwO. C10 + clwl. Cll + c~w2. C12 + c- '~.  Cll  
C12 =sO ctwO. C10 + clwl. Cll + clw2. C12 + ct-'~. C12 

C20 =so c2w0. C~O % c2wl. C21 + c2w2. C22 + c-~. C20 
C21 =~f c2w0. C20 + c2wl. C21 + c2w2. C22 + c-~. C21 
C22 =al c2wO. C20 + c2wl. C21 + c2w2. C22 + c - ~ .  C22 

/'1 =s/ r . P l l + r .  0 
Pll =# clwl. reql. P12 
/'12 =¢t kr l .  P14 + kr2. Pin 
P13 =~/ c2r0. P14 + c2 r l .  P12 + c2r2. P12 

Pls =dl c2rO. t>16 % c2rl. P16 % c2r2. PIT 
Pie =d/ kwl. enter1, exit1, kw2. clwO. P1 
P1T =s~ clwl. P12 
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P2 =~ r. P21+r.O 
/°21 =d/ C2Wl. req2. Pn 
Pn =dl kr2. P24 + krl. P2s 
P~a :af clrO. P24 + clrl. t°22 + clr2. P2~ 
P24 =~ c2w2. P25 
P25 =e¢ clrO. P26 + clrl. P26 + clr2. P27 
P2s =d] kw2. enter2, exit2, kwl. c2w0. P2 
P2~ =d/ c2wl. Pn  

Some remarks on this representation may be helpful. The critical section of process Pi, where 
i = 1 or 2, is modelled as a pair of actions enter~ and exit~ representing, respectively, entry to and 
exit from the critical section. The noncritical section of each process is modelled as a summation, 
one summand of which represents the possibility that the process may halt, the other that it may 
proceed to request execution of its critical section. An action reql appears in the definition of P~. Its 
occurrence indicates that process P~ has 'just' indicated that it wishes to execute its critical section 
(by setting ci to true). The reason for including these 'probes' will become clear below. Note also 
the presence of the agents PiT and the way in which the stat~nent goto  L0 is represented. The 
reason for this choice is that only the first ciwl action (setting cl to 1) is considered as signifying 
the initiation of an attempt by process i to execute its critical section. 

The agent Knuth has sort K = {enters, exits, reqi I i = 1,2}. We introduce two derived modal 
operators: 

[K]A = A.eK[a]A 
(K)A = V~,eK(a)A 

We consider two questions. Firstly, does the algorithm preserve mutual exclusion? And sec- 
ondly, is the algorithm live (in the sense that if a process requests execution of its critical section 
it will eventually enter its critical section)? We express these questions as follows. 

1. We say that Knuth's algorithm preserves mutual exclusion iff 

Knuth ~ P ~  

where PME ('preserves mutual exclusion') is the following formula: 

vZ. ((~((exitl)true A (exit2)true)) A [K]Z) 

2. We say that Knuth's algorithm is live iff 

Knuth ~ IL 

where IL is the formula 

~z. ([~eq,]EiCSl ̂ [~eq~]EICS2) ̂ [K]Z 

where for i = 1,2, EICSi ('eventually in critical section i') is the formula 

/zY. [¢](((exiti)true V ([KIY A (K)true))  

Some clarifying remarks may be helpful. 
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(i) Process i is 'in its critical section' if P~ reaches a state in which it may perform the action 
exiti. The formula Pl~ is satisfied by an agent P of sort K if[ for any s E K* and agent P ' ,  if 
P :=~ P '  then P' ~ (exit~)truaA (exit2)trae. Thus Knuth ~ Plq~ iff it never reaches a state with 
both P1 and P2 in their critical sections. 

(ii) P ~ EICSi iff there are no sequence (a~ [ j < w) 6 K ~ and no sequence (Qi [ j < w) of 

agents such that  Q0 = Q and for all j,  Qj ~ Qj+I and Qj ~ (exitl)tru.. Thus Knuth ~ IL iff 
for i = 1, 2, there is no path on which occur infinitely-many visible actions and on which there is a 
'probe'  reql (indicating that  Pi has requested execution of its critical section) which is not followed 
by a corresponding action enteri. 

Using the Concurrency Workbench we have verified that Knuth's algorithm preserves mutual 
exclusion and is live (for more details see [Wa D. The process Knuth consists of a number of agents 
in parallel. A more enterprising model checker would try to verify liveness and safety properties of 
Knuth by verifying appropriate subproperties of its components. Proof rules for structured model 
checking for the modal sublanguage of the mu-calculus are presented in [Stil]. We hope that these 
rules can be extended to the full mu-calculus. 

6 Proofs  of  t erminat ion ,  soundness  and comple teness  

We now prove the main results, theorems 3 and 4. First a little notation. 
If B is a formula then C(B) is the set of constants occurring in B. Recall from section 4 that a 

tableau is a maximal proof tree with root labelled s l - '~ A. Given two nodes n and n'  in a tableau 
with n '  an immediate successor of n, we say that  the sequent s '  F~, B '  labelling n' succeeds the 
sequent 8 i-a B labelling n. Also, given two nodes n and n'  in a tableau labelled s b-z~ U and 
s '  ~-A, U' respectively, we say that  8' F~, U' C-succeeds s FA U if[ there is a sequence ( h i , . . .  ,nk) 
of nodes such that  n~ = n, nk = n', for 1 < i < k, ni+l is an immediate successor of n~, and for 
1 < i < k, the formula of the sequent labelling ni is not a constant. 

Next we define a useful nonnegative integer measure, the degree, d(B), of a closed formula B: 

d(Q) = o d(-~Q) = o 

d(U)  = 0 
d(-~-,B) = l + d(B)  

d ( B A C )  = l+max{d(B) ,d(C)}  d (~(BAC)  = l+max{d(- ,B),d(~C)} 
d([a]B) = 1 + d(B) d(-~([a]B) = 1 + d(-~B) 

d(vZ.B) = 1 + d(B[Z := U]) d(-~,Z.B) = 1 + d(-~B[Z := -,V]) 

We extend this definition to sequents as follows: 

d(s k" a B) = ~ d(B) 
d(A(B)) / 

if B is not a constant 
otherwise 
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L e m m a  3.1 (i) If d I-zx, B' succeeds s 1-~, B and B' is not a constant ,  then 
d(~' t-a, B') < d(~ ~-~ B). 

(ii) Ira' k~x, U' C-succeeds s ~-~ U, then either U' ~ C(A(U))U{U}, or d(s' ~-a, U') < d(s ~-,, U) 
and C(A(U')) C_ C(a(V)) ~ {V}. 

(iii) Suppose A is a prefix of A '  and U • dora(A). Then for any s, s' d(s ~ ,, U) = d(s' ~-a' U). 

Proof: (i) By inspection of the the tableau rules and the definition of degree. 
(ii) Suppose A(U)  = vZ. B. Then either U' is a subformula of B[Z := U], when U' ~ C(A(U)) U 

{U}, or U'  is introduced as vZ'. C (-,vZ'. C) which is a subformula of B[Z := U], in which case 
d(~Z'. C) < d(~ ~ ~ V) and C(~Z'. C) c C(A(U)) u {U} (and si~larly ~or -~Z'. C). 

(iii) Immedia te  from the definition. [] 

We now prove the terminat ion theorem. 

T h e o r e m  3 Every tableau for s ~-~ A is finite. 

Proof: We omit  the index .A4. 
Suppose there is an infinite tableau r for 8 1- A. Since r is finite-branching, there is an infinite 

pa th  7r through ~'. Let a = (s~ t -~  A~ I i < w) be the sequence of sequents labelling the nodes of 7r. 
Since for eada i,  si+l ~-z,~+ 1 Ai+l succeeds ,~ ~-a~ A~, from Lemma 3.1(i) it  follows tha t  for infinitely 
many i, A~ is a constant.  Also, since A4 is finite, no one constant appears  infinitely often on ~'. 

Consider the  subsequence o" = (8~ F-t,, i U~ I $ < to) of a consisting of those sequents whose 

formulae are constants. Note tha t  for each i, s'i+ t ~-z,,+ 1 Ui+l g-succeeds a'~ F'A, ~ U~. Suppose i0 is 

the largest / with Ui = U0. Then since C(A'0(U0)) = ¢, by Lemma 3.1(ii), d(a'~o+l ~'t~,o+~ V,o+l) < 
t P 

d(si o I"n,o Uo) and C(A~0+I(U~0+I)) C_ {U0}. 

Now suppose Q is the largest i with U~ = U/o+1. Then again by Lemma 3.1(ii), d(s'~+l I-LX,+l 

U~+x) < d(s'~ ~-A;~ U~0+~) and C(A'~+~(U~+,)) C {U0, U~+x}. By Lemma 3.1(iii), d(s'~+x ~'zx'~t+~ 

v~,+l) < d(~+~ ~-~',0+, V~+~) < d(~'o e~  V0). 
By repeat ing this argument sufficiently often we obtain a contradiction since d is a nonnegative 

integer measure. [] 

Now we come to the proofs of soundness and completeness. 

T h e o r e m  4 s t - ~  A has a successful tableau if and only if s E]AIv~.  

Proof: Fi rs t  some nota t ion and a s tandard  lemma. 
If B = vZ. D then B ° = t r u e  and B ~+1 = D[Z :=  Bi]. 
If B = -~vZ. D then B ° = f a l s e  and B ~+1 = ~D[Z := -~B~]. 

L e m m a  4.1 (JP[ finite) 
(i) If B = vZ. D and s ~[U Bzx ]Iv, then there is n < w such tha t  s Ell (Bn)zx IIv - I] (B~+l)a  Hv. 
(ii) If C = "~vZ. D and s eli Ca  ~v, then there is n < w such tha t  ~ Eli (C~+l)zx ~v - ]l (C" )a  Iv. [] 
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We omit the indices .M and V~. 
(==~) Suppose s ~- A has a successful tableau r .  If all the leaves of r are true (i.e. if whenever 
t i-~ B labels a leaf then t eR BA B), then all the nodes of r are true: for, as we noted earlier, the 
rules are backwards sound. So it suffices to show that all the leaves of r are true. 

If a leaf is labelled t ~-a B with B = Q, -~Q or [a]C, then it is certainly true. Hence any false 
leaf must be labelled t Fa  U with A(U) = vZ. B. Suppose there is a false leaf. From amongst all 
false leaves choose one, labelled t F-r. U say, such that there is no constant U' introduced before 
U in r for which there is a false leaf labdled t '  ~-r., U' for some ¢, E'. Consider the subtableau 
rl  of r whose root is the node, labelled s F-A U say, at which U is introduced in r .  For each of 
the false leaves of r labelled t b~. U for some t, Z, by Lemma 4.1(i) there is n < w such that 
t ell (vZ. B)~ [] - ] (vZ. B)~ +1 ] where A(U) = vZ. B. Choose such a leaf l, labelled t ~'z U say, 
such that the corresponding n is as small as possible. Note that  since I is a leaf, there is above I in 
r l  a node k, the companion node of l, labelled t t- z, U for some ~'.  

Now transform the tableau r l  into a new tableau r~ by replacing each definition list A '  in a 
sequent of vl by A'[(vZ. B)'~[U]. An examination of the rules shows that  if the leaves of r~' are 
true then all the nodes of ~'~ are true: the only rule which could prevent this, namely 

s' F a, v Z . B  
A" is A' .  U = (vZ. B)  ~ 

d i-a- U 

is not applied in r~' since the root of r ;  is labelled s ~-~[(~z s)-/vl U. But the image of the successor 
of the companion node k of l under the transformation is false since it is labelled t Fr.,[(~z.s),/Vl 

B[Z := U] and t ¢ n  (vZ. B)Z +~ II- Therefore some leaf of r~* is false. 
Suppose t '  hA, U' labels such a false leaf where the corresponding leaf of r l  is labelled t '  ~'h, U' 

so that  A" = A'[(vZ. B)=/U]. Then by the choice of n we have that  U' # U. Moreover, U' is not 
introduced before U in r ,  since otherwise, by the observation immediately following Lemma 2, the 
leaf of r labelled t '  ha,  U' would be false, contradicting the choice of U. Hence U' is introduced 
after U in r .  

But now we may apply the entire argument above to the tableau r ; .  And so on. But this 
contradicts Theorem 3, that  every tableau is finite. 

(¢==) We build a pseudo-tableau with root s k A. The rules for pseudo-tableaux differ from those for 
tableaux in just one case: the rule for constants defined as minimal fixpoints. The pseudo-tableau 
rule is 

t i -~ U 
t ~ ,  -,B[Z := -,V] e,  and ~(V)  = -,vZ. B or ( ~ Z .  B)" 

where A '  = A[(-,vZ.B)k/U] with k such that s e[[ ('~vZ.B)~+I~ - [[ (-~vZ.B)~ ~. Note that by 
Lemma 4.100 , if t E] U~ [[ then this rule is applicable (provided C holds), and in such a case, 
if A(U) = ('~vZ. B) ~ and A'(U) = (-~vZ. B) k, then k < n. We assume the same termination 
conditions for pseudo-tableaux as for tableaux. Moreover, defining the degree function as in the 
proof of Theorem 3 with d(A(U)) = d(-~vZ. B) when A(U) = (-~vZ. B) n, then by an argument 
similar to that  in the proof of Theorem 3 we have that  every pseudo-tableau for s i- A is finite 
(provided A4 is finite). Finally we define the notion of a successful pseudo-tableau as for tableaux 
with the requirement that  no leaf is labelled t i-zx U where A(U) = (-~vZ. B)". 

A successful pseudo-tableau can be transformed into a successful tableau simply by updating 
the definition fists, changing A(U) from (-~vZ. B) '~ to -~uZ. B as necessary. Hence it suffices to 
show that there is a successful pseudo-tableau for s ~- A. Such a pseudo-tableau may be constructed 
as follows. 
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Its root is labelled s ~- A and is true. Suppose t ~-A B labels a leaf of the partial pseudo-tableau 
and t E~Ba ~. We define the successors of this node in the pseudo-tableau as follows depending on 
the structure of B. 

(1) B = Q or -~Q: the node has no successors. 
(2) B = -~-~C: the node has single true successor labelled t I-A C. 
(3) B = C A D or -~(C A D): if B = C A D then the node has two successors, one labelled 

t ~-t, C, the other t }-t, D. Since t E l B a  I[, the successors are true. If B = -~(B A C) there is one 
true successor labelled t ~-a -,C or t ~-/, -~D. 

(4) B = [a]C or -,[a]C: similar to (2) with the extra possibility that {t' [ t __2_, t'} = 0 in which 
case the node has no successors. 

(5) B = t,Z. C or -~vZ. C: if B = vZ. C then since t eli Ba [I, t E [1Uzx, I1 where A' is A. U = vZ. C. 
Similarly for "~v Z. C. 

(6) B = U: if C holds and A(U) = "-vZ. C or (-~t,Z. C)" then by Lemma 4.1 there is k with 
t ell (-,vZ. C)~+11 - II ('~vZ. C)~ ~, when t ell "~C[Z := ~U]z~, II where A ' =  A[(-~uZ. C)~/U]. The 
case A(U) = vZ. C is simpler. 

By the remarks above we thus obtain a pseudo-tablean in which all the nodes are true. The 
only possible impediment to its success could be that t ~'a U labels a leaf where A(U) = (-,vZ. B) ~. 
But by the choices of k in the construction this is impossible, t2 
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