
Local Model Checking in the Modal Mu-Calculus

Colin Stirling and David Walker
Department of Computer Science

University of Edinburgh
Edinburgh EH9 3JZ, U.K.

1 M o t i v a t i o n

The modal mu-calculus, due to Prat t and Kozen [Pr, Ko], is a natural extension of dynamic
logic. It is also one method of obtaining a branching time temporal logic from a modal logic
[EL]. Furthermore, it extends Hennessy-Milner logic, thereby offering a natural temporal logic for
Milner's CCS, and process systems in general. (Discussion of the uses of the mu-calculus for CCS
can be found in [GS,Ho,La,St,Sti2].) Within this context we are especially interested in whether or
not a particular state, or process, in a finite model satisfies a mu-calculus formula. This is a different
enterprise from that addressed by Emerson and Lei [EL] who ask if a given formula is satisfiable
in a given finite model. Their model checker appeals to standard approximation techniques for
computing the set of states which satisfy a fixpoint formula. But then one has to compute all the
states or processes in the model which satisfy that formula.

In this paper we present a local model checker for the mu-calculus, as a tableau system. It checks
whether or not a particular state satisfies a formula. Instead of using approximation techniques
there is an implicit use of fixpoint induction (inspired by [La]). A maximal fixpoint formula, in
effect, expresses a safety property. One shows that the assumption that a state has such a property
leads to no unforeseen consequences. In contrast, a minimal fixpoint formula expresses a liveness
property. Therefore one has to establish that the property holds of a particular state. Formulae
involving alternating fixpoints [EL] introduce subtleties. However the resulting tableau system is
natural and an equivalent version of it has been implemented by Rance Cleaveland [C1].

In section 2 we describe the syntax and semantics of the modal mu-calculus. A small extension
to the calculus, the addition of propositional constants, is detailed in section 3. The model checker,
presented as a tableau system, is given in section 4, while the proofs of its soundness, completeness
and decidability are the topic of section 6. Finally, in section 5 we use the model checker to analyse
a mutual exclusion algorithm when translated into CCS.

2 T h e m o d a l m u o c a l c u l u s

The set of formulae of the modal mu-calculus is defined by:

A ::= Z t Q I "A I A A A I [alA I vZ.A

where Z ranges over propositional variables, Q over atomic propositions, and a over a set of (action)
labels. One restriction on vZ. A is that each free occurrence of Z in A lies within the scope of an
even number of negations. Derived operators are defined in the familiar way: AV B is -~(-~AA -~B);
(a)A is --[aI-~A; and #Z. A is ~ Z . ~A[Z := -~Z], where A[Z := -~Z] is the result of substituting
--Z for each free occurrence of Z in A.

370

The mu-calculus, with action labels drawn from a set Act, is interpreted on labelled transition
systems T which are pairs of the form T = (S, {-241 a e Act}). S (or ST) is a nonempty set of
states, and for each a E Act, - -~ is a transition relation on states. We write s - -~ s' instead of
(s~ 8 l) E -? ~. Labelled transition systems are popular structures for modelling concurrent systems,
[Mi, Pn], including process algebras such as CCS. S is then a set (or algebra) of processes and
s - ~ # means that process s may become s' by preforming the action a. In this context the
mu-calculus can be viewed as a branching time temporal logic for CCS, a natural extension of the
modal logic in [HM].

A model A4 for the mu-calculus is a pair A4 = (T, V) where T (or T~) is a transition system and
V (or V~) is a valuation assigning sets of states to atomic propositions and variables: V(Q) C ST
and V(Z) C ST. We assume the customary updating notation: V[S'/Z] is the valuation V' which
agrees with V except that V'(Z) = S'. Finally the set of states satisfying A in a model 2¢f = (T, V)
is inductively defined as] A ~v 7 (where for ease of notation we drop the index T which is assumed
to be fixed):

IlZlv = v (z)
IQIv = v(Q)

I-~AIv = s t - UAUv
I A A B I v = I A l v n ~ B l l v

n[a]AIv = {s e S r l Ys'. if s --~ s' then s' ellAlJv}
I~Z.AIv = U{S'C_STIS'C_IAIvE,,/z~}

The expected clause for the derived operator/JZ, is:

I~Z.AHv= N{s' c_ ST IIIAIIv[s,/zjc_ S'}

A simple example is the model M = (T, V) where T is

t b u 8 a)
. , .

and V(Q) = ¢ for all a t o n e Q. Let R be the formula (b)true. Let A and B be the formulae

A =-- vZ .#Y . (a) ((RA Z) V Y)

B - #r. t,Z. (a)((R V Y) A Z)

Now

IAI~ = {~,t}

IBI~ = 0

The formula A expresses that on some a ~ path J{ holds infinitely often, while B expresses that on
some a" path R holds almost always. In CCS, where states are processes, u represents the process
0 (Nil) which can preform no actions, while s and t are the processes

s = fixZ. a . (b .O+a.Z)

t = f i xZ .b .O+a.a .Z

371

Hence both processes s and t have the property expressed by A.
A model is finite if its set of states is finite. Our interest is in the particular question: does

state, or process, s have the property expressed by the formula A in the finite model 2¢t = (T, V),
i.e. is s E[A ~ ? A natural technique is to compute the set ~ A ~v, [EL], using approximation
techniques when A contains fixpoint subformulae. For instance, using semantic approximants, if
V is a valuation let V0 = V[S~'/Z] and ~+1 = V~[[A]~ /Z] . Then because the model is finite we
know that

IvZ. Anv = ~ V~(Z)
fRO

Also by finiteness we know that there is i ~ 0 such that ~(Z) = ~+I(Z), and for such an i,
v~(z) ---II t,z. AIIv. Finally one just needs to check whether or not the required state s is in this
set. (A minimal fixpoint formula -,t,Z. A can be dealt with by computing either S~r- II ~z. A Iv
or Llt~0 V~(Z) where V0 = V[O/Z] and Vi+l = V~[]-,A[Z := -,Z l I n / g] .) But this technique is not
intended to be sensitive to the fact that we are interested only in whether or not the particular
state s lies in l a i r .

An apparent localisation is to appeal, instead, to syntactic approximants. Let (vZ. A) ° = t rue
and (t,Z. A) t+l = A[Z := (vZ. A)i]. Then again because of finiteness we know that

s el~Z.Allv iffVi >_ 0.s ~U(~Z,A)~IIv

But again it is necessary to compute the complete fixpoint set, i.e. the set S' =[(t~Z. A) i [v where
n(vz. A) t Uv=l (gZ. A) '+~ Nv. For there is no guarantee that if for some ~, s E~ (vZ. A) ~' [v fl
U(~z. A)J+I llv then also s ~ll~Z. Air.

An alternative, more local, approach to model checking (which does not depend on computing
complete fixpoint sets) is to appeal to fixpoint induction. The idea. is that s E~ t,Z. A ~v if the
assumption that s E~ vZ. A Iv implies s E~ A[Z := vZ..4] ~v; and in the case of a minimal fixpoint
formula, s E~ #Y.A ~v if the assumption that s ~ gY.A ~v implies s E~ A[Y := gY.A] Iv. This
technique is used by Larsen [La] for a logic which disallows alternating fixpoints: each formula
contains only maximal fixpoints or only minimal fixpoints. The major problem here, especially
in the presence of formulae containing alternating fixpoints, is that of logically understanding
assumptions of the form s E~ t,Z. AIIv and s ~[gY. A ~v as well as the notion of implication. The
simple local tableau technique which we offer below not only caters for the full modal mu-calculus
but also has a natural logical interpretation. There is, however, a small cost: a need to extend the
mu-calculus to include propositional constants and definition lists.

3 Adding constants and definition lists

The syntax of the mu-calculus is extended to embrace a family of propositional constant symbols.
Associated with a constant U is a declaration of the form U = A where A is a closed formula,
possibly containing previously declared constant symbols. A definition list is a sequence A of dec-
larations U1 = Az, . . . , U~ = A~ such that Ut # Uj whenever i # j and such that each constant
occurring in At is one of U1,..., Ui-1. This means that a prefix of a definition list is itself a defini-
tion list. When A as above is such a list we let dora(A) = {U1,..., U~} and A(Ut) = At. Moreover,
if A is a definition list, U ~. dora(A) and each constant occurring in A is in dora(A), then A. U = A
is the definition list which is the result of appending U = A to A. A definition list A is admissible
for B if every constant occurring in B is declared in A. In this circumstance we let Ba be the
formula B in the 'environment' A (see Definition 1). The interpretation of formulae is now ex-
tended to formulae relative to admissible definition lists by, in effect, treating constants as variables.

372

Def in i t ion 1 If A : U1 = A a , . . . , U~ = A, is admissible for B then] Ba I[v=dl[[B]Iv, where V0 = V
and Y~+l = Y~[ll A,+I ~v~/Ui+x].

This interpretation accords with the expected meaning of B/` in terms of syntactic substitution.

L e m m a 2 ~Ba.u=A [Iv =] (B[U := A])a [Iv"

Proof: By induction on the structure of B. []

A corollary, invoked later, is that if U does not occur in B then BA.U=A has the same meaning as

4 T h e m o d e l c h e c k e r

The model checker is a tableau system for testing whether or not a state s has the property
expressed by a closed formula A in a finite model .~4. As is common in tableau systems, the rules
are inverse natural deduction type rules. Here they are built from 'sequents' of the form s t-a M A,
proof-theoretic analogues of s EII AA ~y T. Each rule is of the form

s t - ~ A

sl t -~ A1. . . sk t - ~ Ak

where k > 0, possibly with side conditions. The premise sequent 8 t -~ A is the goal to be achieved
while the consequents are the subgoals, which are determined by the structure of the model 'near 8,'
the definition list A and the structure of A. Often, in the sequel, the index M is dropped from the
sequents. The intermediate use of definition lists is essential, as they keep track of the 'dynamically
changing' subformulae as fixpoints are unrolled. This is the key to the technique. Condition C, the
side-condition on the constant rules, is explained later as it is a condition on proof trees, rather
than on the particular sequents of the premises.

8 t-a -~-~A

8 t-/` A

8 t-/, --,(A ̂ B)
8 t-/, -~A

8 t- a [a]A

st t-/, A . . . 8n t-/, A

st-/, A A B
8 b a A 8 b/` B

8 t-/, --(A A B)

s t-/, -~B

{8~,..., 8,} = {~'l 8 _2~ 8'}

s t-A ~[a]A s --~ 8'
s I ~t, ",A

s t - / ` v Z . A A ' i s A . U = v Z . A
st-/,, U

s ~-a -',uZ. A A' is A . U = --,uZ. A
s t- /,, U

8t-a U
C and A(U) = vZ. A

s t-A A[Z := U]

373

s t - a U
s t- a -~A[Z := "-U]

C and A(U) = "~,Z. A

A tableau for s ~-2~ A is a maximal proof tree whose root is labelled with the sequent s ~-~ A
(where we omit the definition list when, as here, it is empty). The sequents labelling the immediate
successors of a node labelled s t -~ A are determined by an application of one of the rules, dependent
on the structure of A. For simplicity we have allowed non-determinism in the result sequents in
the cases of -~(A A B) and -~[a]A, rather than entangling proof trees with or-branching as well as
and-branching. Maximality means that no rule applies to a sequent labelling a leaf of a tableau.
The rules for booleans and modal operators are straightforward. New constants are introduced
in the case of fixpoint formulae, while the rules for constants unroll the fixpoints they abbreviate
when condition C holds. This condition is just that no node above the current premise, s t -~ U, in
the proof tree is labelled s ~-~ U for some A' . So failure of the condition, when there is a sequent
s ~-~ U above s t -~ U, enforces termination. In fact the presence of condition C guarantees that
when A4 is finite any tableau for s F 2~ A is of finite depth. Notice that all the rules are backwards
sound. For example, in the case of the rule for maximal fixpoints, if A' is A • U = uZ. A and
s ell va, IIv, then by Lemma 2, s E[uZ. Aa Iv" Hence if the leaves of a (finite) tableau are true, i.e.
if whenever s ~-a A labels a leaf, s E[Aa Nv, then so is the root.

A successful tableau for s ~-~ A is a finite tableau in which every leaf is labelled by a sequent
t ~-~ B fulfilling one of the following requirements:

(i) B = Q and t E V.~(Q)
(ii) S = -~Q and t ~_ V:/(Q)
(iii) B = [alC
(iv) B = V and a (V) = ~Z. C

A successful tableau contains only true leaves. This is clear for leaves fulfilling (i) and (ii). Max-
imality of a tableau guarantees it for leaves satisfying (iii), because then {t ' I t __2_, t'} = 0. Of
more interest is (iv): if t t -~ U labels a node in a tableau above a node labelled t ~-~ U where
A(U) = I/Z.A, then indeed t E[Ua Iv~ (provided that the other leaves beneath t t -~ U are
also true). An unsuccessful tableau has at least one false leaf, such as a leaf labelled t F-~ Q
where t ~. V,~(Q). Again, the most interesting failure is when a leaf is labelled t F-~ U where
A(U) = -~uZ. A and above it is a node labelled t ~-~ U.

Tableau rules for the derived operators are just reformulations of some of the negation rules:

s b a A V B s b a A V B
s P a A s P a B

s ~-A (a)A s - -~ s'
s I ~':, A

s t - a # Z ' A A ' i s A . U = # Z . A
st-:,, U

s t-z, U
C and A(U) = #Z. A

s [-~ A[Z := U]

If these operators were also taken as primitive (as in the case of normal forms) then the definition
of successful tableau would remain unchanged.

374

The two important theorems follow. Their proofs axe given in section 6 below. For both we
assume that A,i is finite. Theorem 4 affirms soundness and completeness, while Theorem 3 amounts
to decidability (since there can be only a finite number of tableaux for s t - ~ A, up to renaming of
constants). Discussion of the complexity of the model checker will be contained in the full version
of the paper.

T h e o r e m 3 Every tableau for s b ~ A is finite.

T h e o r e m 4 s k 1~ A has a successful tableau if and only if s E[A]tv~.

By employing more complex sequents the side condition C on the two constant rules can be
replaced with a condition on sequents. Let an extended sequent have the form

a - - , s~-a A

where a is a finite set of sequents, each of which is of the form t ~-A, U: the idea is that a contains
all sequents above s F" a A whose formula is a constant. The rules earlier can be trivially expanded
to extended sequents. Two sample examples axe:

a---+ s~-a A A B
a - - - . s~ -aA a - - , s P a B

a--~ st-a U
a,st_aU__+s~. A[Z:=U] sba'U~f°ranyA'andA(U)=uZ'A

Now the side condition C is replaced by: 8 ~-a, U Ig a for any A I. This simple reformulation of
the rules is akin to the formalisation of sequent calculi from natural deduction systems. It is also
possible to dispense with the use of constants but at the expense of a complex subformula test [C1].

5 Applications
We begin with two examples to illustrate the tableau method. Suppose Ad = (T, V) is the model
where T may be pictured as

~ d V(Q) = {~}. Consider the formulae

A -= ,,Z. ~Y. [a]((Q ̂ Z) V Y)

B - u Y . ~ , z . N ((Q v Y) ^ Z)

which in A4 express, respectively, that on all paths Q holds infinitely often, and that on all paths
Q holds almost always. We present a successful tableau for s ~-~ A and show that every tableau
for t ~_)a B is unsuccessful.

In the following successful tableau for s }_M A,

Aa = (Ux = A)
A2 = h a " (U2 = As)
As = As- (Us-- AI)

375

where A1 =/~Y. [a]((Q A U1) V Y).

s i - A

8 f-a~ U1

s hal A1

sFa~ U2

~,,, N((Q ^ u,) v u,)

t~-a~ (Q^ u~)v u~

t i-a2 QAU1

ti-a~ Q

, , , , , , , , ,,

t Fa~ Q

t ~-a, U1

t ~-a~ A1

t ~-a~ U3

~-A~ [a]((Q A U~) V U~

s l-a3 (Q A U1) V Ua

sFA~ U~

~-~ [4((Q A U~) V U~)

t~-~ (QA U,) V U~

. , 3 Au1

In the following unsuccessful tableau for s t - ~ B,

% = (v~ = B)
~2 = A~. (V~ = B~)
,% = &~. (V3= B1)

where B1 = ~,Z. [a]((Q v U1) A Z).

t F~3 U1

376

t k B

t ka~ U1

t kt, ~ Bx

t ka2 U2

F-,,, [a]((Q v u1) ^ u,)

s I-A~ (Q V UI) A U2

s ka2 B1

s i-a3 [a]((Q v U1) A Us)

t l-As (Q v UI) A U3

t t-a~ Q v uI

t I-~ Q

t I-a. Ua

t l-h s [a]((Q V UI) A U3)
i

81-a. (Qv UD ̂ Us

sFA~ U~

8 I-a. Q v U1 s t-A. Ua

8 ka~ Vl

An important area of application of the model checker is to Milner's CCS [Mi]. An equiva-
lent version of the checker has been implemented by Rance Cleaveland [C1] in the Concurrency
Workbench (a joint UK SERC venture between Sussex and Edinburgh Universities [CPS]). The
operational semantics of CCS is given in Cerms of labelled transition systems. However, there is
more than one tr&usition system associated with CCS according to whether or not the ~" action is
observable. This distinction is marked by the differing transition relations - ~ and = ~ for a E Act.
In fact, the action sets differ too: there is the relation _Z_, but not = ~ ; and there is the relation = ~ ,
me_~ning zero or more silent moves, but not --~. Thus, there are two different Hennessy-Milner
logics for CCS [HM], each characterising the appropriate (strong or weak) bisimulation equivalence.
Their extension to include fixpoints preserves this characterisation [Sti2]. These are sublanguages
of the modal mu-ealculus--for their sole atomic sentence is the constant t rue.

We now offer a more substantial example: an analysis of Knuth's mutual exclusion algorithm
~Kn] when translated into CCS. Kuuth's algorithm is given by the concurrent composition of the
two programs when i = 1 and i = 2, and where j is the index of the other program:

377

while true do
begin

(noncritical section) ;
L0: cl := 1 ;
LI: if k = i then goto L~ ;
if cj ~ 0 then goto L1 ;
L2: ci := 2 ;
i f cj = 2 t hen go to L0 ;
k : = i ;
(critical section) ;
k : = j ;
ci : = 0 ;

end ;

The variable cl (c~) of program one (two) may take the values 0,1 or 2; initially its value is
0. When translated into CCS [Mi,Wa], the algorithm, assuming the initial value of k to be 1,
becomes the agent Knuth below. For the exampte we let capita] letters range over CCS processes
(states of the CCS transition system). Here we are assuming that ~" is not observable (so the
transition relations are of the form =~) . Each program variable is represented a family of agents.
Thus the variable k with current value 1 is represented as an agent K1 which may perform actions
corresponding to the reading of the value 1 and the writing of the wlues 1 and 2 by the two
programs. The agents are:

gnuth =~I (Pl I P2 I g l I C10 I C20)\L

where L is the union of the sorts of the variables and

K1 =so kwl. K1 + kw2. K2 4- "ffw'T. K1
K2 =dl kwl. K1 4- kw2. K2 4- kw2. K2

e l0 =d0 t ClW0.610 4- ClWl. e l l 4- clw2. C12 + c-~-~. C10
C11 =~ clwO. C10 + clwl. Cll + c~w2. C12 + c- '~. Cll
C12 =sO ctwO. C10 + clwl. Cll + clw2. C12 + ct-'~. C12

C20 =so c2w0. C~O % c2wl. C21 + c2w2. C22 + c-~. C20
C21 =~f c2w0. C20 + c2wl. C21 + c2w2. C22 + c-~. C21
C22 =al c2wO. C20 + c2wl. C21 + c2w2. C22 + c - ~ . C22

/'1 =s/ r . P l l + r . 0
Pll =# clwl. reql. P12
/'12 =¢t kr l . P14 + kr2. Pin
P13 =~/ c2r0. P14 + c2 r l . P12 + c2r2. P12

Pls =dl c2rO. t>16 % c2rl. P16 % c2r2. PIT
Pie =d/ kwl. enter1, exit1, kw2. clwO. P1
P1T =s~ clwl. P12

378

P2 =~ r. P21+r.O
/°21 =d/ C2Wl. req2. Pn
Pn =dl kr2. P24 + krl. P2s
P~a :af clrO. P24 + clrl. t°22 + clr2. P2~
P24 =~ c2w2. P25
P25 =e¢ clrO. P26 + clrl. P26 + clr2. P27
P2s =d] kw2. enter2, exit2, kwl. c2w0. P2
P2~ =d/ c2wl. Pn

Some remarks on this representation may be helpful. The critical section of process Pi, where
i = 1 or 2, is modelled as a pair of actions enter~ and exit~ representing, respectively, entry to and
exit from the critical section. The noncritical section of each process is modelled as a summation,
one summand of which represents the possibility that the process may halt, the other that it may
proceed to request execution of its critical section. An action reql appears in the definition of P~. Its
occurrence indicates that process P~ has 'just' indicated that it wishes to execute its critical section
(by setting ci to true). The reason for including these 'probes' will become clear below. Note also
the presence of the agents PiT and the way in which the stat~nent goto L0 is represented. The
reason for this choice is that only the first ciwl action (setting cl to 1) is considered as signifying
the initiation of an attempt by process i to execute its critical section.

The agent Knuth has sort K = {enters, exits, reqi I i = 1,2}. We introduce two derived modal
operators:

[K]A = A.eK[a]A
(K)A = V~,eK(a)A

We consider two questions. Firstly, does the algorithm preserve mutual exclusion? And sec-
ondly, is the algorithm live (in the sense that if a process requests execution of its critical section
it will eventually enter its critical section)? We express these questions as follows.

1. We say that Knuth's algorithm preserves mutual exclusion iff

Knuth ~ P ~

where PME ('preserves mutual exclusion') is the following formula:

vZ. ((~((exitl)true A (exit2)true)) A [K]Z)

2. We say that Knuth's algorithm is live iff

Knuth ~ IL

where IL is the formula

~z. ([~eq,]EiCSl ̂ [~eq~]EICS2) ̂ [K]Z

where for i = 1,2, EICSi ('eventually in critical section i') is the formula

/zY. [¢](((exiti)true V ([KIY A (K)true))

Some clarifying remarks may be helpful.

379

(i) Process i is 'in its critical section' if P~ reaches a state in which it may perform the action
exiti. The formula Pl~ is satisfied by an agent P of sort K if[for any s E K* and agent P ' , if
P :=~ P ' then P' ~ (exit~)truaA (exit2)trae. Thus Knuth ~ Plq~ iff it never reaches a state with
both P1 and P2 in their critical sections.

(ii) P ~ EICSi iff there are no sequence (a~ [j < w) 6 K ~ and no sequence (Qi [j < w) of

agents such that Q0 = Q and for all j, Qj ~ Qj+I and Qj ~ (exitl)tru.. Thus Knuth ~ IL iff
for i = 1, 2, there is no path on which occur infinitely-many visible actions and on which there is a
'probe' reql (indicating that Pi has requested execution of its critical section) which is not followed
by a corresponding action enteri.

Using the Concurrency Workbench we have verified that Knuth's algorithm preserves mutual
exclusion and is live (for more details see [Wa D. The process Knuth consists of a number of agents
in parallel. A more enterprising model checker would try to verify liveness and safety properties of
Knuth by verifying appropriate subproperties of its components. Proof rules for structured model
checking for the modal sublanguage of the mu-calculus are presented in [Stil]. We hope that these
rules can be extended to the full mu-calculus.

6 Proofs of t erminat ion , soundness and comple teness

We now prove the main results, theorems 3 and 4. First a little notation.
If B is a formula then C(B) is the set of constants occurring in B. Recall from section 4 that a

tableau is a maximal proof tree with root labelled s l - '~ A. Given two nodes n and n' in a tableau
with n ' an immediate successor of n, we say that the sequent s ' F~, B ' labelling n' succeeds the
sequent 8 i-a B labelling n. Also, given two nodes n and n' in a tableau labelled s b-z~ U and
s ' ~-A, U' respectively, we say that 8' F~, U' C-succeeds s FA U if[there is a sequence (h i , . . . ,nk)
of nodes such that n~ = n, nk = n', for 1 < i < k, ni+l is an immediate successor of n~, and for
1 < i < k, the formula of the sequent labelling ni is not a constant.

Next we define a useful nonnegative integer measure, the degree, d(B), of a closed formula B:

d(Q) = o d(-~Q) = o

d(U) = 0
d(-~-,B) = l + d(B)

d (B A C) = l+max{d(B) ,d(C)} d (~(BAC) = l+max{d(- ,B),d(~C)}
d([a]B) = 1 + d(B) d(-~([a]B) = 1 + d(-~B)

d(vZ.B) = 1 + d(B[Z := U]) d(-~,Z.B) = 1 + d(-~B[Z := -,V])

We extend this definition to sequents as follows:

d(s k" a B) = ~ d(B)
d(A(B)) /

if B is not a constant
otherwise

380

L e m m a 3.1 (i) If d I-zx, B' succeeds s 1-~, B and B' is not a constant , then
d(~' t-a, B') < d(~ ~-~ B).

(ii) Ira' k~x, U' C-succeeds s ~-~ U, then either U' ~ C(A(U))U{U}, or d(s' ~-a, U') < d(s ~-,, U)
and C(A(U')) C_ C(a(V)) ~ {V}.

(iii) Suppose A is a prefix of A ' and U • dora(A). Then for any s, s' d(s ~ ,, U) = d(s' ~-a' U).

Proof: (i) By inspection of the the tableau rules and the definition of degree.
(ii) Suppose A(U) = vZ. B. Then either U' is a subformula of B[Z := U], when U' ~ C(A(U)) U

{U}, or U' is introduced as vZ'. C (-,vZ'. C) which is a subformula of B[Z := U], in which case
d(~Z'. C) < d(~ ~ ~ V) and C(~Z'. C) c C(A(U)) u {U} (and si~larly ~or -~Z'. C).

(iii) Immedia te from the definition. []

We now prove the terminat ion theorem.

T h e o r e m 3 Every tableau for s ~-~ A is finite.

Proof: We omit the index .A4.
Suppose there is an infinite tableau r for 8 1- A. Since r is finite-branching, there is an infinite

pa th 7r through ~'. Let a = (s~ t -~ A~ I i < w) be the sequence of sequents labelling the nodes of 7r.
Since for eada i, si+l ~-z,~+ 1 Ai+l succeeds ,~ ~-a~ A~, from Lemma 3.1(i) it follows tha t for infinitely
many i, A~ is a constant. Also, since A4 is finite, no one constant appears infinitely often on ~'.

Consider the subsequence o" = (8~ F-t,, i U~ I $ < to) of a consisting of those sequents whose

formulae are constants. Note tha t for each i, s'i+ t ~-z,,+ 1 Ui+l g-succeeds a'~ F'A, ~ U~. Suppose i0 is

the largest / with Ui = U0. Then since C(A'0(U0)) = ¢, by Lemma 3.1(ii), d(a'~o+l ~'t~,o+~ V,o+l) <
t P

d(si o I"n,o Uo) and C(A~0+I(U~0+I)) C_ {U0}.

Now suppose Q is the largest i with U~ = U/o+1. Then again by Lemma 3.1(ii), d(s'~+l I-LX,+l

U~+x) < d(s'~ ~-A;~ U~0+~) and C(A'~+~(U~+,)) C {U0, U~+x}. By Lemma 3.1(iii), d(s'~+x ~'zx'~t+~

v~,+l) < d(~+~ ~-~',0+, V~+~) < d(~'o e~ V0).
By repeat ing this argument sufficiently often we obtain a contradiction since d is a nonnegative

integer measure. []

Now we come to the proofs of soundness and completeness.

T h e o r e m 4 s t - ~ A has a successful tableau if and only if s E]AIv~.

Proof: Fi rs t some nota t ion and a s tandard lemma.
If B = vZ. D then B ° = t r u e and B ~+1 = D[Z := Bi].
If B = -~vZ. D then B ° = f a l s e and B ~+1 = ~D[Z := -~B~].

L e m m a 4.1 (JP[finite)
(i) If B = vZ. D and s ~[U Bzx]Iv, then there is n < w such tha t s Ell (Bn)zx IIv - I] (B~+l)a Hv.
(ii) If C = "~vZ. D and s eli Ca ~v, then there is n < w such tha t ~ Eli (C~+l)zx ~v -]l (C")a Iv. []

381

We omit the indices .M and V~.
(==~) Suppose s ~- A has a successful tableau r . If all the leaves of r are true (i.e. if whenever
t i-~ B labels a leaf then t eR BA B), then all the nodes of r are true: for, as we noted earlier, the
rules are backwards sound. So it suffices to show that all the leaves of r are true.

If a leaf is labelled t ~-a B with B = Q, -~Q or [a]C, then it is certainly true. Hence any false
leaf must be labelled t Fa U with A(U) = vZ. B. Suppose there is a false leaf. From amongst all
false leaves choose one, labelled t F-r. U say, such that there is no constant U' introduced before
U in r for which there is a false leaf labdled t ' ~-r., U' for some ¢, E'. Consider the subtableau
rl of r whose root is the node, labelled s F-A U say, at which U is introduced in r . For each of
the false leaves of r labelled t b~. U for some t, Z, by Lemma 4.1(i) there is n < w such that
t ell (vZ. B)~ [] -] (vZ. B)~ +1] where A(U) = vZ. B. Choose such a leaf l, labelled t ~'z U say,
such that the corresponding n is as small as possible. Note that since I is a leaf, there is above I in
r l a node k, the companion node of l, labelled t t- z, U for some ~'.

Now transform the tableau r l into a new tableau r~ by replacing each definition list A ' in a
sequent of vl by A'[(vZ. B)'~[U]. An examination of the rules shows that if the leaves of r~' are
true then all the nodes of ~'~ are true: the only rule which could prevent this, namely

s' F a, v Z . B
A" is A' . U = (vZ. B) ~

d i-a- U

is not applied in r~' since the root of r ; is labelled s ~-~[(~z s)-/vl U. But the image of the successor
of the companion node k of l under the transformation is false since it is labelled t Fr.,[(~z.s),/Vl

B[Z := U] and t ¢ n (vZ. B)Z +~ II- Therefore some leaf of r~* is false.
Suppose t ' hA, U' labels such a false leaf where the corresponding leaf of r l is labelled t ' ~'h, U'

so that A" = A'[(vZ. B)=/U]. Then by the choice of n we have that U' # U. Moreover, U' is not
introduced before U in r , since otherwise, by the observation immediately following Lemma 2, the
leaf of r labelled t ' ha, U' would be false, contradicting the choice of U. Hence U' is introduced
after U in r .

But now we may apply the entire argument above to the tableau r ; . And so on. But this
contradicts Theorem 3, that every tableau is finite.

(¢==) We build a pseudo-tableau with root s k A. The rules for pseudo-tableaux differ from those for
tableaux in just one case: the rule for constants defined as minimal fixpoints. The pseudo-tableau
rule is

t i -~ U
t ~ , -,B[Z := -,V] e, and ~(V) = -,vZ. B or (~ Z . B)"

where A ' = A[(-,vZ.B)k/U] with k such that s e[[('~vZ.B)~+I~ - [[(-~vZ.B)~ ~. Note that by
Lemma 4.100 , if t E] U~ [[then this rule is applicable (provided C holds), and in such a case,
if A(U) = ('~vZ. B) ~ and A'(U) = (-~vZ. B) k, then k < n. We assume the same termination
conditions for pseudo-tableaux as for tableaux. Moreover, defining the degree function as in the
proof of Theorem 3 with d(A(U)) = d(-~vZ. B) when A(U) = (-~vZ. B) n, then by an argument
similar to that in the proof of Theorem 3 we have that every pseudo-tableau for s i- A is finite
(provided A4 is finite). Finally we define the notion of a successful pseudo-tableau as for tableaux
with the requirement that no leaf is labelled t i-zx U where A(U) = (-~vZ. B)".

A successful pseudo-tableau can be transformed into a successful tableau simply by updating
the definition fists, changing A(U) from (-~vZ. B) '~ to -~uZ. B as necessary. Hence it suffices to
show that there is a successful pseudo-tableau for s ~- A. Such a pseudo-tableau may be constructed
as follows.

382

Its root is labelled s ~- A and is true. Suppose t ~-A B labels a leaf of the partial pseudo-tableau
and t E~Ba ~. We define the successors of this node in the pseudo-tableau as follows depending on
the structure of B.

(1) B = Q or -~Q: the node has no successors.
(2) B = -~-~C: the node has single true successor labelled t I-A C.
(3) B = C A D or -~(C A D): if B = C A D then the node has two successors, one labelled

t ~-t, C, the other t }-t, D. Since t E l B a I[, the successors are true. If B = -~(B A C) there is one
true successor labelled t ~-a -,C or t ~-/, -~D.

(4) B = [a]C or -,[a]C: similar to (2) with the extra possibility that {t' [t __2_, t'} = 0 in which
case the node has no successors.

(5) B = t,Z. C or -~vZ. C: if B = vZ. C then since t eli Ba [I, t E [1Uzx, I1 where A' is A. U = vZ. C.
Similarly for "~v Z. C.

(6) B = U: if C holds and A(U) = "-vZ. C or (-~t,Z. C)" then by Lemma 4.1 there is k with
t ell (-,vZ. C)~+11 - II ('~vZ. C)~ ~, when t ell "~C[Z := ~U]z~, II where A ' = A[(-~uZ. C)~/U]. The
case A(U) = vZ. C is simpler.

By the remarks above we thus obtain a pseudo-tablean in which all the nodes are true. The
only possible impediment to its success could be that t ~'a U labels a leaf where A(U) = (-,vZ. B) ~.
But by the choices of k in the construction this is impossible, t2

Acknowledgments
We would like to thank Rance Cleaveland, Kim Larsen and Bernhard Steffen for comments and
discussions about model checking. The second author was supported by a grant from the Venture
Research Unit of BP.

References
[C1] R. Cleaveland, Tableau-Based Model Checking in the Propositional Mu-Calculus, typewritten
paper 1988.
[CPS] R. Cleaveland, J. Parrow and B. Steffen, The Concurrency Workbench, to appear.
[EL] E. Emerson and C. Lei, Efficient model checking in fragments of the propositional mu-calcuIus,
Proc. Symposium on Logic in Computer Science, Cambridge, Mass., 267-278, 1986.
[GS] S. Graf and J. Sifakis, A modal characterization of observational congruence of finite terms of
CCS, Information and Control 68, 125-145, 1986.
[HM] M. Hennessy and R. Milner, Algebraic laws for nondetevminism and concurrency, JACM 32,
137-161, 1985.
[Ho] S. Holmstrbm, Hennessy-Milner Logic with Recursion as a Specification Language, and a
Refinement Calculus based on it, Report 44 Programming Methodology Group, University of
Gbteborg, 1988.
[Kn] D. Knuth, Additional Comments on a Problem in Concurrent Programming Control, Comm.
ACM 9/5, 1966.
[Ko] D. Kozen, Results on the propositional mu-calculus~ Theoretical Computer Science 27, 333-354,
1983.
[La] K. Larsen, Proof systems for IIennessy-Milner logic with vecursion, Proc. CAAP 1988.
[Mi] R. Milner, A Calculus of Communicating Systems, Springer Lecture Notes ion Computer Sci-
ence, vol. 92, 1980.

383

[Phi A. Pnndi, Specification and development of reactive systems, Information Processing 86, North-
Holland, 854-858, 1986.
[Pr] V. Pratt, A decidable #-calculus, Proc. 22nd. FOCS, 421-27, 1981.
[St] B. Steffen, Characteristic formulae, University of Edinburgh report, 1988.
[Stil] C. Stirling, Modal Logics for Gommunicatin 9 Systems, Theoretical Computer Science 49,
311-347, 1987.
[Sti2] C. Stifling, Temporal Logics for GGS, to appear in Proc. of REX Workshop, 1988.
[W~] D. Walker, Automated Analysis of Mutual Ezclusion Algorithms Usin 9 CCS, submitted for
publication, 1988.

