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ABSTRACT 

We present a denotational continuation semantics for PROLOG with cut. First a 
uniform language ,~ is studied, which captures the control flow aspects of PROLOG. 
The denotational semantics for ,~ is proven equivalent to a transition system based 
operational semantics. The congruence proof relies on the representation of the opera- 
tional semantics as a chain of approximations and on a convenient induction principle. 
Finally, we interpret the abstract language ~ such that we obtain equivalent denotationat 
and operational models for PROLOG itself. 

Section 1 Introduction 

In the nice textbook of Lloyd on the foundations of  logic programming [Le] the cut, available in 

all PROLOG systems, is described as a controversial control facility. The cut, added to the Horn 

clause logic for efficiency reasons, affects the completeness of  the refutation procedure. Therefore 

the standard declarative semantics using Herbrand models does not adequately capture the compu- 

tational aspects of the PROLOG language. In the present paper we study the PROLOG cut opera- 

tor in a sequential environment augmented with backtracking. Our aim is to provide a denota- 

tional semantics for PROLOG with cut and to prove this semantics equivalent to an operational 

o n e .  

First of  all we separate the "logic programming" details (such as most general unifiers and 

renaming indices) in PROLOG from the specification of  the flow of control, (e.g. backtracking, 

the cut operator). This is achieved by extracting the uniform language ~ from PROLOG - uni- 

form in the sense of  [BKMOZ] - which contains only the latter issues. Fitting within the "Logic 

Programming without Logic" approach, ([Ba2]), our denotational model developed for the 

abstract backtracking language has enough flexibility for further elaboration to a non-uniform 

denotational model of  PROLOG itself. Moreover,  the equivalence of  this denotationat semantics 

and an operational semantics for PROLOG is a straightforward generalization for the congruence 

proof of ,@. 

Secondly, our denotational semantics uses continuations. This has several advantages over 

earlier semantics which (essentially) are based on a direct approach. (See [Br] for a discussion on 

the relative merits of  continuations vs. direct semantics.) We arrive at a concise set of  semantical 
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equations in which there is no need for coding up the states using cut flags or special tokens (as in 

[JM], [DM], [Vi], [Bd]). Moreover, since operational semantics - being a goal stacking model - 

must contain (syntactical) continuations, congruence of the two semantics can be established much 

more elegantly. 

Our final contribution can be found in the equivalence proof itself. The equivalence proof 

does not split - as usual - into ~ ~ ~ and ~ ~ ~. Rather, both the operational and denotational 

semantics are represented as least upperbounds of chains and we prove equality of the approximat- 

ing elements. (See also [KR], [BM] where - although not made explicit - in the setting of com- 

plete metric spaces operational and denotational semantics can be represented as limits of Cauchy 

sequences.) 

Related work on the comparative semantics of PROLOG with cut includes [JM], [DM], [Vii. 

Jones & Mycroft present a direct Scott-Strachey style denotational semantics. They do not com- 

pare this semantics with an operational one. Instead, correctness of their semantics comes from its 

systematic construction. In [Vii also a direct denotational model is developed and additionally 

proven correct w.r.t, a transition based operational meaning. The proof is rather involved, since 

the cut is modeled by a special token (as in [JM]). The semantics of Debray & Mishra is a mixture 

of a direct and continuation semantics. They (need to) have sequences of answers substitutions 

together with cut flags in their semantics. The denotational semantics is related to an operational 

one. However, it is not clear to us what makes their equivalence proof work. (In particular we 

do not understand the proof of theorem 4.1, case 5 in the appendix of [DM].) The semantics men- 

tioned above all denote a program by a sequence of substitutions. In the present paper we only 

deliver the first one. This does not give rise to loss of generality, since our semantics allows 

extension to streams of substitutions, (as in [Vii, ~d]) .  We have chosen not to do so for reasons 

of space and clarity of the presentation. 

Acknowledgments. Our appreciation is due to Jaco de Bakker, Frank de Boer, Joost Kok, 

John-Jules Meyer and Jan Rutten, members of the Amsterdam Concurrency Group, who offered 

us a stimulating forum. We thank Aart Middeldorp and the referees for reading the manuscript. 

We are indebted to M279 for the hospitality the authors received during the preparation of this 

paper. 

Section 2 Deterministic Transition Systems 

In this section we introduce the notion of a transition system, ([Pg], [BMOZ]). For reasons of 

space we restrict ourselves to deterministic transition systems, which already suit our purposes. 

Collections of transition systems are turned into a cpo s.t. associating a valuation to a transition 

system becomes a continuous operation. 

(2.1) DEFINITION A deterministic transition system T is a seven tuple ( C , I , F , f ~ , D  , a , S  ) 
where the set of configurations C is the disjoint union of I ,  F and {f]}, I is a set of internal con- 

figurations, F is a set of final configurations, fl is the undefined configuration, D is a domain of 

values, c~: F --~ D is a valuation assigning a value to each final configuration and S is a deter- 

ministic step or transition relation, i.e. a partial function S: C -'~part C with dora(S) c= 1. 
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Next we show how to extend the valuation cz on final configurations to a valuation ct r on 

arbitrary configurations of a transition system T. 

(2.2) DEFINITION Let  T = ( C , I  ,F  ,~2 ,D ,c~ ,S  ) be a deterministic transition system. Denote 

by D± the flat cpo generated by  D with least e lement  .t.. We  associate with T a mapping CeT: 

C ~ D± defined as the least function in C ~ D± s.t. c~r(f~) = _L, C~r(C) = a(c)  if C ~ F ,  

aT(C ) = aT(C' ) if  ( C , C ' ) E S  and aT(C ) = _L otherwise. 

Fix sets I and F of  internal and final configurations,  respectively. Fix an undefined confi- 

guration ~, a domain of values D ,  a valuation function a :  F -~ D and put  C = I U F U {~2}. 

Let TS = { ( C , I  ,F  , f~,D , a , S  ~ [ S : C ---~pan C with dora(S) c= I } denote the collection of 

all determinist ic transit ion systems with configurat ions in C ,  internal configurations in I ,  final 

configurat ions in F ,  undef ined configuration f~, domain of values D and valuation function or. In 

TS we identify a transition system with its transition relation. (In particular we may write T(c)  

and c --* r c '  rather than S(c )  or (c ,c  ') E S for a transition system T with step relation S.)  

We  consider the set of  configurations as a flat cpo with ordering =< c and least e lement  f]. 

This induces an order ing <--TS on TS as follows: T 1 < r s  T2 ~ dom(Tl)  c= dom(T2 ) & 

Vc Edom(T1):  T](c ) <=c T2(c ) .  We have that TS is a cpo when ordered by <=TS " (The 

nowhere defined transition system ~ is the least e lement  of  TS; for a chain ( T k )  k in TS the 

transition system T with dom(T) = Uk dom(Tk) and T(c)  = lub k Tk(c ) acts as least upper- 

bound. )  Moreover,  the operation kT.c~r: TS -.-r C ~ D± that assigns to a transition system the 

valuation it induces,  is cont inuous with respect to _< rs • (See [Vi].) 

REMARK Let  I 0 ~ 1 t ~ • - . be an infinite sequence of  subsets of  internal configurations 

s.t. I = Uk Ik- Put C k = I k U F  U {fl}. Then we can construct for each T E T S  a chain of  

approximations ( T  k >k of T in TS, where T k is defined as the smallest deterministic transition sys- 

tem s.t. Tk(e) = T(c)  if c E l k ,  T(c)  E Ck, and Tk(c) = f~ if c EIk  & T(c)  is defined but  

T(c)  ~ C k . Then it follows from the above that T = /ub~ T k in TS. T k is called the restriction 

of  T to I k since (by minimali ty of  Tk) only configurations in I k act as a left-hand side. Note also 

that only configurations in C k act as a r ight-hand side. 

Section 3 Operational Semantics of 

In this section we introduce the abstract backtracking language ~ and present  an operational 

semantics based on a deterministic transition system. ~ can be regarded as a uniform version of  

P R O L O G  with cut, in that it reflects the control structure of  P R O L O G .  For a program d I s in ~ ,  

the declaration d will induce a transition system --~d while the statement s induces (given a state) 

an initial configuration.  The operational semantics then is the value of the final configuration ( if  

it exists) of  the maximal  transition sequence w.r. t .  ~ d  starting from the initial configuration 

w . r . t . s .  
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(3.1) DEFINITION Fix a set of  actions Action and a set of  procedure names Proc.  We define the 

set of  elementary statements EStat = { a ,  f a / / ,  ! ,  sLor s2 ,  x [ a E A c t i o n ,  s i E S t a t ,  

x E Proc }, the set of  statements Stat = { e I ;.. ;e r ] r ~ IN, e i E EStat } and the set of  declara- 

t ionsDec l  = { X l e - S  1 : . .:Xr*'-s r I r E  N , x  I E P r o c , s  i E S t a t , i  ~ j ~ x i C x j  }. The back- 

tracking language M is defined by ~ = { d l s [ d e Decl , s e Stat }. 

We let a range over Action,  x over Proc,  e over EStat,  s over Stat and d over Decl.  We 

write x*--s e d i fx~--s = x i ~ s  i (for some i) or if s = fa / /  otherwise. 

Next we give an operational semantics to our backtracking language ~ .  We associate with a 

declaration d E Decl a deterministic transition system -* d- The internal configurations of  -* a are 

stacks. Each frame on a stack represents an alternative for the execution of some initial goal, i.e. 

statement. As such a frame consists of  a generalized statement and a local state. The state can be 

thought of holding the values of  the variables for a particular alternative. The generalized state- 

ment is composed from ordinary statements supplied with additional information concerning the 

cut: Each component in a generalized statement corresponds with a (nested) procedure call. The 

left-most component is the body being evaluated at the moment, i.e. the most deeply nested one. 

Since executing a cut amounts to restoring the backtrack stack as it was at the moment of  pro- 

cedure entry, we attach to a statement a stack (or pointer), that constitutes (points to) the substack 

of  the alternatives that should remain open after a cut in the statement is executed. We call this 

stack the dump stack of  the statement, cf. [JM]. 

(3.2) DEFINITION Fix a set E of  states. Define the set of  generalized statements by GStat = 

{ ( s I , D I )  :.. : ( s r , D r )  I r E IN, s i E S t a t ,  D i ES tack ,  i < j ~ D i >-ss D j  }, 3, denotes the 

empty generalized statement, the set of  frames by Frame = { [ g ,a ] I g E GStat, a E ~2 } and the 

set of  stacks by Stack = { F I : . . : F  r I r E I N ,  F t = [ ( s l , D  l) : . . : ( s q , D q ) , a ] E F r a m e  s.t. 

F i + l : " : F r  >-ss D j  } (with S >-ss S '  ¢~ S '  is a substack of  S) .  L e t C o n f  = Stack U C U {fl} 

be the set of  configurations. 

Fix an action interpretation I : Action ~ '2?, -*pan C, that reflects the effect of  the execution 

of  an action on a state. (The language ~ gains flexibility i f  actions are allowed to succeed in one 

state, while failing in another. Hence we model failure as partiality.) Let TS be the collection of 

all deterministic transition system with configurations in Conf ,  internal configurations in Stack, 

final configurations in ~ ,  undefined configuration •, domain of  values 1~, valuation t~ : I2 -* E 

with u(a)  -- or. We distinguish t5 E ~ that will denote unsuccessful termination. 

(3.3) DEFINITION Let d E Decl .  d induces a deterministic transition system in TS with as step 

relation the smallest subset of  Conf  x Conf  s.t. 

(i) E - * a  dt 

(ii) [ T , a  ]:S - * a  a 

(iii) [ ( e , D ) : g , a ] : S - *  d [ g , a ] : S  

(iv) [ ( a ; s  , D ) : g  ,a ]:S -~ d [ (s  , D ) : g  ,a '  ]:S if  a '  = I (a ) (o )  exists 
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[ (a;s  ,D):g ,tr ]:S -~d S otherwise 

(v) [ < ~ ; s , D > : g  ,a ]:S ~ d  S 

(vi) [ ( ! ; s , D ) : g , t r ] : S - +  d [ ( s , D ) : g , a ] : D  

(vii) [ (x ' ;s  ,D):g ,~ ]:S "~d [ (s ' ,S): (s  ,D):g ,~ ]:S ifx '*--s' E d 

(viii) [ ( ( s l o r s z ) ; s , D ) : g , a ] : S ' - ' ~ F t : F 2 : S  where Fi  = [ ( s i ; s ,D) :g , t r  ] ( i  = 1,2) 

We comment briefly on each of the above transitions (more precisely transition schemes): (i) 

The empty stack, denoted by E, has no alternatives left to be tried. Hence the computation ter- 

minates unsuccessfully yielding ~. (ii) If the top frame contains the empty generalized statement, 

denoted by 7, the computation terminates successfully. The local state ~r of the frame is delivered 

as result. (iii) If the left-most component of a generalized statement has become empty (as is the 

case when a procedure call or the initial statement has terminated), i.e. has format ( e , D ) ,  the 

statement-dump stack pair is deleted from the frame. The computation continues with the remain- 

ing generalized statement. (iv) In case an action a in the top frame has become active, the action 

interpretation I is consulted for the effect of a in a. If l(a)(a) is defined the state is transformed 

accordingly. If I(a)(a) is not defined the frame fails and is popped of the stack. (v) Execution 

of fa// amounts to failure of the current alternative. Hence the top frame is popped of the back- 

track stack. Control is transferred to the new top frame. (vi) The transition concerning the cut 

represents removal of alternatives; the top frame continues its execution. Since the dump stack D 

is a substack of the backtrack stack S, replacing the backtrack stack by the current dump stack 

indeed amounts - in general - to deletion of frames, i.e. of alternatives. (Note that the right-hand 

stack is well-formed by definition of GStat .) (vii) A call initiates body replacement. The body is 

looked up in the declaration d and becomes the active component of the generalized statement in 

the top frame. This component has its own dump stack, which is (a pointer to) the backtrack 

stack at call time. (viii) Execution of an alternative composition yield two new frames: an active 

frame corresponding to the left component of the or-construct and a suspended frame correspond- 

ing to the right component. 

(3.4) DEFINITION The operational semantics ¢: ~ --~ X~ --* ~.t for the backtracking language 6e 

is defined by ~(dls)(a) = Otd( [ ( s,E ),a ]) where c¢ d : Conf --+ ~± is the valuation associated 

with the deterministic transition system induced by d. 

Section 4 Denotational Semantics for ,~ 

By now a standard approach has been established for defining a denotational semantics of a 

sequential procedural language. Cf. [MS], [St], [Bal]. We show that a semantics of ~ in this sec- 

tion and PROLOG in section 6 can also be given along these lines. Standard semantics uses 

environments and continuations. 

Environments are needed because the denotation [I s ]]~ of a statement s depends amongst 

others on the meaning of the procedure names occurring in s. Therefore the function II ° ]], 

takes an environment ~ E Env as a parameter which defines the meaning of all procedure names. 

The flow of control will be described using continuations. For languages like PASCAL, 
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where flow of control is not very intricate, a denotation l[ s ]]~ needs only one continuation as a 

parameter. Languages containing backtrack constructs, like SNOBOL4, are best described using 

two continuations, ef. [Tel. In order to capture the effects of the cut operator yet another continua- 

tion will be needed. (As is observed independently by M. Felleisen in [Wi], p. 273.) In order to 

explain how these continuations will be used we introduce them one after another. First we shall 

discuss the PASCAL-subset of ~¢, i.e. ~ without or , fa//  and cut ! . Thereafter we shall 

examine the SNOBOL4-subset of 6¢, introducing the o._r and fa// constructs, and finally we shall 

explain how all three continuations are used in describing full 8 .  

In order to understand the essence of continuation semantics, consider a substatement s that 

is part of a statement s '  (in the PASCAL-fragment of ~ ) .  The denotation ff s ]], will be a func- 

tion that will, in the end, deliver an answer in ~.L. This answer is not the result of executing s 

alone, but the result of evaluating the whole statement s '  of which s is a substatement. Therefore 

the result does not only depend on an environment 7/ and an initial state o, it also depends on a 

denotation ~ of the remainder of the statement, to be executed once evaluation of s has ter- 

minated. This leads to the following functionality of [I • ]]~: Env  ~ Cont  -'+ ~ - "  ~ l .  

Here Cont = E ~ ~ i  since the future ~ of a computation will in the end yield an answer, but this 

answer depends on an intermediate state, viz. the result of evaluating s alone. A typical clause in 

our semantics up till now, describing the composition operator " ; " ,  will be II e ; s  ]1~ ~ o  = 

I Ie  ~e~/{lIs ]] ~/~}tr, which says that the answer obtained by executing e ; s  before ~ will be 

equal to the answer resulting from execution of e before { execution of s before ~ }. 

The next stage is to introduce backtracking in the language by adding the constructs or and 

fa// (and by allowing actions to fail). Describing the flow of control is more complicated now. 

The problem is that the notion "future of the computation" is not that obvious any more. Evalua- 

tion of a statement s can terminate for two reasons now. The first one, successful termination, is 

similar to the situation we had before. In this case the future of the computation is realized by 

executing the remainder of the statement textually following s.  But now it is also possible that 

evaluation of s terminates in failure, e.g. by executing a fa//  statement. Now the rest of the com- 

putation is determined by backtracking to the alternatives built up through execution of o__r - 

statements in earlier stages of the computation. Such a doubly edged future can best be captured 

by two continuations, a success continuation ~ E SCont  and a failure continuation ~ E F C o n t .  So 

now I]" • ]]~ has a new functionality: [[ ° ]]~ : Env  --~ SCont  "* FCont  --~ ~, --* ~,±. The 

meaning II s ]!~ T/~bcr of S will depend on ~, denoting the rest of the statement following s ,  and on 

q~, which is a denotation of the stack of alternatives built up in the past. FCont  is best understood 

by investigating the meaning of the 9£ construct: [[ s 1 o_r s 2 1]~ r /~ t r  = [[ s I ]]~ * /~ ' o .  This says 

that executing s I _or s 2 amounts to executing sl  with a new failure continuation q~' describing what 

will happen if s I terminates in failure. In that case s 2 should be executed, and only if this also 

ends in failure the computation should proceed as indicated by the original failure continuation q~. 

Hence we have that q~' equals II s 2 ]]~ ~/~bcr. Combining all this we obtain that [[ s 1 or  s 2 II~ */~tko 

= [[ s I ]] ~/~{[[s 2 ]] ~/~q~tr}tr. Apparently we have FCont  = ~,±. As far as the structure of 

SCont  is concerned, it must be realized that the answer obtained from evaluation of the rest of  the 

statement s '  does not only depend on the intermediate state resulting from the evaluation of s but 
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also on the alternatives built up by executing s '  up to and including s .  For it can very well hap- 

pen that evaluation of  the rest of the statement will terminate in failure. We therefore have SCon t  

= F C o n t  --~ ~, ~ ~,±. We notice that the meaning of  the ~ statement is straightforward. The 

answer is the one provided by the failure continuation: [[ fa / /  ]]~ ~ / ~  = q~. This is also the case 

if  an action a does not succeed in a state a,  i.e. [[ a ]], r/~q~cr = 4> if l ( a ) ( g )  is undefined, 

(where I is the fixed action interpretation). If  a does succeed the state is transformed according 

to I and the failure continuation and new state are passed to the success continuation ~. So 

II a ]], ~/~btr = ~t~tr' if ~' = l ( a ) ( c r )  exists. 

The only construct of full ~ that we did not take into account up to now is the cut operator 

! . This statement resembles the dummy statement because it does not affect the state. There is a 

side effect however, since a number of  alternatives is thrown away. To be more precise, evalua- 

tion of ! discards the alternatives which have been generated since the procedure body in which 

the ! occurs has been entered. For our semantics this means that evaluation of  ! amounts to 

applying the success continuation to the original state (this is the dummy statement aspect), but 

also to a new failure continuation. This new failure continuation ~ '  is in fact an old one, namely 

the failure continuation which was in effect on entry of  the procedure body in which the ! 

occurs. A natural way to obtain this old continuation, which we will call the cut continuation 

x E C C o n t  in the sequel, is to provide it as an argument of the meaning function II • ]! s • We 

finally arrive at the functionality [t • ]] ~ : Stat  "* Env  --~ SCon t  --~ F C o n t  -'~ CCon t  ---r Z, --~ ~,±, 

with S C o n t  = F C o n t  -'~ C C o n t  ~ ~, -'* ~,± and F C o n t  = C C o n t  = ~±.  The denotation of  ! 

can now be given by [I ! ]1~ ~7~bxg = ~xga .  On entry of  a procedure body a new cut continua- 

tion has been established. The meaning of a procedure call is straightforward. We have 

I I x  ]],rlliq~xtr = ~lx~(~xtr, i.e. the arguments ~, $,  x and ~r are passed to the meaning ~/x o f x  in 

the environment ,/. The real work is performed in the definition of the environment ~7, which 

should be derived from the declaration d in the program. We want ~ to be a fixed point such that 

~/x, the meaning of  the procedure name x is given by r/x~$xcr = II s ]]~ ~/{),$~.~¢x }$~ba if  

x ~ s  ~ d .  Two effects can be noticed here. First of  all a new cut continuation, viz. the failure 

continuation 4,  is "passed", secondly on (successful) termination of s the old cut continuation 

should be restored and this is captured by passing k$~ .~$g  instead of ~ to the body s .  

We now give the denotational semantics of  .~ .  We first give the domains: the set of  failure 

continuations F C o n t  = X; z ,  the set of  cut continuations CCon t  = Z.L, the set of  success continua- 

tions S C o n t  = F C o n t  "* C C o n t  ~ r, -~ ~.L and the set of  environments Env  = Proc  "-* SCon t  

F C o n t  --~ C C o n t  ~ ~ --~ Z,.L. We denote by o, 4, x, ~ and ~/ typical elements of X;, F C o n t ,  

C C o n t ,  S C o n t  and E n v ,  respectively. 

(4.1) DEFINITION 

(i) [[ " ]]e : ESta t  "* E n v  --* S C o n t  "* F C o n t  ~ CCont  ~ E ~ ~,± 

[[ a ]], ~ ( a x t r  = ~4~x~' if  cr' = I ( a ) ( a )  exists 

It a ]], *l~(axa = ~b otherwise 

I[ ~ 11, n~tx t r  = ¢ 
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~ x D, n ~ 6 x o  = n x ~ ¢ x o  

(ii) II • f l ,  : Star ~ Env ~ SCont  ~ FCont  ~ CCont ~ ~ --r ~± 

[[ e ; s  ]], n~4~xa = II e ]1 .~{~  s ]], ~ } 4 ~ x o  

(iii) ~: Decl  --~ Env ~ Env 

(iv) lI . ] ] ~ :  ~ ~ ~± 

[~ d l s  ] l ~ a  = [Is  ]]arld~OC~OXOa 

where */d is the least fixed point of  ~ ( d ) ,  G0 = Xc~xtr.a and Oo = Xo = 8. 

REMARK The least fixed point ~/d defined in 4.1(iv) can be obtained as the least upper- 

bound of a chain of  iterations (~ld , i ) i ,  with ~/d,i defined by ~/d,0 = kx~bgg. .1,  and ~/d,t+l = 

cb(d)(rld,i ) . From the continuity of  I1 • ]]~ we have II s ]I s ~a = lubi II s ]]~ rid, i. 

We conclude this section with some comment on the similarity of  the operational semantics 

from the previous section and the denotational semantics of  this one. There is a natural correspon- 

dence between components of  a configuration and the parameters of  the denotation of  a statement. 

We compare the answer resulting from evaluation of  an elementary statement e and the value 

obtained from a configuration in which e is about to be executed: II e ]] ~/~$xo vs. 

[(e ; s  , D )  : g , a ] : S  . Here ~ is a denotation of  the statements to be executed once e has ter- 

minated successfully. So ~ corresponds to the statement s followed by the statements in the gen- 

eralized statement g .  The failure continuation 4~ is the denotational counterpart of  the backtrack 

stack S,  the cut continuation x corresponds to the dump stack D .  It is to be expected that if  the 

correspondence is set up as above, the resulting answers should be the same. This will be formal- 

ized in the next section and is pivotal to the equivalence proof given there. 

Section 5 Equivalence of  ~ and 

In this section we prove the equivalence of the operational and denotational semantics, thus justify- 

ing the definition of  the latter one. 

(5.1) THEOREM For all d i s  E ,~:  [[ d l s  ]] ~ = ~ ( d l s ) .  

In order to prove theorem 5.1 we use the cpo-structure on the collection of  transition systems 

TS and the continuity of  the statement evaluator [[ • ]]~. According to the remark at the end of  

section 2 and the remark following definition 4.1 we have that both the operational and denota- 

fionat semantics can be represented as the limit of  a chain, i.e. ~ ( d ] s ) ( g )  = 

lub i ~ d j ( [ ( s , E ) , u ] )  and II d[s  ] ]~ t r  = lub i [Is ]]~ld,i~O(~OxOa. 

However,  in order to compare Ctd, i ([ (s ,E) ,a])  and II s U s ~ld,i~Od~OxO o we need a stronger 

result. An intercedent is needed between e~d, i and II • ]1~. We define a (denotational) function 
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[I • ]] ~¢ on (operational) configurations with parameters d and i and show that for all configura- 

tions C we have that the value a ~ , i ( C )  equals [[ C ]]~di .  The desired result then follows from 

1~ s ]]~ ~ld,i~otbo ~0 a = lI [<s,E>,a] ]] ~ d i  which can be checked by routine. Also, perhaps more 

surprisingly, the equality of [[ ° ]]~di  and C~d, i will be easy to check once the appropriate tool is 

available. 

Having outlined the strategy for the equivalence proof we continue with the definition of the 

intermediate function I[ • II ~ .  First we have to specify the subsets of configurations Stack i. The 

environment */a,i, being the i-th iteration of the bottom-environment, yields the right answer in x 

provided the call of  x leads to at most i - 1 nested inner calls. This depth of nesting can be con- 

trolled in our operational semantics as well. Each component <s i , D i )  in a generalized statement 

g corresponds to a (nested) procedure call. The depth of nesting in g = <s I ,D 1 ) : . .  : ( s  r ,D  r ) 

therefore equals r. (Note that, although g = < S l , D  1) : . . : ( s r , D  r )  we do not require 

Dj  E Stacki,  this is the case if [ g , a ] : S  e Stack i since [g, tr] :S ~ Stack implies that Dj  is a sub- 

stack of S .) 

(5.2) DEFINITION Let GStat t = { g E GStat I Ilg II ~ i } where Jig I[ = r for g = 

( S l , D 1 )  : . . : ( s r , D r )  , Frame i = { [g , t r ]EFrame  [ g EGStat  i } and Stack i = 

{ F1 :.. : Fq e Stack t F j e  Framei }" 

Next we define the intermediate function tI • ~ ~¢. Given a stack S the definition of [[ • ]] 

can only be elaborated further if S E Stack i . Otherwise the value _1. is returned. Intuitively _1. 

expresses uncertainty about the value of the configuration. So _L will be delivered if the elabora- 

tion asks for a chain of nested calls of length exceeding i .  

(5.3) DEFINITION 

(i) [[ " ]] fg : Conf  -'~ Decl "-* N -'* ~± 

[ [ S ] l ~ d i  = f [ S ] ] ~ d i ,  [ [ a ] ] ~ d i  = ~ ,  l [~] l~¢di  = ± 

(ii) I/ ° ] ] ~  : Stack ~ Decl "-+ N ~ E± 

[I E ]]~di = 6, I[ F:S  ]]~di = II F ]]~rdi{lI S ]]~di}  if  F :S  ES tack  i, 

~ S ]] ~ d i  = .1. i f  S ~ Stack i 

(iii) I1 • ll~r : Frame -~ Decl --~ N ~ FCont --~ ~± 

II [g,tr] ]]~'di¢ = [~g ]] diCtr 

(iv) [I ° ] ] :  : GStat --~ Decl -'~ IN -'~ FCont ~ F, -'* F,± 

[~ ~[ ]]~ di err = g, II ( s ,  D > :g ]]~ di Otr = [I s 11, rl a, i,g { k ~ .  [Ig l i t  d i¢  }ep {[~ O ]] sedi }a 

where na,i,g = na , j  w i t h j  = i --- (Jig I[+l) where ll<s 1 ,Dl> :. .  :<s ,  ,D~>tl = r 

f[ < s ,  D ) :g ~$, di should yield the right answer only if this can be obtained with less than i 

nested calls. Now g is responsible for a nesting depth [[ g II. So the whole generalized statement 

<s ,D>:g has a chain of Ilg I1+1 nested calls already. This means that ~d,i,g should allow less 

then i "- ([Ig LI+I) calls. (Here -. denotes the monus, i.e. subtraction in N .) 
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The desired property of the function [i . ]] ~e is stated in lemma 5.5. First we establish 

Noetherianity of the restrictions of ~ d to Stack i , i.e. the absence of infinite transition sequences 

w.r.t. ~ d , i  • This supplies us with an induction principle that we shall use in the proof of 5.5. 

(5.4) LEMMA Let d E D e c l ,  i E N and - '~d , i  be the restriction of --~d 

have that --~ d,t is Noetherian. 

PROOF Omitted. [] 

to Stack i . Then we 

We proceed with the proof of the equality 1[ • ]]~di  = ud , i  (*)  . First we notice that this 

holds for final configurations a E t2, for the undefined configurations t ,  and for internal confi- 

gurations that admit no transition, i.e. stacks not in Stack i . 

We shall prove that (*) is also satisfied by internal configurations that do admit a transition, 

i.e. stacks in Stack i . For this we observe that given the above it suffices to prove: if C "-*d,i C '  

and (*) holds for C '  then (*) holds for C too, by virtue of the Noetherianity of the transition sys- 

tem ~ d , t  • (This is the principle of Noetherian induction, although in our - deterministic - case 

it specializes to induction on the length of the maximal transition sequence (which is finite) out of 

a configuration. See e.g. [Hu].) By definition of the valuation ad .  t we have ad,~(C ) = Otdd(C' ) 

provided C -* d,i C ' .  So we only need to show: if C --~ d.i C '  then [[ C l l ~ d i  = I[ C '  H ~ d i .  

(5.5) LEMMA For all d E D e c l  and i E N we have [i • ]]~¢di = ¢tdd. 

PROOF Let d E D e d ,  i E N and C , C '  E Conf  s.t. C -'}" d , i  Ct" Note C E Stack i . It suf- 

fices to show by structural induction on C: [[ C ]] ~ d i  = [[ C ' ]] ~¢ di . 

We only treat case (vi) of definition 3.3: C = [ (x ' ; s ,  D ) :g ,o ]:S. Say x ' ~ - s '  E d .  We dis- 

tinguish two subcases: Subcase (a): [ [ ( x ' ; s , D ) : g l [  = i.  Then we have C ' =  fl and 

llg II = ~-I. 

[[ [ ( x ' ; s  ,D  ) :g ,u]:S  ]] : d i  

= [Ix' lie ~Id,i,g { [i s ]], ~Id,i,g{Xdpx.[l g ]]pdi(a} }{]I S ]]~di}{[[ D ]]:di}o 
= ~ld,i ,gx'{  [[ s II, 71d,i4 {)~x.[I  g l l p d i ~ }  }{[[ S ]]:di}{[[  O ] ] : d i } u  

= ~ d , o x ' {  [Is  ]],*?d,i,g{XdPx.[[g ]] di~p} }{[IS ]]~pdi}{[IO ]]a~di}o 
= _L 

= [[ f l]] f#di .  

Subcase (b): [l(x';s,D):gll < i .  Then we have C '  = [ ( s ' , S ) : ( s , D ) : g , u ] : S  and 

IIg II < i - l .  

II [ (x  ';s ,D ) :g ,a ]:S ]] ~ d i  

= ~d,i ,gX'{ [IS ]],~d,i.g{X4px.[Ig ]]fdidp} }{[IS ]]qpdi}{[IO ] ] : d i } o  

= rbd*ld.t_l,gX '{ [l s ]]~ld.t,g{)~dpx.lI g ]]didp}  }{[I S ]]~pdi }{l[D ]]~di}a  

= [[ s ' 3 ,  7/d,i_l,g~{lI S ]] :d i }{[ i  $ ] ] : d i } a  
where ~ = )~-~.[i s ]], ~a__,i,g{Xcbx.l[ g ]] di~}~{[i  O ]l ~e di } 
= [[ s '  ]], ~d,i,(s ,D ):g {hffx.[I (s  ,D ) :g ~']]p di~}{l[ S ] ] : d i  }{~ S 1] : d i  }or 
= [[ [ ( s ' , S ) : ( s  , D ) : g , a  ]:S ] ] :d i  

The other cases are similar, (easier) and omitted here. [] 
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Finally we give the congruence proof of the operational and denotational semantics for 8 .  

In the next section we shall modify both this operational and denotational semantics in order to 

give meaning to PROLOG with cut. 

PROOF (of theorem 5.1) Let i re  ~. I I d l s  ]]da~r = I1 s ] ]~ ld~o~oXo  a (by definition) = 

tub i [Is  ]] 7'/d,i~0tb0X00" (by continuity of [I ° ]],) = lubi [I [(s,E),tr] ]]sedi (straightfor- 

ward) = lub i Otd,i([(s,E), tr])  (by the lemma) = e~a([(s ,E) ,a])  (by continuity of )~T.t~T) = 

~(dls)(tr) (by definition). [] 

Section 6 Interpretation of ~ into PROLOG 

At the moment PROLOG is probably the most important programming language featuring back- 

tracking. It can be viewed as Horn clause logic with a left-most depth-first computation rule. 

Nevertheless PROLOG contains execution oriented constructs, e.g. the cut, that makes the stan- 

dard declarative semantics, that associates to a set of clauses its least Herbrand model ([AE], 

[EK]), less satisfactorily. Although dating from the early seventies it has lasted until 1984 before 

a denotational semantics for PROLOG was presented, viz. [JM], that gave account to the 

behavioural aspects of the language. More recently other (denotational) semantics based on 

several approaches have appeared, e.g. [DM], [Vi], [Bd]. (See also [Fi], [Fr], [DF], [AB], [BW].) 

Our work on the backtracking language ~¢ in the previous sections makes yet another seman- 

tics easily available: we can interpret the abstract or uniform statements, declarations and states 

such that: a set of PROLOG clauses can be regarded as a declaration, a PROLOG goal 

corresponds with a statement in the abstract language, while a substitution can be viewed as a 

state. (After all this is not surprising since we designed ~ as an abstraction of PROLOG.) 

This can be done similarly for the operational semantics. Moreover, the interpretation or de- 

uniformization is done in such a way that the equivalence proof remains valid (after adaptation to 

minor technicalities). Having factorized the work for a PROLOG semantics in a control flow 

component (the abstract language ,~) and a logical component (the interpretation of ~ towards 

PROLOG) we obtain presently a congruence proof for the denotational and operational semantics 

almost for free. Stated otherwise, we have an instance of the "Algorithm = Logic + Control" 

paradigm ([Kw]) at the meta level. (In fact, several semantics of logic programming languages 

can be considered as generalizations of established models for imperative languages w.r.t, the con- 

trol; the extensions made are concerned with the particular logic component. Cf. [MR], [GCLS], 

[Kk], [Ba2]. See in particular [BK] for a related approach in the setting of Concurrent Prolog.) 

Unfortunately there is a price to pay for our two pass approach, albeit just a syntactical one. 

Since we restrict procedure names in ~ to have just one procedure body, we can consider clauses 

with pairwise different head predicates only. We feel free to do so, because this is by no means a 

computational restriction in the presence of the explicit or-construct and actions interpreted as 

unifications. (One can use a so called homogeneous form for clauses, as in e.g. [EY], and "or" 

together clauses with the same head predicate.) 

Next we define our variant of the PROLOG language. (Note the similarity with the defini- 

tion of the language ~ in section 3.) 
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(6.1) DEFINITION Let ~ be a collection of function symbols, 7 / a  collection of variables and ~ a 

collection of predicate letters. Let Term denote the collection of terms generated by ~" over 7/. 

Define the set of atomic goals A G o a l  = { t I = t2, . fail ,  ! , G I o r G 2 ,  R ( t  1 . . . .  t k )  I t~ E T e r m ,  

Gt  E Goaf  , R E ~ o f  arity k }, the set of  goals Goal  = { A I & . . & A  r I r E N , A t E A G o a l  } ,  

true is the empty goal, the set of PROLOG programs Prog  = { A I ~ - G I : . . ' J t r ~ - - G  r I r E N ,  

A i = R i ( t i )  E A G o a l ,  i ~ j  ~ R  i ~ R j ,  G i E G o a l  }.  Define PROLOG = { P I G  I 

P ~ P r o g ,  G E Goal  }.  

We next develop an operational semantics for PROLOG along the lines of section 3. In 

order to obtain a most general answer substitution (i.e. to avoid clashes of logical variables) one is 

only allowed to resolve an atom against a program clause provided that the variables of the clause 

are fresh w.r.t, the computation so far. We can achieve this by having infinite supply of copies 

of the class of variables and tagging every goal with an index that it should be renamed with. 

(This is in fact structure sharing.) In a global counter we keep track of the number of the first 

class of variables not used yet. 

(6.2) DEFINITION Let T e r m '  be the set of terms generated by f f  over ~ × N and E be the col- 

lection of substitutions over Term ', i.e. Z = { a : T e r m '  ~ T e r m '  I a homomorphic }. The set 

GGoal  of generalized goals is defined by GGoal  = { ( G 1 , D 1 , m l )  : . .  : ( G r , D r , m  r )  [ r E N ,  

G i E G o a l ,  D i E S t a c k ,  i <= j ~ D i >= ss D j ,  m t E llq }, the set of frames F r a m e  = { [ g , t r , n ]  I 

g E G G o a l ,  o E I 2 ,  n E N  }, the set of stacks S tack  = { F I : . . : F r  I r ~ l N ,  

F i = [ ( G 1 , D I , m  1) : .. : ( G r , D r , m r ) , a , n  ] E F r a m e  s.t. F i +  l :. .  : F  r >_ ss D j  } and the set of 

configurations C o n f  = S tack  U ~ U {[2}. 

The transition system underlying the operational semantics is a straightforward modification 

of definition 3.3. 

Execution of actions t l = t  2 and procedure calls R ( t  l . . . .  t k )  involve unification. We use a 

black box unification algorithm mgu  that yields a most general unifier for two atoms or terms if 

one exists, and is undefined otherwise. (Cf. [JM], [Fr].) So the effect of  the execution of an 

action t l = t  2 in state cr is the update tr0, i.e. composition of substitutions, of cr w.r.t, the most gen- 

eral unifier O of t I and t 2 in state a (and appropriately renamed). 

Slightly more deviating is procedure handling, since one has to unify first the call and the 

head of the particular clause successfully before body replacement can take place. (Stretching a 

point one may consider PROLOG as a form of conditional rewriting. See also [BW], [EY].) A 

call is operationally described as follows. Consider a call, i.e. atom, R ( t !  . . . .  t k ) .  First the con- 

cerning procedure definition, i.e. clause, is looked up in the declaration, i.e. PROLOG program. 

Say this is R ( t  1 . . . .  t k )  ~-- G .  Next we try to unify R ( t  t . . . .  t k )  and R ( t  t . . . .  t k )  (considering renam- 

ing and the current substitution). If this is possible, i.e. a most general unifier exists, we replace 

the call by the procedure body, i.e. body of the program clause, extended with dump stack and 

renaming index, and change the state and global counter according to the side effect, i.e. the result 

of  m g u ,  initiated by the call. We refer the reader to the nice tutorial of [Le] for a discussion on 

unification in logic programming vs. parameter passing and value return in imperative languages. 
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(6,3) DEFINITION Let P E Prog. P induces a deterministic transition system --~ p with as transi- 

tion relation the smallest subset of Conf x Conf s.t. 

(i) E--*p 

(ii) [ "¢,a,n ]:S ---~p a 

(iii) [ (true ,D ,m) :g ,a ,n  ]:S---~p [ g,a,n ]:S 

(iv) [ <tl----'t 2 & G ,D ,m) :g ,a ,n  ]:S --+p [ <G ,D ,m):g,oO,n ]:S 

if 0 = mgu ( t[ m) a ,  t(2 m) o)  exists 

[ ( t l = t  2& G ,D ,m) :g ,a ,n  ]:S ~ e  S otherwise 

(v) [ ( f a i l & G , D , m ) : g , a , n  ]:S ~ p  S 

(vi) [ ( ! &  G ,D ,m) :g ,a ,n  ]:S --~e [ (G  ,D ,m):g ,a ,n  ]:D 

(vii) [ <R(t I ....  tk )&G ,D ,m>:g,a,n ]:S ---~p [ <G,S,n):<G ,D , m ) : g , a , n  + t  ]:S 

if R(t~ ... .  tk) ~-- G E P and 0 = m g u ( R ( t t  m) .... t(km))a,R(t~ n) ,..,tk (n)))  exists 

[ ( R ( t  1 .... tlc)&G ,D ,m) :g ,a ,n  ]:S ---~p S otherwise 

(viii) [ <(G I _or G2)& G ,D ,m>:g,a,n ]:S --* FI:F2:S 

where F i  = [ ( G i & G , D  , m ) : g , a , n  ] 

In the above definition we denote by t (m) the term in Term' obtained by renaming in t vari- 

ables in ~ i n t o  the corresponding variables in I / x { m }. We use suffix notation for the applica- 

tion and composition of substitutions. 

The operational semantics is defined similar to definition 3.4. Here, in the context of logic 

programming, we choose to fix the start state, viz. the identity substitution o~t. The renaming 

index is set to 1 having used 0 for the top-level goal already. 

(6.4) DEFINITION The operational PROLOG-semantics ~:  PROLOG--+ ~± is defined by 

~ ' (P tG)  = ¢¢p([ < G,E ,0  ) , a ~ , l  ]) where Ctp : Conf ~ r.± is the valuation associated with the 

transition system induced by P .  

Having discussed already the idiosyncrasies of PROLOG w.r.t, unification-action and call, it 

is clear how to adapt the denotational semantics of ~ in order to obtain a denotational semantics 

for PROLOG. 

First we redefine the functionality of environments and success continuations. Define Atom 

= { R( t l  .... tk) I R E ~ of  arity k ,  t i E Term }. (Atom is the PROLOG-counterpart of Proc.) 

Let Env = Atom --* N -'~ SCont "-+ FCont ~ CCont "-~ ~ ~ ~q "~ ~± and SCont = FCont 

CCont -'+ 52 -~ N --~ Z;±. We take FCont and CCont as defined previously (with Z;± implicitly 

changed). 

(6.5) DEFINITION 
(i) I1 • l i d  : AGoal -'~ Env --~ N "-~ SCont ") FCont --+ CCont -'+ ~ "* ~ -~ r.± 

II t l=t2  ]]~t~lm~q~xan = ~(~x{aO}n ifO = mgu( t~m) u ,t(2m) a)  exists 

I[ t l=t2 ]]~t*lm~e~xan = ¢ otherwise 

[[ fail ]]~ttlm~6xan = 6 
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[[ ! ] l d ~ m ~ b x a n  = ~xxon  

[[ G l o r  G 2 ]l ac~rn~ckxon = [[ G 1 ]] ~ ~m~{ [[ G 2 ]] ~ ~m~ckxon }xan 

[[ R (t ) ]] al~im~cbxan = ~{R (7) }m~#xan  

(ii) [[ • ]] ~ : Goal "* Env -+ N "* SCont "* FCont ~ CCont -* ~ -'* N -* ~a. 

I[ true ]] ~ ~ m l ~ x a n  = ~t~xan 

[I A & G ]] ~gnmli~xan = [[ A ]]~nm{[[  G ]] ~ n m ~ } ~ x o n  

(iii) ~ :  Prog -+ Env --~ Env 

• Pn{R(t'~)}m~dpxan = [[ G O ]1 nn {X¢~ ~q~x }~¢{aa}{n +I} 
if R(t0) *-- G O E P and 0 = mgu(  R(t'(m))o ,R( t~  n)) ) exists 

- -e  

OP~l{R(t)}m~dpxan = $ otherwise 

(iv) I[ • ] ] ~ ¢ ~  : PROLOG "-* X;± 

[ [ P I G  ]] ~ = [[ G ]] ~g ~l e O ~ o dP o X O a id l 

where ~Tp is the least fixed point of  ~ ( P ) ,  ~o = X~pxan.a and ~o = xo = 8 

It is a matter of routine to obtain the equivalence of the operational and denotational seman- 

tics for PROLOG along the lines of section 5. 
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