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1 M o t i v a t i o n  

Consider how one might describe the sequences of atomic actions IF] performable by a s tandard deter- 
ministic flowchart scheme F .  One can exhibit F as a finite directed graph whose vertices are labeled 
with letters in a ranked alphabet ~2 (if the vertex v has outdegree k, then the letter labeling v is in 
the set ~k ). Then we say that  the set [F] is the set of all labels of paths in F from the 'begin vertex' 
to the exit. If one wants to refine this notion further, one can associate a labeled tree with F,  the so 
called 'unfolding' of F ,  and define [F] as this tree. To describe the tree in great detail, one can show 
how to associate a tree of depth at  most one with each node in the underlying graph of F .  This as- 
sociation takes the form of a system of equations. For example, suppose that  F is the flowchart scheme: 

I: do w; goto 2: 

2: if ~ is true do ~ and goto 2: 

3: exit. 

else goto 3: 

Then we can introduce a 'variable'  zl for each instruction, and a corresponding equation (i): 

Xl ~ ~ " ~2 

X2 = ~ ' t ' 0 ' ' ~ g 2 ~ . f ' X 3  

Z3 --~ 1 

Then, one solves this system of equations in an appropriate structure. 

(1) 
(2) 
(3) 

Our work began with the question of describing the sequences of atomic actions performable by a 
flowchart algorithm which admits explicit nondeterminism and a forking type of parallelism. The 
kind of flowchart scheme is made precise below in our definition of a parallel transition system; the 
corresponding systems of equations are the shuffle equations. We then saw that  the same equations 
were determined by a subclass of free choice Petri nets, which we call the equational Petri nets. Thus, 
shuffle equations, parallel transition systems and equational Petri nets are equivalent descriptions of 
this class of algorithm scheme. For reasons of space, we concentrate here on the equational Petri nets, 
and state only two results concerning the parallel transition systems. 

2 P r e l i m i n a r i e s  

We let N denote the set of nonnegative integers. For n in N, [n] is the set {1,2,...,n}. A mnltiset on 
X is a function r, : X --~ N;  the collection of all multisets on X will be denoted N x .  We identify a 
subset of X with its characteristic function, so that,  for example, the empty set 0 is the multiset with 
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constant  value 0. For any x in X, e~: : X --, N is the multiset with e~(y) = 1 if y = x; 0 if y 5£ z. If 
and u '  are multisets, (u + ~/)(y) = ~,(y) + u'(y).  We will also write ~ - ~' for the function defined 

by pointwise subtraction,  even if the value of this function is negative. 

A word of length n on a set A is a function w : [n] ---* A, for some n > 0. An infinite word on A is 
a function {1, 2 , . . . }  ~ A. We denote the unique word of length 0 by e. The familiar operation of 
concatenation of words w and u is denoted w . u .  The set of words on A of finite length is A* ; the 
set of all finite and infinite words on A is A c~. For Y C A °°, we write pref (Y) for the set of all finite 
words u such that  u • v E Y, for some v E A ~°. A ranked set fl = {flk : k = 0,1, ...} is a collection 
of pairwise disjoint sets flk. Elements in fl~ are called function letters of rank k. For the remainder 
of the paper, fl is a fixed ranked set such that  fl0 is the singleton set {.1.}. We will make use of the 
associated alphabet 

E := U (~, × [~]). (4) 
k : > l  

Thus, a letter in E is of the form (w, j )  for some w E flk and some j E [k]. A successor system 
(V,p,~) consists of a set V (of vertices or nodes), a "rank" function p : V ---, N,  and functions 
c% : [p(v)] ~ V, for v in V; if ~%(i) = u, we say that  u is the i-th successor of the vertex v. To avoid 
subscripts, we will sometimes write a(v, i) instead of Cry(i). A path in a successor system from u to v 
is a sequence u = n0, u l , . . .  ,uk = v of vertices such that  u~+l is a successor of us, for i = 0 , . . . ,  k - 1. 
A rooted successor system is a successor system having a distinguished vertex r, called the root. An 
f l - l a b e l e d  s u c c e s s o r  s y s t e m  is a successor system equipped with a labeling function ,~ from the 
vertices to f~ which respects the ranking - i.e. p(v) = n iff ,~(v) E fin.  

For later use, we define a binary operat ion II. The operat ion is first defined as a map from pairs of 
finite words in E* to finite subsets of E*. 

ull~ := ellu = {u},for all u e S*; (5) 
~ull~'v :-- ~ .  (ull~',) u ~'.( ,ullv).  (6) 

If  U and  V axe sets  of  f inite words, UIIV :=  U{ullv : u e u ,  v ~ v} .  If ~ is a r anked  set,  a fl- 
e o a l g e b r a  A consists of a set A and a part ial  function 

wA : A--~ A x [ n ]  

for each element w in 9tn,n _> 1. I fw  E fl0,wa is the empty  function. 
E x a m p l e .  The  ft-coalgebra UE has E* as its underlying set. The functions wtrs are defined as 

follows. Let s = 6162. . .6n be a word in E*. f fw E ft~,k > 0, then 

{ ( 6 2 . . . 6 n , j )  i f n > O a n d 6 1  = ( w , j ) ,  
wv~ :=  undef ined otherwise 

3 P a r a l l e l  s y s t e m s  

A parallel successor system is a rooted, fl u -labeled successor system ~,  where fl! is obtained from 
fl by the addit ion of the two symbols + and II to fl2. If ~ is a parallel system, an internal state of 
is an element of N v x E*. Recall that  N v is the collection of all multisets of vertices of ~ ,  and E is 
the associated alphabet  Uk > l(flk x [k]). The meaning of the internal  state (u, s) is this: each vertex 
v with v(v) > 0 is allowed to "fire"; the word s is a record of the sequence of "externally observable" 
actions which took place in the course of reaching the current  internal state from the init ial  state. 
The second components  of the internal  states will be used to define the set of ~-admissible words in 
y.* 
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Def in i t i on  1 ~ determines a "transition relation", denoted ~ ,  on the internal states. 
the relation in two steps. First,  for  a vertex v of  ~ ,  we define ~ as follows: 

(~, s) ~ (~', ¢) 
i f  v (v)  > 0 and one of  the following conditions hold. 

We define 

1.1 .~(v) = +, s t = s and 
~'  = ~, - eo + e . ,  w h e r e  u i s  e i t h e r  o~(1) o,  o,(2). 

t . 2  ~(v) = II, s' = s and 
v'  = v - ev + e~ + e~, where u = cry(l) and w = av(2). 

1.3 the label of  v is w E f~k,k > O, and for  some i E [k], s' = s . (w, i )  and 
v'  = v - e~ + e,,, where u = ~(  v, i) .  

Lastly, we define 

1.4 (~, s) ~ ( . ' ,  s') if fo~ some v e . e .  v, (~, s) ~ (¢ ,  s'). 

The relation defined by the first two conditions (1.1) and (1.2) only is called the "internal transition". 
Thus, we may say ( v, s) ::¢.~ iv ' ,  s) via an internal transition, meaning that  either (1.1) or (1.2) holds. 
Similarly, if (1.3) holds, we say (v, s) ~ (rz, s -  (w, j ) )  via a visible transition. 

D e f i n i t i o n  2 The set ~ ( ~ )  of  N-admis s lb l e  w o r d s  of  a parallel system ~ is defined as the set of  
all words s in ~* such that (er, c) = ~  (v, s), for  some v.  

Let A = (A, WA : w C ~)  be an ~-coalgebra. N determines an A-indexed collection ~A of sets of 
finite and infinite sequences of elements in A x N v x ~*. In order to define which sequences belong 
to ~A, it is convenient to define three more binary relations. 

Let ~ be a fixed parallel system. Suppose that v and v'  are multisets of vertices of N, that  b and c 
are elements of A, and that  s and s' are words in E*. Then 

(b, v, s) l-~ (e, ¢ ,  s ')  

if v(v)  > 0, ~(v) = w e fl/~, k > 0, and for some j in [k], wA(b) = (c, j ) ,  a(v,  j )  = u, s' = s .  (w, j )  and 
/ J  ---- / / - -  ev  "1- e u ,  

We write 
(b,.,s) ~ .  (c,~', s') 

if (b, v, s) F h (c, # ,  st), for some v. 
(b, ~, ~) ~, .  (c, ~', s') 

if c = b, s I = s, and (v, s) = ~  (v' ,  s) via an internal transition (recall 1.1 and 1.2). Lastly, define 

( b , v , s )  l-~,A ( c , v ' , s ' )  

if, for some multiset v", (b, v, s) F-i* (b, v", s) and (b, v", s) bn  (c, v',  s'). 

We note that  c = b and s' = s if (b, v, s) l-;, (c, v', s'). More importantly, if (b, v, s) l-~,A (c, v' ,  s'), 
then (v, s) =:~ (v', s'). 

R e m a r k .  Whenever there is a vertex v in the current internal state which is labeled + or [[, then 
may change its internal state without changing the "external state", i.e. the A-component.  If 

(b, v, s) I-in (b, v' ,  s), then in state (v, s), ~ is capable of making a sequence of invisible internal 
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changes of its state. On the other hand, if (b, u, s) }'a (c, u', s'), then in state (u, s), ~ may make an 
external, visible change of state. The "names" of the observable changes of state which occurred are 
recorded in the word s'. 

Now we describe ~.4 (a) for each element a in A .  ~A~a) is a set of sequences of dements  in A × N v × ~*. 
A finite or infinite sequence ( ,~0 ,6 , . . . )  belongs to ~ x ( a )  if firstly, ~o = (a,e~,¢) and ~,, I-~,A ~,,+~ for 
each n > 0, whenever ~,  and ~,+~ are defined. Finally, ~A is the function mapping a e A to the set 
of  sequences ~a (a ) .  

For ~ = (a ,u , s )  in A × N V x ~ * ,  write the A - c o m p o n e n t  o f ~  as pra(~) = a. For a in A ,  w e  define 
~ a ( a )  as the set of all sequences (p r a (~ ) , p r a (~ ) ,  . . . )  for (~0 ,6 , . . - )  in ~a(a) .  Note that we are 
deliberately omitting the first element ~0- 

Def ini t ion 3 Let ~ and ~ be parallel systems. ~ is t r ace  equivalent  to ~ if for every coatgebra 
A ,  ~a  = ~a ,  i.e. the sets of sequences ~a(a)  and ~a(a)  are identical, for each a in A. 

A fundamental question concerning parallel systems is this. Is there an algorithm to determine, given 
two parallel systems ~ and ~ ,  whether they are trace equivalent? We state a theorem which shows 
that this question reduces the the question of whether ~ and ~ determine the same sets of sequences 
on one particular coalgebra. Recall the definition of the coalgebra UE in Example 2 of the previous 
section. 

T h e o r e m  4 Let ~ and ~' be parallel systems. The following statements are equivalent. 
is trace equivalent to ~' .  ~v~ = ~ ] ~ .  ~(~) = ~(~ ') .  

Our proof (omitted here) shows that the set E(~) is determined by the following condition: 

s E ~(~) ~ there is a sequence f = ( f l , . . . ,  f , )  in ~v~(s)  where n is the length of s and 

Equa t ions .  The last condition above shows the importance of the set ~(~)  of ~-admissible words. 
We can give another description of this set by means of a system of equations. Suppose that 

= (V, p, ~r, r, ,~) is a fixed finite parallel successor system. Choose an enumeration of V, say 
V = {Vl , . . . ,Vm}.  We consider each vertex as a "variable". For each variable vi in V, we intro- 
duce a term ti as follows. If $(vl) = w E f~k, write uj for the j - th successor vertex of v, a(v , j ) ,  for 
each j in [k]. Then the term t~ is defined as 

t, := (~, 1)ul + (~, 2)u2 + . . .  + (~, k)uk; 

if $(vl) = l ,  the term tl is just 3_. If ~(vi) = +, then t~ is ul + us, where uj is the j - th successor of 
vi, j = 1,2. Lastly, if $(vi) is II, ti is ulllu2, where again uj is the j - t h  successor ofvl. ~ determines 
the system of fixed point equations 

vi  = t i , i  = 1 , . . . , m .  (7) 

Conversely, such a system of equations in turn determines a parallel system. The labeling of the 
vertex vi can be deduced from the form of the corresponding term ti, as can the values of the successor 
function. We take the root of the system to be vl, the first variable. From now on, we identify a finite 
parallel system with a finite set of equations of the form 7. One can solve this system in an algebra 
CZ of closed subsets of the finite and infinite words (on the alphabet of those letters that  label the 
nodes of a parallel system), in which + is union and the operation II is the continuous extension of 
the operation given in Section 2, (5) and (6). 
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Consider a finite system of equations, 

vl = t i , i  = 1 , . . . , m  (8) 

as above, where the set of variables on the left is {vl , . . .  ,vm}. We will assume that  the corresponding 
parallel system ~ has root vl and that:  

for each i, there is a path in ~ from Vl to vi ; 
for each i, there is a path in ~ from vi to a vertex labeled w E l~k, for some k > 0. every path of 

positive length from v to itself contains at  least one vertex labeled ¢0 E t2k, for some k > 0. 

Consider the m-tuple of terms I" := (tl(Vl, . . .  ,vm), . . . , t in(v1 , . . .  ,Vm)). If  we substitute ti  for vl 
simultaneously in each term t l , . . .  ,tin, we get an m-tuple of terms v2; after m such substitutions, 
we get an m-tupte of terms r 'n = (hi(v1 . . . . .  vm) , . . . , hm(v l  . . . .  ,vm)). The meaning of the three 
conditions above is the following. Identifying each term hi with a finite tree in the usual way, every 
path from the root of hi to any leaf passes through some vertex labeled by a letter in f~. In this 
restricted situation, the set of equations (8) has a unique solution in CI], since the term r '~ is a 
proper contraction map. 

T h e o r e m  5 Let ( X 1 , . . . , X m )  be the unique solution of the system (8) of equations for the system 
~. Then, letting ~i denote the parallel system with root vi,i  = 1, . . .  ,rn, we have: 

~(~,)  = prcf(Xi) .  (9) 

In the next section, we will consider several decision problems connected with systems of equations of 
the form (8). 

4 Equational Petri Nets  

In the remaining sections we consider the class of languages I](N) for parallel successor systems N. 
These languages also can be described in terms of a special class of Petri nets, which we call the 
equational Petri nets. We assume that  the reader is familiar with the basic definitions concerning 
Petri  nets and Petri  net languages (see e.g. [6, 5, 4, 7, 8]). For our purposes, an equational Petri net 
is a quadruple E = (P, T, ~, ~r) where P is a finite set of places, T is a finite set of transitions, and r 
and ~ are functions from the set of transitions to the set of places and multisets on P respectively: 
~r : T---* P, ~ : T--~ N p. 

The place ~r(t) is called the source of the transition t. In contrast to general Petri nets, every transition 
is enabled by only one place, its source. A marking is a multiset on P .  The support of a marking m is 
the set {p e P: re(p) > 0}. For two markings ml and m2, we write ml < m2 ifVp e P(ml(p)  < m2(p)). 
The rank of the marking m is the number of elements of m, i.e., rk(m) := ~pepm(p). A marked 
equational Petri net is a pair (E; m0) where E is an equational Petri net and rn0 is a marking, called 
the initial marking. 

We wilt abuse notation by identifying a place p with the multiset ep introduced in section 1. For 
a transition t let A(t )  := ~(t) - ~r(t) E Z P be the yield of t. A sequence of transitions is a firing 
sequence. For any marking m and firing sequence w E T*, we define m .  w E Z P by induction on the 
length of w: 

m i f w = ¢  
r e . w : =  ( m + A ( t ) ) . u  i f w = t . u  



139 

Def i n i t i on  6 A transition t is enabled at a marking m i f  m >_ 7r(t), i.e., m(~r(t)) > O. A firing 
sequence w = t .u ,  u E T* is enabled at m i l l  is enabled at m and u is enabled at m . t ;  w E T °° is 
enabled at m i f  for  each finite prefix u of  w, u is enabled at m.  (By definition, the empty sequence is 
enabled at every marking.) 

We will use the following notation. 

~ '~ (m)  := { u e T  ~ l u enabled at m}, 

~'*(m) := { u E T *  luenabledatm}, 

~(m) := {m + ~(~)  I ~ e 7*(m)}. 

~(rn)  is the set of markings reachable from m. 

For any set r ,  a F-labeled equational Petri net is a triple IE; r ,  h) where E is an EPN, and where h 
is a function h : T --* r .  We call h a labeling of T in r .  In a r U {c}-labeled net the labeling function 
has the format h : T -* r u {e}. Similarly one defines labeled, marked EPNs. Define the finitary and 
infinitary exhaustive language of E with marking m0 by 

Z*(m0) := h[Y'(r ,0)]  ¢ r*,  

£°~(mo) := h[Y°°(~0)] c r °°. 

For simplicity we will frequently write just  Ira01 for/ :*(m0) and Im01r for 9r*(mo). If the underlying 
net is not clear from context we will also write 9r~(mo; E),  £*(mo; E) and so forth. 

A language L C r* is an equational Petri net language (EPNL for short) iff for some F-labeled 
equational Petri  net E and some marking too: L = £*(mo;E) .  Example 1 shows that  EPNLs in 
general fail to be context free, even if the corresponding net is very simple. 

I t  will be convenient to assume that  6(t) > 0 for all transitions t in an equational Petri net. This 
property can be achieved by adding another place P9 to the net if necessary (for "garbage collection") 
and if 6(t) = 0 for some transition t, we redefine ~ at t by: /~(t) = P9 (see example 1). Furthermore, 
we will assume that  there is at most one place that  does not occur as the source of any transition. It 
is clear from the definitions just  given that  these conventions do not affect the firing sequences that  
are enabled in the net. 

Example 1 
For any alphabet r ,  a symbol 7 E r let #7  : r* ~ N be the Parikh map: #7(x )  is the number of 
occurrences of symbol 7 in word z E r*. Define a net Eo by P = {Po, Pl,P2,Pg}, T = {tl, t2,t~}, 
h(t l)  : a, h(t2) : b, h(t3) = c, r ( t i )  = pi and 6(tl) = po -{-pl +p2,  ~(t2) = 6(t3) : Pg. Let m0 := P0 
be the initial marking. Then Ira0[ = {z e {a,b,e}* ] Vx e P r e f ( z ) ( # a z  > #bx ,  #¢x)}. See figure 1 
for a graphical representation of this net. 

5 Equivalence of EPNLs and Languages of Admissible Words 

There is a natural  way to associate to a parallel successor system ~ -- (V, p, a) an ~.. IJ {¢}-labeled 
equational Petri net E ~. The net has as places the vertices of ~ and its transitions are defined as 
follows. If the label of v is w E ~k, k > 0, then there are k transitions tl in the net labeled (w, i), i E [k], 
such that  ~r(tl) - v and 6(tl) - ~v(i). If there is a vertex v in ~ labeled _L then the corresponding 
place has outdegree 0. If  the label of v is + then there are transitions tl,  i = 1,2, labeled E having 
source v such that  ~(t~) = ~v(i), i = 1,2. Lastly, if the label of v is 1]' then there is a transition t 
with source v labeled c such that  6(t) is the multiset ~v(1) + ~r.(2). With  these definitions it is quite 
straightforward to show that  ~ (~ )  = £(r ;  E~), where r is the root of ~.  
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Figure 1: A primitive equational Petri net. 

For a p l a c e p a n d  a symbo l  ~r E ~ define eps (p ,w)  := {m E N p I P ' W  = m A h ( w )  = w } .  Thus 
eps(p, w) is the set of all markings that  can be reached from p by firing a transition labeled w plus any 
number of c-labeled transitions. If the parallel system satisfies condition 3, Section 2, then eps(p, w) 
must be finite for all places p in E~. This is the key to eliminating c-labeled transitions from the 
net. Briefly, a new r-labeled net E~ is obtained from E~ by deleting all the old transitions and, for 
every p in P and every marking m in eps(p,w), introducing a new transition t labeled w such that  
6(t) = (p, m). Furthermore, one new place q with transitions t such that  h(t) = w and 6(t) = (q, m) 
for all m E eps(r,w) is added to the net. Here r E V = P is the root of the successor system. Then 
an easy induction shows that  £(q; E~) = ~(~) .  

It is somewhat easier to describe the system of equations determined by a F-labeled EPN E; the 
variables appearing in the equations are the places, and for each place x and each transition t with 
7r(t) = x we let the term -c(x,t) be defined by 

T ( x , t )  : =   (yllly ll "" Ily ), 

where the label of t is w and 6(t) = YI + "'" + Yk (there may be repetitions among the y's). The 
equation corresponding to the place x is then 

= r ( ~ , t l )  + . - - +  r(~, tm),  

where t l , . . .  ,tin are all transitions with source x. (If x is a place of outdegree 0, the last equation 
becomes x = ±,  or, equivalently in the algebra C~,  x = {¢}.) The system of equations determined 
by E is the set of such equations, one for each place x in E. Note that  these equations are already in 
normal form. 

Example 2 
Consider a parallel successor system ~ defined by V = {r, Vl, v2, Ul, u2}, p(r) = 1, p(vl) = 2, p(ui) = 0 
and lastly a t ( l )  = vl, c%~(1) = r, ~%~(2) = v2 and trv2(i ) = ul. The node-labels are given by A(r) = a, 
A(Ul) = b and A(u2) = c, {a,b,c}  = t21, A(u3) = 2. E ~0; A(vl) = Ih i = 1,2. The corresponding 
system of equations is 
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,1 = II(r,~2), 

"~ = II(ul, u~), 
U l  -"  b . t t 3 ,  

U 2 ~ e • u 3 ,  

U3 : l .  

Now define an equational Petri net E~, as follows. Let P = V and T = {ti I i G [5]}. The maps ~r 
and 6 as well as labeling h are defined in the following table. 

Performing the e-elimination procedure described above yields the following net E~. There are 13 
transitions t l , . . .  , t t s ;  the functions r and 6 as well as labeling h are again given by a table as follows. 
Note that  L(r; E~) = L(m0; E0) where E0 is the net from example 1. 

i h(ti) 7r(ti) 6(ti) 
1 a r vl 
2 e vl r + v2 
3 e v2 ul + u2 
4 b ul us 
5 c u2 us 

i h(tl) ~r(tl) 6(ti) 
1 a r Vl 
2 a r r +  v2 
3 a r r + u l + u 2  
4 a Vl vl + v2 
5 a vi r + 2v2 
6 a vl r + v 2  + u1 + u2 
7 a vt r + 2ut + 2u2 
8 b vt r + u2 + us 
9 e vl r + ul  + us 
10 b v2 u~ + us 
11 e v2 ul + us 
12 b ul us 
13 c u2 u3 

The next three propositions indicate some major differences between general Petri nets and equational 
Petri nets. We omit their proofs. Let F = {wl , . . .  ,wk} and define the full Parikh map # : P* ~ N k 
by #(=):= (#=,=,...,#=k=). 

P r o p o s i t i o n  7 In any F-labeled equational Petri net E with markings ml ,  m2 we have: [ml + m2[ = 

Imxl [[ Ira21- 

It is demonstrated in [1] that  the problem of testing equality of sets of reachable markings is unde- 
cidable for general Petri nets. However, this problem is decidable for equational Petri nets due to the 
simple periodic structure of their set of reachable markings. 

P r o p o s i t i o n  8 In any equational Petri net, the set of reachable markings ~ ( m )  is semi-linear. Thus 
it is decidable whether two marked equational Petri nets have the same set of reachable markings. 

A similar argument shows that the commutative image of a EPNL is semi-linear. Hence many EPNLs 
are examples of non context free languages with semi-linear commutative image. 

P r o p o s i t i o n  9 For every equational Petri net language L, the commutative image # ( L )  is semi- 
linear. Thus it is decidable if  two equational Petri net languages are letter-equivalent. 
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6 R e g u l a r  a n d  C o n t e x t  Free  E P N L s  

Clearly every Petri net language is context sensitive. As example 1 shows, even primitive equational 
Petri  nets may generate languages that  fail to be context free. We will now give necessary and 
sufficient conditions for the set of firing sequences of an equational Petri net to be regular or context 
free, respectively. A characterization of those Petri nets generating a regular exhaustive language can 
be found in [9]. 

6.1 Firing Trees 

The linear order inherent in a firing sequence obscures the concurrent nature of a Petri net. Therefore 
we introduce the notion of a firing tree: a firing tree is essentially a derivation tree in an appropriate 
rewriting system. Let E be an equational Petri net, m a marking and suppose w E lm[T. Assume some 
fixed linear ordering of the places in E. Define a forest TR(m, w) consisting of exactly rk(m) ordered 
trees whose nodes are labeled in P. TR(m, w) is defined by induction on w as follows. - TR(m, ~) 
consists of rk(m) isolated roots, the label of the i-th root is p where ~q<pm(q) < i < ~q<pm(q). - 
TR(m, wt) is obtained from TR(m, w) by finding the leftmost occurrence of a leaf z labeled p --- 7r(t) 
and attaching new leaves z l , . . .  ,z~ to z where k = rk(~(t)). The label ofzi is q where ~ql<q~(t)(q I) < 
i <_. ~]q,<__q6(~)(q'). We will write $(z) for this label. Now let w be a firing sequence w enabled at m 
and let p be a place. I t  is obvious from the definitions that  
- the length of w is the number of interior nodes in TR(m, w) and 
- (m-  w)(p) is the number of leaves in TR (m, w) labeled p. 
A place p in E is proper if there is a transition t enabled at p such that  A(t)(p) = --1, improper 
otherwise. A set Q of places is unbounded (for the marking m0 ) if Vk > 03m E 7~(m0)Vp E 
Q(m(p) ~_ k). A set Q of places is proper unbounded iff Q is unbounded and all the places in Q are 
proper. Lastly a net is k.unbounded iff k = max([QI I Q c P proper unbounded). 

6.2 The Collapse of an Equational Petri Net 

In what follows it will be convenient to think of an equational Petri net E as a bi-parti te multi- 
digraph. Thus for each transition t with source p there is an edge from p to t and edges from t to 
q (with multiplicity 6(t)(q)) for all q in the support of ~f(t). Note that  the indegree of every vertex t 
is at most one. The net E is primitive iff the corresponding graph contains no strongly connected 
components (scc, for short) with more that  two vertices. We now associate every equational Petri 
net E with a primitive net C(E), the collapse of E. The nets E and C(E) will have essentially the 
same sets of unbounded places. C(E) is obtained from E by collapsing all the strongly connected 
components C of E of size at  least two into one place pc  and one transition to .  

We will distinguish several types of strongly connected components as follows. Let C be a strongly 
connected component of E of size at  least two. 

C is inactive if V t e  C(outdegree(t) < 1); otherwise C is active. More specifically, C is externally 
active if Vt E C(outdegreev(t) < 1) A 3~ E C(outdegree(t) >_ 2). C is internally active if 3t E 
C(outdegrecc(t) > 2). 

Lastly define a collapse map g from E onto C(E) by 

z if the scc C of z is {z}, 
~(z) := zc otherwise. 

Note that  C(E) can be constructed from E in polynomial time using standard graph theory algorithms. 



~43 

The net E0 from example 1 is primitive: it  has only one non-trivial scc, namely {po, t l}.  This 
component is externally active. The place P0 is improper, and {px,P2,Pg} is a proper unbounded set 
of places. As we will see shortly this implies that  the language of the net is not context free. The 
net Eat from example 2 also has only one active component, namely {r, v z , t l , . . .  ,tT}. All places are 
proper, and the set {v~, ul, u2, ua, ua} is proper unbounded. 

L e m m a  10 Let E be a marked equational Pctri net, C(E) its collapse. Then a set Q of places is 
unbounded in E iff g[Q] is unbounded in C(E). 

Proof. It clearly suffices to verify the following two claims. For all firing sequences us in E enabled at 
m0 there exists a firing sequence to~ in C(E) such that  

~(mo- to) _< ~(mo) • to'. 

Conversely, for all firing sequences to' in C(E) enabled at ~(mo) there exists a firing sequence to in E 
such that  

~(mo). to' <_ ~(mo-to). 

Since the proofs are similar, we give only the second argument. We proceed by induction on w ~. 
Suppose u / =  u ~ -t ~ where t '  is some transition in C(E). By induction hypothesis ~(m0)-u ~ < ~(m0 -u) 
for some firing sequence u in E. If t '  is one of the transitions unaffected by the collapse (because 
the corresponding strongly connected component contains only t '  ), then we may set to := u .  t ' .  So 
assume t ~ = to .  Note that  at least one of the transitions in C is enabled at m0 • u. We distinguish 
several cases depending on the type of the strongly connected component C. 

Case 1 C is inactive. 
In this case A ( t c )  = 0. Pick a transition t in C which is enabled at  rno • u and set to := u -  t.  Note 
that , ¢ ( ~ o )  - ~ ' - t c  = , ¢ (~o  • " 9  < , ¢ ( ~ o - , . , )  = ,¢(mo • ~. O- 

Case 2 C is active. 
In this case A( tc )  > 0 and possibly A( tc ) (po )  = 1 (if C is internally active). Pick a firing sequence 
v in C enabled at m0.  u such that  ~(A(v)) _> A(tC). The existence of such a sequence follows from 
the fact that  C is strongly connected and the definition of C(E): any edge ( tc ,  z) in C(E) comes 
from an edge (t, q) where t is a transition in C. Now set w := u . v .  Note that  ~(m0) • u'  • t c  = 
~(mo- u') + ~( tc)  _< ~(~o. u) + ~(~(~)) = ~(mo .~.  O. D 
The following lemma establishes a normal form for the firing sequences that  show tha t  a set of places 
is unbounded. 

L e m m a  11 Suppose that E is a primitive equational Petri net, Q = {qz , . . - ,q ,}  a set of places in E 
and that mo is a marking. Then ~ is unbounded for mo iff there e~:ist repetition-free firing sequences 
u~, vl and transitions tl, i - 1 , . . .  ,n , such that 

~t.~;;(q) >__ k). 

Proof. The sufficiency of our condition is obvious, to see necessity let To C T be the set of self-loop 
transitions in E with positive yield, and let P0 be the corresponding set of places. Suppose Q is 
unbounded for m0. Then for any k _> 0 there must be a firing sequence w enabled at rn0 such that  
the firing tree TR(mo, w) contains at least k leaves labeled q for all q in Q. Choose k := rk(mo),  r 21TI 
where r :-- max(6(t) I t E T) and let to be a minimal such firing sequence. Then at  least one of the trees 
in TR(rno,to) must contain one of the transitions in To. Suppose 6(t) -- ~(p) + d where d ;> 0 is the 
top-most occurrence of any such transition. Then there is a repetition-free sequence ul of transitions 
in T - T o  such that  Ult* C ImOlT. Let {ql , - . . ,q j}  C Q be all the places in Q that  occur in at  least 
one of the rk(d) suhtrees associated with the transition t. By the minimality of to, we have j _> 1. 
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Hence there exist repetition-free firing sequences v t , . . . ,  vj such that  mo" u t t e rS . . ,  t~v~(qi) > k for 
i = 1 , . . .  , j .  Now delete all subtrees from TR(mo,w) that  contain no leaves in Q1 := Q - { q l , . . .  ,qj}. 
Replace m0 by ml := m0 • vl and Q by Q1 and proceed by induction. [] 

Note that  in general an equational Petri net has an exponential number of maximal unbounded sets 
of places. Hence we cannot hope to enumerate them in polynomial time. However, the next theorem 
shows that  it is already NP-complete to determine whether a single given set (2 of places is unbounded. 
More precisely, consider the following decision problem. 

Probtem: Boundedness for EPNs 
Instance: An equational Petri net E, a marking m and a set (2 of places in E. 
Question: Is (2 an unbounded set of places for m in E? 

R e m a r k .  The teachability problem for EPN's has been shown to be NP-complete in [3]. A related 
boundedness problem has been considered in [2]. 

T h e o r e m  12 The problem of Boundedness for EPNs is NP-complete. The problem remains NP- 
complete even if  the net is required to be primitive. 

Proof. To see membership in NP first note that  the primitive net g(E) ,  the collapse of an equational 
Petri net E, can be computed in polynomial time. Hence, by lemma 10, we may safely assume that  
we are dealing with a primitive net. So let (2 = {ql , . - .  ,qn} a set of places in E and m0 a marking. 
By lemma 11, the set (2 is unbounded for m0 if[ there exist repetition-free firing sequences ui, vi and 
transitions t~, i = 1 , . . . , n  , such that  Vk > O, q E (2(too" ult~v~...unt~vkn(q) > k). The total 
size of u 1 , . . . ,  u n , v l , . . . , v n  and t l , . . . , t ,  is polynomial in the size of E. Hence one can guess in 
non-deterministic polynomial time at these firing sequences and verify in deterministic polynomial 
time that  they indeed have the desired properties. 

To show hardness we will embed 3-Satisfiability (3SAT). An instance of 3SAT is a Boolean formula 
= ¢1 A ¢2 A . . .  ACm in 3-conjunctive normal form using variables in X = {zl, . . . ,  x,}. Suppose 

clause ¢i is zi,1 V zi,z V zi,3 where the z i j  are literals over X. Define a primitive equational Petri 
net E as follows. E has places P i j ,  i = 1 , . . . , n  , j = 0,1,2 and qk, k = 1 , . . . , m  , the 'pockets'.  
There is a transition t i j  with yield pi j  -pi ,o,  j = 1,2, i E In]. Furthermore, there is a transition si,i 
enabled at Pi,1 with yield E~eqkqk and similarly si,2 is enabled at Pi,2 with yield ~e~eqkqk, i E [n]. 
Hence the net consists of n basic components corresponding to the n boolean variables in ff plus m 
pockets corresponding to the clauses in ¢.  Now consider the initial marking m0 := Pl,0 + - "  + p,,0. 
In each component the first transition fired determines whether the corresponding variable is true or 
false. The subsequent firings then allow the creation of an unbounded marking in those pockets whose 
corresponding clauses are satisfied by that  particular choice of an assignment. It is easy to verify that  
¢ is satisfiable iff Q := { q l , . . . ,  q,~} is unbounded for the initial marking m0. [] 

In contrast to the computational hardness of unboundedness for sets of places of arbitrary size we will 
show that  for a set Q of cardinality at most 2 one can determine in polynomial time whether Q is 
unbounded. Hence there is a polynomial time algorithm to decide whether a net is 0-unbounded or 
1-unbounded. 

For a strongly connected component C of an equational Petri net E let D(C) := {p I 3t, q~, q2 E 
C( r ( t )  = ql A ~(t)(q2) > 0 A ~(t)(p) > 0)}. D(C) is the collection of all places that  can be "pumped" 
directly via firing sequences entirely within C. Clearly D(C) can be determined in polynomial time. 
As a consequence of lemma 10 and lemma 11 we have the following two corollaries. 

L e m m a  13 Let E be an equational Petri net, mo a marking and Q = {q}. Then Q is unbounded iff 
there exists an active strongly connected component C reachable from the support of rao such that q 
is reachable from D( C). 
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Coro l l a ry  14 Let E be an equational Petri net, mo a marking and Q = {ql, q2}. Then Q is unbounded 
iff there exist two active strongly connected components C1 and C2(not necessarily distinct) reachable 
from Pl and I)2 respectively such that qi is reachable from D(Ci), i = 1,2, and one of the following 
three conditions holds: mo >_ Px + P2, mo >__ pl and P2 E C1, or mo >_ p2 and Px E C2. 

T h e o r e m  15 The set of all firing sequences enabled at mo in an equational Petri net E is regular iff 
E is O-unbounded, i.e., E contains no proper unbounded places with respect to too. 

Proof. First suppose E is 0-unbounded. Let P0 be the collection of all proper places in E. Then for 
some constant c we have: V m e  7~(m0),p e Po(m(p) <_ c). But for any improper place p, re(p) > 0 
and m'  e ~ (m)  implies m'(p) > 0: firing any transition enabled at p does not decrease re(p). Now 
define the marking m t by 

re(p) i fp  proper, 
mr(p) := min(m(p), 1) otherwise. 

Define a finite sink automaton M as follows: M has states {0, . . . ,  c} P° x {0,1} P0 kJ {_1_}, where mr0 is 
the initial state and .l. is the sink. The transition function is defined by 

6(re, t) := { (.k m ' t ) t  otherwise.ift is enabled at m, 

Clearly M accepts a firing sequence w iff w is enabled at m0. For the opposite direction assume that 
E contains at least one proper unbounded place P0- By lemma 11 there exist firing sequences u and 
w such that Vk > 0((m- uwk)(po) > k). Let t be a transition enabled at p such that A(t)(p) = - 1 .  
Suppose for the sake of a contradiction that [m0[T is regular. Note that for all k > 0: uwkt k is 
enabled at m0. By the pumping lemma there is some r sufficiently large such that uwrt * C [m0[, 
contradiction. [] 

T h e o r e m  16 The set of all firing sequences enabled at me in an equational Petri net E is context 
free (but not regular) iff E is 1-unbounded, i.e., any set of proper unbounded places with respect to mo 
has cardinalily at most one and there exists at least one such set. 

Proof. First suppose E is 1-unbounded. Again let Po be the collection of all proper places in E. 
For any c > 0 call a marking m c.critical iff 3p(m(p) > c). As an immediate consequence of the 
1-unboundedness of E we have for some sufficiently large co and all m in 7~(rn0) there exists at most 
one proper place p such that re(p) > co. Thus for all c > co and m in T~(m0) c-critical let crit(m, c) 
denote that uniquely determined place. 

Claim There exists a constant cl > co such that for all m E 7~(m0) and m' E Tt(m) co-critical we 
have: exit(re,el) = crit(m', cl). For suppose otherwise. Then there are proper places p ~ q such that 

t for any k we have mk in ~(mo)  and m~ in 7~(mk) such that rnk(p) > k and ink(q) > k. But then 
for any r >_ 0 there are infinitely many pairs i < j such that rnl + rp < mj.  Note that m~ + rp is in 
n ( m j ) .  But then {p, q} is unbounded: (ml + rp)(p) > r and (m~ + rp)(q) >_ i, contradiction. 

Now we can define a counter automaton M that simulates the equational Petri net E as follows. Let 
Cl be as in the claim. For any marking m define m t by 

I 
ra(p) if re(p) < cx, p proper, 

mr(p) := min(rn(p), l )  i fp  improper, 
cl i fp  = crit(m, cl). 

M has states {0,. . .  ,c} P t9 {_1_}, initial state m?0 and every state other than 3. is final. M works as 
follows: as long as the marking m of the net is non-critical m is represented by state mt of M and the 
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stack is empty. When the marking becomes el-critical for the first time M switches mode: from now 
on it uses its stack to represent re(p), p := erit(m, el), all other places are represented by the state 
m t. By the claim all markings reachable in the future are not el-critical in any component other than 
p. Hence M properly simulates E. We leave the details to the reader. 

On the other hand assume that  {Pl,p2} is proper unbounded, Pl ¢ P~- By lemma 11 there exist 
firing sequences ul ,  us, wl and w2 such that  Vk _> 0((m0 • UlW~U2Wk2)(pi) >_ k), i = 1,2. Let tl 
be a transition enabled at p~ respectively such that  A(tt)(pi) = - 1 .  As in the last argument for all 
k > 0 the firing sequence • " ~- wkt ~*k is enabled at  m0. By the iteration theorem for context free 

- -  ~It~lU2 2 I~2 

languages ulw'~u2w~t~t ~ n ]m0[ fails to be context free and we are through. 13 

Combining theorem 15 and 16 and corollary 13 and 14 we have the folbwing result. 

T h e o r e m  17 There is a polynomial time algorithm to determine whether for a given equational Peiri 
net E there exists a marking mo such that Im01T fails ~o be regular - or contex~ free. 

6 . 3  T h e  E q u a l i t y  P r o b l e m  

We now turn to the problem of determining whether two parallel systems over the same ranked 
alphabet f~ have the same behavior. In terms of equational Petri nets the problem in its simplest form 
can be phrased as follows: given two equational Petri nets with the same set of transitions T, decide 
whether the same firing sequences are enabled in the two nets. We will show that  this problem can 
be answered in non-deterministic linear space. In fact, a slightly more general result holds. 

T h e o r e m  18 Given two r-labeled marked equational Petri nets (E~; ml;h i , r ) ,  i = 1,2, where h2 is 
injective, the problem to decide whether £*(ml;E~) C £*(m2; E2) is in PSPACE. 

Proof. Let w be an arbi trary symbol in r .  For all positions p in P1 and all markings m define 

% := max(i  < co I wi e I:¢°(p;E1) U L:*(p;E1)) 

and 
~7(m) := ~pe.lcpm(p). 

Thus for a marking m]J~ (m) is the maximum number of transitions labeled w that  can be fired at m. 
Define ~ similarly for the net E2. For every symbol w in r we will determine a bound on the length 
of the shortest firing sequence w E .T*(E1; ml )  - ff such a sequence exists at all - that  has following 
two properties: 

h~(w) e 1:*(m2; E~) (i0) 
(11) 

A s / : * ( m l ; E 1 )  C ~*(rn~;E2) iff no such w and w exists this will prove our claim. We may safely 
assume that  / :*(ml;E1)  lies completely in the range of h2; otherwise one can easily construct a 
witness x E /~*(ml; E t ) -  L*(m2;E2) of length at  most n-1. Hence h~l(hl (w))  is defined for all 
w e [m1[w; we will write g(w) :-- h~l(hl(w)) .  We will show that  the desired bound is: 

B := 72n+2. max(rk(ml) ,  rk(mz)) + n. (12) 

Here 7 :-- max(max(rk(~1(t))  I t  6 T1),max(rk(62(t)) I t  6 T2)) and n :--- IPll. We may safely assume 
that  7 > 2, otherwise both nets are essentially finite automata  and our claim follows from standard 
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results on regular languages. Taking the bound B for granted, a PSPACE algorithm can be given as 
follows: non-deterministically generate a firing sequence w in ~ of length at most B and verify that 
w E lml[srl but  y(w) ~ Im~]r~. The markings that  appear during the firing of w and g(w) all have 
rank O ( 7 " ) .  In binary notation their size is therefore linear in the size of the input (El;  ml )  and 
(E2; m2). Hence the problem is solvable in non-deterministic linear space and thus in deterministic 
quadratic space by Savitch's theorem. 

We now return to our main argument. A self-loop at  a place p is a transition t enabled at  p such that  
A(t)(p)  > 0. Clearly a self-loop at  p labeled w causes cp = co. Let q2 in P~ be the place that  enables 
a transition labeled w in E2. Note that  by our assumption q2 is uniquely determined a n d / ~  (m) = co 
o r /~ ' (m)  = re(q2) depending on whether q2 has a self-loop labeled ~ or not. Here a self-loop at  place 
p is understood to be a transition t enabled at p such that  A(t)(p)  >_ 0. Now suppose w is a minimal 
witness satisfying the above conditions 10 and 11. 

Case 1 The place q2 has no self-loop labeled w in E2. 
First notice that  we can restrict ourselves to the case where there is no cycle of transitions in E1 
all labeled by w. For otherwise one can construct a witness v of length at most n - 1 such that  
/J~'(ml • v) = co > g~(m2 ' g(v)) and there is nothing to show. Thus for any marking m we have 
/J~'(m) < co. Now let fl be the longest branch in TR(ml ,w) .  By 12 the depth of Ttt(rnl,w) is a least 
n + 2, hence fl has length at least n + 2. Let z0, zl,  . . .  ,z,  be the n + 1 bottom-most interior nodes on fl 
(z0 being the father of the leaf). Hence 30 < i < j < n(A(zl) = A(zj)) by the pigeonhole principle. Let 
u be a firing sequence associated with the subtree of zj minus the subtree of zi, and w2 a firing sequence 
associated with the subtree of zl. One can rearrange w to a firing sequence @ = wlttw2 E ]roll. By 
our choice of n the firing sequence wlw~ is also enabled at  ml .  But Iwxw21 < I~1 = lwl, hence 
g(WlW2) is enabled at  mz. N o w / ~ ' ( m l  • t~) = / ~ ( m l  • w) > tt~'(m2- #(w)) = / ~ ( m z  • 9(t~)) and 
/ ~ ( m l  • ff~) = lt~(m1" wlw2) + all, I~(m2 " g(@)) = It~(m2 . #(wlw2) + d~ where dl  := #~(Al (u) )  
and d2 := #~(A2(g(u))) are the respective gains in net E1 and E2 during the firing of tt and #(u). 
Note that  A l ( u )  > 0, whence dl > 0. Again by the minimality of w we must h a v e / ~ ( m l ,  wlw2) < 
#~(m2 • 9(WlW2)). Thus dl > d2. Also observe that  lul _< 7" by our choice of z~. By deleting 
repetitious labels on ~ above z~ one can construct a firing sequence fi enabled at  m~ of length at  most 
n - 1 such that  flu* C Imllw. But we have just  seen that  dl > d~., hence there exists a k < rk(rnz) 
such that  g(fiu t)  ~ Im~l~ and we are done. 

Case 2 The place q0 has a self-loop labeled w in Ez. 
Note that  in this case we must have tt~(ml • w) > #~(m~ • w) = 0. Again let/~ be the longest branch 
in TR(mz,w).  By 12 let zo , . . . , z~ ,  be the 2n + 1 bottom-most interior nodes on/~ (z0 being the 
father of the leaf). By the pigeonhole principle we have 

~0 < i < j < r < s < 2n(A(z~) = A(~) ^ A(z~) = A(z,)). 

One can rearrange w to a firing sequence ~ = WlVW~.Uwa ~_ Im~l~ where u is a firing sequence 
associated with the subtree of z~ minus the subtree of zi, v is a firing sequence associated with the 
subtree of z, minus the subtree of z, ,  and lastly ws a firing sequence associated with the subtree of 
z,. As w is a minimal witness we must have #(WlVW~Wa) 6. Imply. Hence the gain in the second 
net during the firing of ~(u) in position q~ is not positive: d~ := tt~(A~(a(u))) = / ~ ( r n ~ .  g(w)) - 
I~(m~ • #(w~vw~wa)) < O. If d~ < 0 one can use the argument from case 1, so assume d~. = 0. 
Then t t~(m~. ~(w~vw2wa)) = 0 and by the minimality of wg~(m~ • wtvw~wa) = 0. I t  follows that  
dl := /~ ' (AI (U) )  _> 1. Now consider the firing sequence WlW~UWa. Note that  g~(ml  • w~w~uwa) > 1. 
Hence, again by our choice of w, ~(w~w~uwa) is enabled at m~ and g~(m~ • 9(w~w~uwa)) _> 1. Thus 
d~. := tt~'(A~(~(v))) = g~'(m~. ~(w)) - tt~(m~, g(wlw~uwa)) < 0 whereas d~ : = / ~ ( A t ( v ) )  _> 0. As in 
case 1 there is a firing sequence fi of length at most n -  1 such that  ~v* C Irn~lr. However, for some 
k < rk(rn~.) + n .  B,  fl(fiv ~) q~ £*(E~;m~). This completes the proof, n 
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Coro l l a ry  19 Given two marked EPNs (El;rot), i = 1,2, with free labelings hi : 2q ~ E the Equality 
Problem as well as the Subset Problem are in PSPACE. Le., there are algorithms with polynomial 
space complexity to decide whether £*(mi;  Ei)  = I:*(m2; E2) and whether £*(mi;  El)  C £*(m2; E2). 

We conclude by stating some open problems. Corollary establishes an upper bound for the Equality 
as well as the Subset Problem in equational Petri nets with free labelings. We are not aware of any 
lower bounds. Furthermore, it would be interesting to know whether these problems are decidable for 
equational Petri nets that satisfy the disjoint labeling condition and ultimately for arbitrarily labeled 
nets. 
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