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A b s t r a c t  

We define the directed acyclic subsequence graph of a text as the small- 
est deterministic partial finite automaton that recognizes all possible subse- 
quences of that text. We define the size of the automaton as the size of the 
transition function and not the number of states. We show that it is possi- 
ble to build this automaton using O(n log n) time and O(n) space for a text 
of size n. With this structure, we can search a subsequence in logarithmic 
time. We extend this construction to the case of multiple strings obtaining 
a O(n21ogn) time and O(n 2) space algorithm, where n is the size of the 
set of strings. For the later case, we discuss its application to the longest 
common subsequence problem improving previous solutions. 

1 I n t r o d u c t i o n  

Given a text ,  a subsequence of  tha t  text  is any string such that  its symbols  appear  
somewhere in the text in the same order. Subsequences arise in da ta  processing 
and genetic applications, being the longest common subsequence problem (LCS) 
the most  impor tan t  problem. They  are used in da ta  processing to measure  the 

differences be tween  two files of data,  and in genetic research to s tudy  the s t ructure  

of  long molecules (DNA).  
The first interesting question to answer, is the membership  problem. That  

is, if a given string is a subsequence of another string. This can be  expressed 
as a regular expression (see [1] for the s tandard  notat ion) .  For example,  if the  

*This work was supported by the Institute of Computer Research of the University of Wa- 
terloo and by the University of Chile. 
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subsequence is xlx2"  "xr, and t is the text,  then the problem may be expressed 
as 

t E O'x1 O'x2 0"... O*xr O* ? 

where 0 is the don' t  care symbol and * the star operator or Kleene closure. 
Clearly, we can answer this question in linear time. However, we are interested 
in answer this question in optimal  time, by allowing the text to be preprocessed. 

A natural  question is which is the size of the deterministic finite au tomaton  
that  given a text,  recognizes any possible subsequence of that  text. We allow 
the au tomaton  to be partial, that  is, each state need not to have a transit ion on 
every symbol. As all the states of this au tomaton  are accepting, it can be viewed 
as a directed acyclic graph, which we call the Directed Acyclic Subsequence 
Graph (DASG). This problem is analogous to the Directed Acyclic Word Graph 
(DAWG) in where we are interested in subsequences instead of subwords [3]. 

In section 2 we introduce the DASG, and in section 3 we show how to build it 
in O(n log n) t ime and space for arbitrary alphabets, and in O(n log tZI) t ime and 
space for finite alphabets, where Z denotes the alphabet.  Wi th  this structure, we 
can test membership in O(Is I logn)  time for arbitrary alphabets and O(Is]) t ime 
for finite alphabets, where s is the subsequence that  we are testing. One interest- 
ing thing to point  out is that  the DAWG recognizes all possible O(a  2) subwords 
using O(n) space, while the DASG recognizes all possible 2" subsequences us- 
ing O ( n l o g n )  space. In section 4 we show that  is possible to reduce the space 
required to O(n), but  having a O(tsllogn ) searching t ime for any alphabet.  

In section 5 we extend the DASG to the case of multiple strings and we use 
it to solve the longest common subsequence problem and variations of it [2]. Our 
algori thm improves upon  previous solutions of this problem for more than  two 
strings, running in time O(n21ogn) using O(n 2) space. Previous solutions to 
the general case used O(n L) t ime and space for L strings [7] by using dynamic 
programming,  or O(n 3) t ime and O(n 2) space [6] using an approach similar to 
the one developed in this paper. 

2 Bui ld ing  the  D A S G  

We can define the DASG recursively in the size of the text.  The DASG of a text 
of size n must  recognize all possible subsequences of the last n - 1 symbols of the 
text,  and all possible subsequences that  start  with the first symbol .  As a regular 
expression this is: 

8 , ~ = ( ¢ + t l ) S ~ _ 1  and S 0 = ¢  

w h e r e ,  is the empty  word and t = t i t2"  .t,, is the text. The size of the regular 
expression 8~ is linear on n, and so is the non-deterministic finite au tomaton  
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equivalent to S, .  Suppose that  all the symbols of the text are different. The 
"deterministic" version of Sn for this case is 

S ,  = e + q S,,-1 + t2S,,-2 + . . .  + t,, So 

Clearly, the size of Sn is O(n2). Figure 1 shows the DASG for the text abcd. This 
au tomaton  has n +  1 states (all of them are final states) and n(n+ 1)/2 transitions. 
The number  of states is minimal  because we have to recognize the complete text 
(the longest subsequence). The number  of edges (given the minimal  set of states) 
is also minimal,  because in the posit ion i of the text we have to recognize any 
subsequence start ing with t i for j = i + 1, ..., n. It is not  difficult to generalize 
this for the case of repeated symbols. 

c 

d 

Figure 1: Minimal state DASG for the text abcd. 

D e f i n i t i o n :  Let Z be the alphabet.  We define the effective size of Z as c = 

min( l~l ,  n). 

To build the DASG in O(cn) t ime and space we use an incremental  algori thm 
scanning the text from the right to the left. At each step we mainta in  a dictionary 
that  contains all different symbols of the already scanned text,  and the state in 
which the first skeleton transit ion labeled with that  symbol appears. Hence, the 
a lgori thm is 

1. Create state sn and create an empty  dictionary D. 

2. For each symbol in the text ti scanning from the right to the left do: 

(a) Create state si-1. 
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(b) Insert the pair (ti, i - 1 )  in D. If ti is already in D, its associated state 
is upda ted  to i - 1. 

(c) For each symbol in D (di) , append a transit ion labeled with dj to 
state sk+l, where k is the state associated to dj in D. 

Step (a) takes constant time. The insertion, step (b), can be performed in 
logc t ime, because the size of D is O(e). For the same reason, step (c), the 
traversal of D takes O(c) time. The cycle is performed n times. Then, the total  
t ime is O(n(c + log c)). If we apply the same algori thm scanning the text from 
the left, we obtain the DASG of the reversed text. For this DASG, we can test 
the membership of a subsequence s using s reversed. 

A membership query in this DASG takes O([sllogc ) t ime, where the logc 
t e rm is the t ime to search for the appropriate transit ion in each state. Using 
a complete table for small alphabets, a O([s[) worst case t ime is achieved. For 
larger alphabets,  we can obtain O([s]) average t ime by using hashing. 

3 T h e  S m a l l e s t  A u t o m a t o n  

It  is possible to reduce the t ime and space requirements? The answer is yes. The 
main  problem is that  the number  of edges is O(n 2) while the number  of states is 
linear. Here we are not interested in the minimal  set of states, we are interested 
in minimal  space and that  means a minimal number of edges. In other words, the 
smallest transition .function for the automaton.  To the best of our knowledge, 
this is first t ime that  such concept is given. 

D e f i n i t i o n :  The smallest deterministic partial  finite au tomaton  A that  recog- 
nizes the regular language L(r) defined by the regular expression r, is such that  
does not exist other au tomaton  that  recognizes L(r) with less transitions than 
A. 

We shall show that  minimal  number  of states it is not,  in general, equivalent 
to the smallest automaton.  In [3] is claimed that  the DAWG is the smallest 
au tomaton  tha t  recognizes all the subwords of a text.  However, they show that  
is the smallest in the sense of minimal  number  of states. Intuitively, the DAWG 
may be the smallest automaton,  because the number  of states and the number  of 
edges only differ in n + O(1). In our problem, it is not the case, and we introduce 
a me thod  that  we call encoding, since it basically encodes the alphabet used. 

To achieve the previous goal we will balance the number  of states and the 
number  of edges. For that  we encode each symbol using k < e digits. This means 
log k c digits per symbol. Hence, our skeleton will have O(n log k e) states, each 
one with at most  k edges. Then, the total  space is O(nklog k e). 
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Intuitively, what  happens is that  the encoding permits  to share transitions. 
We can see this by noting that  the skeleton representing a symbol has k transi- 
tions times all the transitions of a skeleton one state short. That  is 

T. = kT.-1 

and T1 = k. But the length of the skeleton for each symbol is log k c. Thus, 
T(log~ c) = k l°gkc = c different transitions per state. That  is, the number  of 
transit ions per state in the O(cn) DASG. Note that  each transi t ion in the previous 
version of the DASG, is simulated by the encoded DASG in O(log c) steps. 

The opt imal  choice for k is 3. However, for practical obvious reasons we want 
an integer power of two. In that  case, the best integer choices are 2 and 4. Thus, 
using k = 2 (typically most inputs are already encoded in binary) we have at 
least 2 edges per state and n[log 2 c] + 1 states. Of these states, n + 1 are final. 
However, we do not have to distinguish them, because any input  must  be of 
length multiple of [log 2 c]. This leads to the following theorem: 

THEOREM 3.1 The smallest deterministic partial finite automaton that recog- 
nizes all possible subsequences of a text of size n over an alphabet of effective size 
c, has at most  nIlog2c ] + 1 states and at most ( 2 n -  ([log2 c 1 + 1)/2)[log2c ] 
transitions. 

P r o o f :  It is only necessary to prove the result in the number  of edges. Clearly, 
any state has at most  2 edges. However, the last state has no transitions and 
the previous [log 2 c 7 states only can have 1 transit ion because they represent the 
last symbol. For the same reason, the skeleton representing the symbol n - i has 
at most i states with 2 transitions for any i < [log 2 c]. • 

These upper  bounds can be slightly improved using k = 3. This result is 
optimal,  because the length of the encoded text is O(n logc ) ,  and then we need 
at least O(n log  2 c) transitions to recognize the complete text (the longest subse- 
quence). 

Figure 2 shows the encoded version for the text abed. This DASG does not 
have less transitions that  the one presented in Figure 1. However, this only 
happens for small n or periodic strings (for example an). 

Again, to construct this version of the DAS G, we use an incremental  algori thm 
scanning from the right to the left. Now, we need two auxiliary structures. 
One that  given a symbol tell us its encoding (encoding dict ionary/funct ion) and 
another  that  given a prefix of a symbol code, returns the posit ion of the first 
symbol (in the previously scanned text) with that  prefix (analogous to the D 
dictionary of the previous algorithm). For the last data  structure we use a binary 
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1 

1 a = 0 0 ,  b =  01, c =  10, d =  11 

Figure 2: DASG for the text abcd (encoded). 

trie (for example a Patr icia tree [8]), where in each node we store the position 
(state) needed. Let b be I1og2 el. If c is not known in advance, we may use c = n 
or we compute  it using O(n log  c) time. The detailed steps of the algori thm are: 

1. Create state snb+l and create an empty  binary trie D. 

2. For each symbol in the text ti scanning from the right to the left do: 

(a) Set the root as the actual posit ion in D. 

(b) Create state s(i-1)b. 

(c) Encode ti. 

(d) For every bit x i (0 or 1) in the encoding of tl do: 

i. Create state s(i-1)b+i if j < b. 

ii. Append a transit ion labeled x i between states s(i-1)b+i-z and 

S(i-1)b+i" 
iii. If the ~j (complement of xi) child of the current trie node exist, 

append a transit ion labeled xi  from state S(i_l)b+ 1 to state k where 
k is the state stored in the child. 

iv. Set the xi child of the current trie node as the new posit ion in D 
and update  its value (state) to (i - 1)b + j .  If the child does not  
exist, we create it. 

All the steps in the internal loop takes constant t ime, and the internal loop 
is repeated nb times. Hence, the total  t ime is O(nlogc).  The extra space is 
O(clogc) for the trie and O(nlogc) for the encoding structure (if we do not  have 
a function or table). This leads to the following theorem: 

THEOREM 3.2 It is possible to construct the DASG of a text of size n using 
O (n log n) worst case time and space for arbitrary alphabets, and using 0 (n log []~[) 
worst case time and space for finite alphabets. 
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In practice the implementa t ion  is very simple. We need two words for each 
state  (the 2 possible transit ions),  and we need nb+ 1 states (contiguous space) 
for the  whole au tomaton .  

A membership  test  of  a subsequence s is answered in O(Is I log 2 c) t ime (the 
t ime to encode the subsequence plus the the t ime to answer the query).  Ad- 
dit ionally to the DASG we may  have to main ta in  a s t ructure  or a function to 
encode each symbol. This at most  requires O(nlogc) space. In practice this is 
not  needed,  since most  inputs  are already encoded in b inary  (e.g. ASCII).  By 
keeping all the states visited during the search we can obtain  where the subse- 
quence s ta r ted  and where it finished. 

The previous result proves the following (almost obvious) lemma: 

L e m m a  3.1 The minimal state (partial) DFA and the minimal transition (par- 
tial) DFA are not equivalent. 

The l emma is also t rue for non-par t ia l  DFAs because the space complexities 
for our problem are the same for this case. The meaning behind this l emma is 
tha t  to share par t  of  a t ransi t ion function in 2 "similar" states we need addit ional  
states. Encoding is one technique to share states. However, it is possible tha t  
the  general  problem of finding the smallest t ransi t ion funct ion is NP-complete  
based on re la ted problems presented in [4,5]. Fur ther  research is being done in 
this problem and in local techniques to minimize space in finite au tomata .  

The next  l emma gives a necessary condition to have an encoding tha t  may  
reduce the  size of the  au tomaton:  

I, e m m a  3.2 Given a minimal state partial DFA with s states, where so of them 
do not have outgoing transitions, and t transitions, then encoding may reduce the 
size of the automaton o n l y / f t  > 2(s - so). 

P r o o f :  If  we apply encoding, each state  is at least t ransformed in 2 states. That  
means  tha t  the number  of transit ions of the au toma ton  of the encoded text  is 
at least 2(s - so) transit ions,  because each new state  must  have at least one 
transi t ion,  s - so of the original number  of states also must  have one transi t ion 
and it is not  necessary to encode symbols representing states wi thout  transitions. 
Hence, the new au toma ton  may  have less transit ions if t > 2(s - So). • 

For example,  any DAWG such tha t  t < 2 s -  2 (So = 1 for this case) cannot 
be reduced using encoding. We have not found a single example where t > 2s - 2 
for a DAWG. Based in the results presented in [3] we know that  t < 3s - 6. 
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4 A L i n e a r  S p a c e  R e p r e s e n t a t i o n  

In section 3 we showed that we can transform the DASG of O(n 2) transitions and 
O(n) states, to a DASG with O(nlogn) transitions and states. In this section 
we will describe how to simulate the O(n 2) space DASG using only O(n) space, 
but log n time per transition, independently of the alphabet size. 

Instead of representing the transitions for each state, we will store all the 
states associated to the transitions of a given symbol. Let enumerate the states 
in the DASG defined in section 2 from 0 to n, or in other words, by using the 
position of each symbol in the text. For each symbol x we store, in order, all 
states s such that  

8(4, x) = s 

for any state i (in fact, i < s), where 8 is the transition function. That  is, we 
store all the positions in the text in where z appears. Let S, be the ordered list 
of positions associated to x. To simulate 8(i, x), we look in S,  for the minimum 
state s in Sz such that  s > i. Because the list is ordered, this takes O(logn) time 
(a sorted array suffices). To know *there Sz is, we use an auxiliary index that 
tells us this information for each z. 

Because there are n positions in the text, the space necessary for all the 
ordered fists is O(n). The time necessary to construct this representation is 
O(nlogn) to sort the lists, and O(nlogc) to build the auxiliary index and to 
lookup all the symbols. This leads to the following theorem: 

THEOREM 4.1 It is possible to construct an implicit representation of the DASG 
of a te~t of size n using O(n) space and O(n log n) worst case time, in where each 
transition is simulated in O(log n) steps. 

To test membership of a subsequence s, we need O(Is [ iogc) time to lookup 
each symbol, and O([s] logn) time to simulate the transitions. That is, O(]s] logn) 
time, regardless of the alphabet size. Therefore, for finite alphabets we tradeoff 
space for search time. Table 1 shows a summary of the space and time complex- 
ities. 

5 T h e  D A S G  f o r  a S e t  o f  S t r i n g s  

Now we want to solve the following problem: Is a given string a subsequence 
of a string in a set of strings? Again, we can express the problem as a regular 
expression. To do this, we need first some additional notation. 

Let $ be a set of L strings, and si be the i th string of the set. We assume that  
no string is a subsequence of any other string (this implies that at least there are 
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DASG I Space I Searching time 

Section 2 ne Isl 
Section 3 n togc [s[loge 
Section 4 n Is I logn 

Building time 

n c  

n log c 
n log n 

Table 1: Summary of time and space complexities 

two different symbols in S). Let n = EL=I tsil be the total number of symbols. 
Let T($) be the set of distinct symbols in $ (2 < IT($)t < c = min(IEI, n)). 

Def in i t ion :  We define (as in [6]) a matched point of $ as a j- tuple of pairs 
([il,pl],[i2,p2]...,[ij, pi]) (1 < j < L) which denotes a match of a symbol at 
positions Pl in string sil, P2 in string si2, "',Pi in string si t. A matched points is 
maximal, if the symbol matched does not appear in the L - j remaining strings. 

For example, all the maximal matched points for $ = {aba, aab, bba} are 

([1, 1], [2, 1], [3, 3]), ([1, 1], [2, 2], [3, 3]), ([1, 2], [2, 3], [3, 1]), 

([1,2],[2,3],[3,2]),([1,3],[2,1],[3,3]), and ([1,3],[2,2],[3,3]). 

Def in i t ion :  We define the initial maximal matched point (IM($, x)) in the set S 
for a given symbol x as the smallest maximal matched point (in a lexicographical 
sense) that matches x. That is, the maximal matched point with the smaller 
position p~ in each string that belongs to the matched point. 

For the previous example, IM(S,a) is ([1,1],[2,1],[3,3]) and IM(S,b) is 
([1, 2], [2, 3], [3,1]). 

We denote by R(S, matched point) (right set) the set of non null substrings 
that axe to the right (higher positions) of a matched point (we also eliminate any 
substring that  is a subsequence of other substring). For the previous example, 
R(S, IM($,  a)) = {ba, ab}. Now, the regular expression that defines all possible 
common subsequences of $ is recursively defined by 

Subseq($)= ~ tiSubseq(R(S,IM(S,ti))) 
t~eT( S) 

and Subseq((3) = e. This definition generates the subsequence automaton, and 
then allow us to count the number of states and edges needed by this automaton: 

States(S) < 1 + ~ States(R(S,IM(S,ti)))  
t,ew( S) 
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and 
Edges(S)  < [T($)! + ~ Edges (R(S ,  I M ( S , t i ) ) )  

QET(S) 

Both  results are not  equalities, because identical right sets may  appear  (dupli- 
ca ted  par t ia l  results).  An example is given in Figure 3. 

b f(-'-,~ c 

e "".c~ 

- 

- - - 'd '  t ransit ions ~ ~ 

d 

Figure 3: DASG for the strings abcd and bade. 

THEOREM 5.1 The D A S G  of a set of L strings of size n over an alphabet of 
effective size c has at most n - L + 2 states and at most ( N - L + 1)c edges. 

P r o o f :  We use induct ion on the number  L of  strings. F rom section 2, the 
theorem is t rue for L = 1 (n + 1 states are necessary and sufficient). 

Now, we will see what  happens when we t ry  to include a new string s in a 
DASG of a set $ of  L strings of  size n. We will show that  for each posi t ion in 
s (except one) we need to create at most  one state.  If  we create a s ta te  for a 
t ransi t ion labelled wi th  sy, we mark  tha t  posi t ion j in the string. We show that  if 
posi t ion j has been marked,  then there exists a s ta te  tha t  recognizes Subseq(s l) 
and nothing else, where s I = s/+l.. .sls I. Note that  the last posi t ion will be never 
marked,  because Subseq(e) exists already in the DASG of $ (last filial s ta te  or 
sink state) .  
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Then,  for each posit ion j in s ( the order is not  impor tan t )  we need a t ransi t ion 
f rom the initial s tate  labelled with tha t  symbol (si). For the last position, if 
there is no t ransi t ion f rom the initial s tate labelled with tha t  symbol,  we create 
a t ransi t ion f rom the  initial s tate  to the sink state.  For the o ther  positions, we 
have three cases: 

• A t ransi t ion with  tha t  symbol does not  exist and posit ion j + 1 has never 
been marked.  In  this case we create a new transi t ion labelled wi th  tha t  
symbol to a new state,  and we mark  tha t  position. From, this s tate  we 
apply this procedure recursively on the new state  for the string s I. Note, 
tha t  this new state  will recognize only Subseq(sl). 

• A t ransi t ion does not  exist, but  posit ion j + 1 has been marked.  There- 
fore, there exist a s tate  that  recognizes only Subseq(sr), and we create a 
t ransi t ion labelled with s i to tha t  state.  

• A t ransi t ion with tha t  symbol already exists. Hence, we use tha t  transit ion,  
and we follow it. Now, f rom tha t  state,  we apply this procedure recursively. 

Then,  in the worst case, Is I - 1 states are created (less, if we have common 
suffixes). Hence, the size of the new DASG is at most  

States(S U (s}) <_ States(S) + 14-  

Using the inductive hypothesis,  we have 

States($ O {s}) < n -  n + 2 + I s f -  1 = (n + fst) - (L + 1) + 2 

as claimed. 
The bound  in the number  of edges is obtained using the fact tha t  N - L + 1 

states have transit ions,  and tha t  the  number  of transit ions per s tate  is bounded  

b y c .  m 

The bound  is tight on the number  of states, because if all the symbols are 
different, n - L + 2 states and O(n2/L) transit ions are needed. 

For this case, it is not  possible to use the encoding technique of the  previ- 
ous section. I f  not ,  it would be possible to solve the LCS problem (L = 2) in 
O ( n l o g  n) comparisons for an arbi t rary  alphabet.  This is a contradict ion with 
the O(n ~) lower bound  in the comparison model  presented in [2]. Therefore,  the 
size of the  DASG must  be O(n  2) for this case. In fact,  the encoding technique 
fails for this case, because now we have more than  one skeleton. 

The only s t ructure  tha t  resembles our au toma ton  is the ICS tree of Hsu and 
Du [6], which is used to solve the LCS problem for a set of  strings. In tha t  case, 
only ma tched  points between all the  strings are considered. 
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Now, we will present  the  ma in  ideas beh ind  the  a lgor i thm tha t  builds the  
DASG for this case. The  a lgor i thm mus t  find, very efficiently, all possible different 
symbols  at  any state .  For this,  we first bui ld  the  DASG (first version given) 
for each indiv idua l  string. W i t h  this,  for each string,  we can find all different 
symbols  after a given posi t ion.  The  a lgor i thm recursively generates  s tates  unt i l  
all possible symbols belongs to  one str ing (or there  are no  more  symbols  left in 
t ha t  posi t ion) .  After  tha t ,  the  individual  DASG is used.  To keep t rack of how 
m u c h  of  this DASG we have used we have a list of L posi t ions D tha t  indicates 
f rom where the  DASG of  each str ing is already available. 

To find if a r ight  set has been already genera ted  we need two s t ructures .  Firs t ,  
a s t ruc ture  tha t  maps  c o m m o n  suffixes to one representat ive.  For this we use a 
suffix tree of the  strings (using O(n) space and t ime).  Second, to  r emember  all 
the  r ight  sets (part ia l  results)  we use a dic t ionary tha t  given a r ight  set tell us 
where it is or if does not  exist. 

T h e  a lgor i thm is: 

1. Crea te  the  last s ta te  F .  

2. Create  the  r ight  set r emember  dict ionary,  inser t ing the  e m p t y  r ight  set and  
its associated s ta te  F .  

3. Initialize Dj  = Isit for j = 1, ..., L. 

4. Set up the table of representat ives.  

5. Create  the DASG for each string (DASGi) using F as c o m m o n  last state.  

6. Call Merge with  pairs (j ,  1) for j = 1, ..., L. Merge will r e tu rn  the ini t ial  
s tate.  

7. Remove  the  first D i - 1 states of each DASGj. 

T h e  procedure  Merge does almost  all the  work, merg ing  the  strings f rom 
pos i t ion  i j  for all j in the set of pairs P .  Namely:  

1. I f  IP1 = 0 then  r e tu rn  s ta te  F (no symbols left). 

2. Else look up  on the  r ight  set r emember  s t ructure .  I f  it is there,  r e tu rn  the  
appropr ia te  s tate .  

. Else if IPI = 1 then  we can use the individual  DASG (or a copy of it). Let 
j be the  pos i t ion  different to 0. Re tu rn  s ta te  i i of DASG i and i f i  i < Di, 
set ii  as the  new value of D i.  
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4. Otherwise 

(a) Create a new state N 

(b) Insert P in the right set remember structure, and its associated state 
N. 

(c) Look for all different symbols in state ij of DASG i for all values o f j  
in P.  For each new symbol x, create a transit ion labeled by x between 
state N and the state returned from Merge called with pairs Q, where 
Q is defined as the pairs in P with all the positions upda ted  to 5(ii, x), 
where 5 stands for the transit ion function. If  5(ij ,  x) does not  exist, 
or is the state F ,  we remove the pair corresponding to string j .  

(d) Return  state N. 

Step (b) takes time O(logStates($)) = O(Llogn) and we need a bit of care 
in step (c). To look for all different symbols defined by the set of positions P,  
we assume that  there is a lexicographical order between the symbols, and that  
the edges of each DASGj are ordered. Then, we can look all the edges in t ime 
proport ional  to the number  of edges to obtain all possible different symbols. If d 
is the number  of different symbols, then at most  Ld edges are inspected. Because 
d edges will be then generated, the t ime used is proport ional  to L for each new 
state created. At the same time that  we inspect the edges, we build the new set 
of pairs Q. The size of the stack is at most L max~(Isil) = o(nn) .  

The t ime for each call to merge in the worst case is then O(Llogn). There 
are as many calls to merge as matches between the strings (or edges created 
by Merge). The construction of the individual DASGs takes t ime O ( ~  i ]sl] 2) 
and the construction of the table of representatives takes t ime and space O(n). 
Hence, the total  t ime is o(nIEdges($)] log n + n2/L). This leads to the following 
theorem: 

THEOREM 5.2 It is possible to construct the DASG for a set of L strings using 
O(Ln21ogn) worst case time and O(n 2) space for arbitrary alphabets, or using 
O(LIEInlogn ) worst case time and O((L + IEI)n) space for finite alphabets. 

The time to test membership o fa  subsequence s is in the worst case O(Is [ log c), 
and O(ls[) for small alphabets by using an array in each state. For arbitrary al- 
phabets ,  we can achieve O(lsl) average t ime by using a hashing table. 

5 . 1  A n  A p p l i c a t i o n :  T h e  L o n g e s t  C o m m o n  S u b s e q u e n c e  

Additionally to fast searching of subsequences in a text or a set of strings, we 
can also use the DASG to solve the longest common subsequence problem, and 
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some of its variants. For that  purpose, we append to each edge (transition) the 
number  of strings that  are represented by that  edge. Then,  to know which is 
the longest common subsequence problem between k < n strings, we search for 
the longest sequence of edges belonging to k or more strings. The LCS of all the 
strings is when k = n. This LCS can also be computed while the au tomaton  is 
being built.  In  all these cases, we find all common subsequences in optimal  time. 

Hence, the DASG can be used to solve the LCS problem and many variants 
of it in t ime O(n 2 log n) using O(Ln 2) space. This improves over the solution 
presented in [6] that  uses O(nc + LclPI) t ime and O(nc + IP]) space, where [PI 
is the total  number  of matched points between all the strings. Because ]P] may 
be as big as O(n2), this algori thm runs in O(n  3) worst case t ime for arbitrary 
alphabets (O([Eln 2) for finite alphabets) using O(n 2) space. 

6 Conc luding  Remarks  

We define the DASG of a text,  giving different algorithms to build it. If the alpha- 
bet is known and finite, the DASG presented in section 3 uses only O(n log  [~1) 
space and preprocessing time, and O(Is I log I~I) searching t ime for a subsequence 
s. To achieve this, we have introduced encoding as a technique to reduce the 
number  of transitions in an automaton.  

For arbitrary alphabets,  the implicit representation of section 4 uses only 
O(n) space, but  O(ls]logn ) searching time. 

We used the number  of transitions to measure the size of an automaton,  and 
this problem shows that  a minimal  state au tomaton  is in general not a minimal  
space automaton.  

Remains as open problems the uniqueness of the minimal  DASG and the 
complexity of transit ion function minimization in a DFA for a general case. 

A related problem, is to search for a sequence of substrings. Using a Patricia 
tree [8], where each internal node have an ordered list of all the positions associ- 
ated to the corresponding prefix, we can solve this problem in logarithmic time, 
using O(nlogn) space on average, for a text of size n. 

We extended the definition of the DASG to a set of strings, and we use it to 
solve the LCS problem between those strings, and several variations of it using 
O(n 2 log n) t ime and O(n  2) space improving previous solutions for the case of 
more than  two strings. Other application of this DASG is related to subset 
membership problems. 
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