
The Subsequence Graph of a Text
(Prel iminary version)

Ricardo A. Baeza- Yates
D a t a S t r u c t u r i n g G r o u p

D e p a r t m e n t of C o m p u t e r Sc ience

U n i v e r s i t y of W a t e r l o o
W a t e r l o o , O n t a r i o , C a n a d a N 2 L 3G1 *

A b s t r a c t

We define the directed acyclic subsequence graph of a text as the small-
est deterministic partial finite automaton that recognizes all possible subse-
quences of that text. We define the size of the automaton as the size of the
transition function and not the number of states. We show that it is possi-
ble to build this automaton using O(n log n) time and O(n) space for a text
of size n. With this structure, we can search a subsequence in logarithmic
time. We extend this construction to the case of multiple strings obtaining
a O(n21ogn) time and O(n 2) space algorithm, where n is the size of the
set of strings. For the later case, we discuss its application to the longest
common subsequence problem improving previous solutions.

1 I n t r o d u c t i o n

Given a text , a subsequence of tha t text is any string such that its symbols appear
somewhere in the text in the same order. Subsequences arise in da ta processing
and genetic applications, being the longest common subsequence problem (LCS)
the most impor tan t problem. They are used in da ta processing to measure the

differences be tween two files of data, and in genetic research to s tudy the s t ructure

of long molecules (DNA).
The first interesting question to answer, is the membership problem. That

is, if a given string is a subsequence of another string. This can be expressed
as a regular expression (see [1] for the s tandard notat ion) . For example, if the

*This work was supported by the Institute of Computer Research of the University of Wa-
terloo and by the University of Chile.

105

subsequence is xlx2" "xr, and t is the text, then the problem may be expressed
as

t E O'x1 O'x2 0"... O*xr O* ?

where 0 is the don' t care symbol and * the star operator or Kleene closure.
Clearly, we can answer this question in linear time. However, we are interested
in answer this question in optimal time, by allowing the text to be preprocessed.

A natural question is which is the size of the deterministic finite au tomaton
that given a text, recognizes any possible subsequence of that text. We allow
the au tomaton to be partial, that is, each state need not to have a transit ion on
every symbol. As all the states of this au tomaton are accepting, it can be viewed
as a directed acyclic graph, which we call the Directed Acyclic Subsequence
Graph (DASG). This problem is analogous to the Directed Acyclic Word Graph
(DAWG) in where we are interested in subsequences instead of subwords [3].

In section 2 we introduce the DASG, and in section 3 we show how to build it
in O(n log n) t ime and space for arbitrary alphabets, and in O(n log tZI) t ime and
space for finite alphabets, where Z denotes the alphabet. Wi th this structure, we
can test membership in O(Is I logn) time for arbitrary alphabets and O(Is]) t ime
for finite alphabets, where s is the subsequence that we are testing. One interest-
ing thing to point out is that the DAWG recognizes all possible O(a 2) subwords
using O(n) space, while the DASG recognizes all possible 2" subsequences us-
ing O (n l o g n) space. In section 4 we show that is possible to reduce the space
required to O(n), but having a O(tsllogn) searching t ime for any alphabet.

In section 5 we extend the DASG to the case of multiple strings and we use
it to solve the longest common subsequence problem and variations of it [2]. Our
algori thm improves upon previous solutions of this problem for more than two
strings, running in time O(n21ogn) using O(n 2) space. Previous solutions to
the general case used O(n L) t ime and space for L strings [7] by using dynamic
programming, or O(n 3) t ime and O(n 2) space [6] using an approach similar to
the one developed in this paper.

2 Bui ld ing the D A S G

We can define the DASG recursively in the size of the text. The DASG of a text
of size n must recognize all possible subsequences of the last n - 1 symbols of the
text, and all possible subsequences that start with the first symbol . As a regular
expression this is:

8 , ~ = (¢ + t l) S ~ _ 1 and S 0 = ¢

w h e r e , is the empty word and t = t i t2" .t,, is the text. The size of the regular
expression 8~ is linear on n, and so is the non-deterministic finite au tomaton

106

equivalent to S, . Suppose that all the symbols of the text are different. The
"deterministic" version of Sn for this case is

S , = e + q S,,-1 + t2S,,-2 + . . . + t,, So

Clearly, the size of Sn is O(n2). Figure 1 shows the DASG for the text abcd. This
au tomaton has n + 1 states (all of them are final states) and n(n+ 1)/2 transitions.
The number of states is minimal because we have to recognize the complete text
(the longest subsequence). The number of edges (given the minimal set of states)
is also minimal, because in the posit ion i of the text we have to recognize any
subsequence start ing with t i for j = i + 1, ..., n. It is not difficult to generalize
this for the case of repeated symbols.

c

d

Figure 1: Minimal state DASG for the text abcd.

D e f i n i t i o n : Let Z be the alphabet. We define the effective size of Z as c =

min(l~l , n).

To build the DASG in O(cn) t ime and space we use an incremental algori thm
scanning the text from the right to the left. At each step we mainta in a dictionary
that contains all different symbols of the already scanned text, and the state in
which the first skeleton transit ion labeled with that symbol appears. Hence, the
a lgori thm is

1. Create state sn and create an empty dictionary D.

2. For each symbol in the text ti scanning from the right to the left do:

(a) Create state si-1.

107

(b) Insert the pair (ti, i - 1) in D. If ti is already in D, its associated state
is upda ted to i - 1.

(c) For each symbol in D (di) , append a transit ion labeled with dj to
state sk+l, where k is the state associated to dj in D.

Step (a) takes constant time. The insertion, step (b), can be performed in
logc t ime, because the size of D is O(e). For the same reason, step (c), the
traversal of D takes O(c) time. The cycle is performed n times. Then, the total
t ime is O(n(c + log c)). If we apply the same algori thm scanning the text from
the left, we obtain the DASG of the reversed text. For this DASG, we can test
the membership of a subsequence s using s reversed.

A membership query in this DASG takes O([sllogc) t ime, where the logc
t e rm is the t ime to search for the appropriate transit ion in each state. Using
a complete table for small alphabets, a O([s[) worst case t ime is achieved. For
larger alphabets, we can obtain O([s]) average t ime by using hashing.

3 T h e S m a l l e s t A u t o m a t o n

It is possible to reduce the t ime and space requirements? The answer is yes. The
main problem is that the number of edges is O(n 2) while the number of states is
linear. Here we are not interested in the minimal set of states, we are interested
in minimal space and that means a minimal number of edges. In other words, the
smallest transition .function for the automaton. To the best of our knowledge,
this is first t ime that such concept is given.

D e f i n i t i o n : The smallest deterministic partial finite au tomaton A that recog-
nizes the regular language L(r) defined by the regular expression r, is such that
does not exist other au tomaton that recognizes L(r) with less transitions than
A.

We shall show that minimal number of states it is not, in general, equivalent
to the smallest automaton. In [3] is claimed that the DAWG is the smallest
au tomaton tha t recognizes all the subwords of a text. However, they show that
is the smallest in the sense of minimal number of states. Intuitively, the DAWG
may be the smallest automaton, because the number of states and the number of
edges only differ in n + O(1). In our problem, it is not the case, and we introduce
a me thod that we call encoding, since it basically encodes the alphabet used.

To achieve the previous goal we will balance the number of states and the
number of edges. For that we encode each symbol using k < e digits. This means
log k c digits per symbol. Hence, our skeleton will have O(n log k e) states, each
one with at most k edges. Then, the total space is O(nklog k e).

108

Intuitively, what happens is that the encoding permits to share transitions.
We can see this by noting that the skeleton representing a symbol has k transi-
tions times all the transitions of a skeleton one state short. That is

T. = kT.-1

and T1 = k. But the length of the skeleton for each symbol is log k c. Thus,
T(log~ c) = k l°gkc = c different transitions per state. That is, the number of
transit ions per state in the O(cn) DASG. Note that each transi t ion in the previous
version of the DASG, is simulated by the encoded DASG in O(log c) steps.

The opt imal choice for k is 3. However, for practical obvious reasons we want
an integer power of two. In that case, the best integer choices are 2 and 4. Thus,
using k = 2 (typically most inputs are already encoded in binary) we have at
least 2 edges per state and n[log 2 c] + 1 states. Of these states, n + 1 are final.
However, we do not have to distinguish them, because any input must be of
length multiple of [log 2 c]. This leads to the following theorem:

THEOREM 3.1 The smallest deterministic partial finite automaton that recog-
nizes all possible subsequences of a text of size n over an alphabet of effective size
c, has at most nIlog2c] + 1 states and at most (2 n - ([log2 c 1 + 1)/2)[log2c]
transitions.

P r o o f : It is only necessary to prove the result in the number of edges. Clearly,
any state has at most 2 edges. However, the last state has no transitions and
the previous [log 2 c 7 states only can have 1 transit ion because they represent the
last symbol. For the same reason, the skeleton representing the symbol n - i has
at most i states with 2 transitions for any i < [log 2 c]. •

These upper bounds can be slightly improved using k = 3. This result is
optimal, because the length of the encoded text is O(n logc) , and then we need
at least O(n log 2 c) transitions to recognize the complete text (the longest subse-
quence).

Figure 2 shows the encoded version for the text abed. This DASG does not
have less transitions that the one presented in Figure 1. However, this only
happens for small n or periodic strings (for example an).

Again, to construct this version of the DAS G, we use an incremental algori thm
scanning from the right to the left. Now, we need two auxiliary structures.
One that given a symbol tell us its encoding (encoding dict ionary/funct ion) and
another that given a prefix of a symbol code, returns the posit ion of the first
symbol (in the previously scanned text) with that prefix (analogous to the D
dictionary of the previous algorithm). For the last data structure we use a binary

109

1

1 a = 0 0 , b = 01, c = 10, d = 11

Figure 2: DASG for the text abcd (encoded).

trie (for example a Patr icia tree [8]), where in each node we store the position
(state) needed. Let b be I1og2 el. If c is not known in advance, we may use c = n
or we compute it using O(n log c) time. The detailed steps of the algori thm are:

1. Create state snb+l and create an empty binary trie D.

2. For each symbol in the text ti scanning from the right to the left do:

(a) Set the root as the actual posit ion in D.

(b) Create state s(i-1)b.

(c) Encode ti.

(d) For every bit x i (0 or 1) in the encoding of tl do:

i. Create state s(i-1)b+i if j < b.

ii. Append a transit ion labeled x i between states s(i-1)b+i-z and

S(i-1)b+i"
iii. If the ~j (complement of xi) child of the current trie node exist,

append a transit ion labeled xi from state S(i_l)b+ 1 to state k where
k is the state stored in the child.

iv. Set the xi child of the current trie node as the new posit ion in D
and update its value (state) to (i - 1)b + j . If the child does not
exist, we create it.

All the steps in the internal loop takes constant t ime, and the internal loop
is repeated nb times. Hence, the total t ime is O(nlogc). The extra space is
O(clogc) for the trie and O(nlogc) for the encoding structure (if we do not have
a function or table). This leads to the following theorem:

THEOREM 3.2 It is possible to construct the DASG of a text of size n using
O (n log n) worst case time and space for arbitrary alphabets, and using 0 (n log []~[)
worst case time and space for finite alphabets.

110

In practice the implementa t ion is very simple. We need two words for each
state (the 2 possible transit ions), and we need nb+ 1 states (contiguous space)
for the whole au tomaton .

A membership test of a subsequence s is answered in O(Is I log 2 c) t ime (the
t ime to encode the subsequence plus the the t ime to answer the query). Ad-
dit ionally to the DASG we may have to main ta in a s t ructure or a function to
encode each symbol. This at most requires O(nlogc) space. In practice this is
not needed, since most inputs are already encoded in b inary (e.g. ASCII). By
keeping all the states visited during the search we can obtain where the subse-
quence s ta r ted and where it finished.

The previous result proves the following (almost obvious) lemma:

L e m m a 3.1 The minimal state (partial) DFA and the minimal transition (par-
tial) DFA are not equivalent.

The l emma is also t rue for non-par t ia l DFAs because the space complexities
for our problem are the same for this case. The meaning behind this l emma is
tha t to share par t of a t ransi t ion function in 2 "similar" states we need addit ional
states. Encoding is one technique to share states. However, it is possible tha t
the general problem of finding the smallest t ransi t ion funct ion is NP-complete
based on re la ted problems presented in [4,5]. Fur ther research is being done in
this problem and in local techniques to minimize space in finite au tomata .

The next l emma gives a necessary condition to have an encoding tha t may
reduce the size of the au tomaton:

I, e m m a 3.2 Given a minimal state partial DFA with s states, where so of them
do not have outgoing transitions, and t transitions, then encoding may reduce the
size of the automaton o n l y / f t > 2(s - so).

P r o o f : If we apply encoding, each state is at least t ransformed in 2 states. That
means tha t the number of transit ions of the au toma ton of the encoded text is
at least 2(s - so) transit ions, because each new state must have at least one
transi t ion, s - so of the original number of states also must have one transi t ion
and it is not necessary to encode symbols representing states wi thout transitions.
Hence, the new au toma ton may have less transit ions if t > 2(s - So). •

For example, any DAWG such tha t t < 2 s - 2 (So = 1 for this case) cannot
be reduced using encoding. We have not found a single example where t > 2s - 2
for a DAWG. Based in the results presented in [3] we know that t < 3s - 6.

111

4 A L i n e a r S p a c e R e p r e s e n t a t i o n

In section 3 we showed that we can transform the DASG of O(n 2) transitions and
O(n) states, to a DASG with O(nlogn) transitions and states. In this section
we will describe how to simulate the O(n 2) space DASG using only O(n) space,
but log n time per transition, independently of the alphabet size.

Instead of representing the transitions for each state, we will store all the
states associated to the transitions of a given symbol. Let enumerate the states
in the DASG defined in section 2 from 0 to n, or in other words, by using the
position of each symbol in the text. For each symbol x we store, in order, all
states s such that

8(4, x) = s

for any state i (in fact, i < s), where 8 is the transition function. That is, we
store all the positions in the text in where z appears. Let S, be the ordered list
of positions associated to x. To simulate 8(i, x), we look in S, for the minimum
state s in Sz such that s > i. Because the list is ordered, this takes O(logn) time
(a sorted array suffices). To know *there Sz is, we use an auxiliary index that
tells us this information for each z.

Because there are n positions in the text, the space necessary for all the
ordered fists is O(n). The time necessary to construct this representation is
O(nlogn) to sort the lists, and O(nlogc) to build the auxiliary index and to
lookup all the symbols. This leads to the following theorem:

THEOREM 4.1 It is possible to construct an implicit representation of the DASG
of a te~t of size n using O(n) space and O(n log n) worst case time, in where each
transition is simulated in O(log n) steps.

To test membership of a subsequence s, we need O(Is [iogc) time to lookup
each symbol, and O([s] logn) time to simulate the transitions. That is, O(]s] logn)
time, regardless of the alphabet size. Therefore, for finite alphabets we tradeoff
space for search time. Table 1 shows a summary of the space and time complex-
ities.

5 T h e D A S G f o r a S e t o f S t r i n g s

Now we want to solve the following problem: Is a given string a subsequence
of a string in a set of strings? Again, we can express the problem as a regular
expression. To do this, we need first some additional notation.

Let $ be a set of L strings, and si be the i th string of the set. We assume that
no string is a subsequence of any other string (this implies that at least there are

112

DASG I Space I Searching time

Section 2 ne Isl
Section 3 n togc [s[loge
Section 4 n Is I logn

Building time

n c

n log c
n log n

Table 1: Summary of time and space complexities

two different symbols in S). Let n = EL=I tsil be the total number of symbols.
Let T($) be the set of distinct symbols in $ (2 < IT($)t < c = min(IEI, n)).

Def in i t ion : We define (as in [6]) a matched point of $ as a j- tuple of pairs
([il,pl],[i2,p2]...,[ij, pi]) (1 < j < L) which denotes a match of a symbol at
positions Pl in string sil, P2 in string si2, "',Pi in string si t. A matched points is
maximal, if the symbol matched does not appear in the L - j remaining strings.

For example, all the maximal matched points for $ = {aba, aab, bba} are

([1, 1], [2, 1], [3, 3]), ([1, 1], [2, 2], [3, 3]), ([1, 2], [2, 3], [3, 1]),

([1,2],[2,3],[3,2]),([1,3],[2,1],[3,3]), and ([1,3],[2,2],[3,3]).

Def in i t ion : We define the initial maximal matched point (IM($, x)) in the set S
for a given symbol x as the smallest maximal matched point (in a lexicographical
sense) that matches x. That is, the maximal matched point with the smaller
position p~ in each string that belongs to the matched point.

For the previous example, IM(S,a) is ([1,1],[2,1],[3,3]) and IM(S,b) is
([1, 2], [2, 3], [3,1]).

We denote by R(S, matched point) (right set) the set of non null substrings
that axe to the right (higher positions) of a matched point (we also eliminate any
substring that is a subsequence of other substring). For the previous example,
R(S, IM($, a)) = {ba, ab}. Now, the regular expression that defines all possible
common subsequences of $ is recursively defined by

Subseq($)= ~ tiSubseq(R(S,IM(S,ti)))
t~eT(S)

and Subseq((3) = e. This definition generates the subsequence automaton, and
then allow us to count the number of states and edges needed by this automaton:

States(S) < 1 + ~ States(R(S,IM(S,ti)))
t,ew(S)

113

and
Edges(S) < [T($)! + ~ Edges (R(S , I M (S , t i)))

QET(S)

Both results are not equalities, because identical right sets may appear (dupli-
ca ted par t ia l results). An example is given in Figure 3.

b f(-'-,~ c

e "".c~

-

- - - 'd ' t ransit ions ~ ~

d

Figure 3: DASG for the strings abcd and bade.

THEOREM 5.1 The D A S G of a set of L strings of size n over an alphabet of
effective size c has at most n - L + 2 states and at most (N - L + 1)c edges.

P r o o f : We use induct ion on the number L of strings. F rom section 2, the
theorem is t rue for L = 1 (n + 1 states are necessary and sufficient).

Now, we will see what happens when we t ry to include a new string s in a
DASG of a set $ of L strings of size n. We will show that for each posi t ion in
s (except one) we need to create at most one state. If we create a s ta te for a
t ransi t ion labelled wi th sy, we mark tha t posi t ion j in the string. We show that if
posi t ion j has been marked, then there exists a s ta te tha t recognizes Subseq(s l)
and nothing else, where s I = s/+l.. .sls I. Note that the last posi t ion will be never
marked, because Subseq(e) exists already in the DASG of $ (last filial s ta te or
sink state) .

114

Then, for each posit ion j in s (the order is not impor tan t) we need a t ransi t ion
f rom the initial s tate labelled with tha t symbol (si). For the last position, if
there is no t ransi t ion f rom the initial s tate labelled with tha t symbol, we create
a t ransi t ion f rom the initial s tate to the sink state. For the o ther positions, we
have three cases:

• A t ransi t ion with tha t symbol does not exist and posit ion j + 1 has never
been marked. In this case we create a new transi t ion labelled wi th tha t
symbol to a new state, and we mark tha t position. From, this s tate we
apply this procedure recursively on the new state for the string s I. Note,
tha t this new state will recognize only Subseq(sl).

• A t ransi t ion does not exist, but posit ion j + 1 has been marked. There-
fore, there exist a s tate that recognizes only Subseq(sr), and we create a
t ransi t ion labelled with s i to tha t state.

• A t ransi t ion with tha t symbol already exists. Hence, we use tha t transit ion,
and we follow it. Now, f rom tha t state, we apply this procedure recursively.

Then, in the worst case, Is I - 1 states are created (less, if we have common
suffixes). Hence, the size of the new DASG is at most

States(S U (s}) <_ States(S) + 14-

Using the inductive hypothesis, we have

States($ O {s}) < n - n + 2 + I s f - 1 = (n + fst) - (L + 1) + 2

as claimed.
The bound in the number of edges is obtained using the fact tha t N - L + 1

states have transit ions, and tha t the number of transit ions per s tate is bounded

b y c . m

The bound is tight on the number of states, because if all the symbols are
different, n - L + 2 states and O(n2/L) transit ions are needed.

For this case, it is not possible to use the encoding technique of the previ-
ous section. I f not , it would be possible to solve the LCS problem (L = 2) in
O (n l o g n) comparisons for an arbi t rary alphabet. This is a contradict ion with
the O(n ~) lower bound in the comparison model presented in [2]. Therefore, the
size of the DASG must be O(n 2) for this case. In fact, the encoding technique
fails for this case, because now we have more than one skeleton.

The only s t ructure tha t resembles our au toma ton is the ICS tree of Hsu and
Du [6], which is used to solve the LCS problem for a set of strings. In tha t case,
only ma tched points between all the strings are considered.

115

Now, we will present the ma in ideas beh ind the a lgor i thm tha t builds the
DASG for this case. The a lgor i thm mus t find, very efficiently, all possible different
symbols at any state . For this, we first bui ld the DASG (first version given)
for each indiv idua l string. W i t h this, for each string, we can find all different
symbols after a given posi t ion. The a lgor i thm recursively generates s tates unt i l
all possible symbols belongs to one str ing (or there are no more symbols left in
t ha t posi t ion) . After tha t , the individual DASG is used. To keep t rack of how
m u c h of this DASG we have used we have a list of L posi t ions D tha t indicates
f rom where the DASG of each str ing is already available.

To find if a r ight set has been already genera ted we need two s t ructures . Firs t ,
a s t ruc ture tha t maps c o m m o n suffixes to one representat ive. For this we use a
suffix tree of the strings (using O(n) space and t ime). Second, to r emember all
the r ight sets (part ia l results) we use a dic t ionary tha t given a r ight set tell us
where it is or if does not exist.

T h e a lgor i thm is:

1. Crea te the last s ta te F .

2. Create the r ight set r emember dict ionary, inser t ing the e m p t y r ight set and
its associated s ta te F .

3. Initialize Dj = Isit for j = 1, ..., L.

4. Set up the table of representat ives.

5. Create the DASG for each string (DASGi) using F as c o m m o n last state.

6. Call Merge with pairs (j , 1) for j = 1, ..., L. Merge will r e tu rn the ini t ial
s tate.

7. Remove the first D i - 1 states of each DASGj.

T h e procedure Merge does almost all the work, merg ing the strings f rom
pos i t ion i j for all j in the set of pairs P . Namely:

1. I f IP1 = 0 then r e tu rn s ta te F (no symbols left).

2. Else look up on the r ight set r emember s t ructure . I f it is there, r e tu rn the
appropr ia te s tate .

. Else if IPI = 1 then we can use the individual DASG (or a copy of it). Let
j be the pos i t ion different to 0. Re tu rn s ta te i i of DASG i and i f i i < Di,
set ii as the new value of D i.

116

4. Otherwise

(a) Create a new state N

(b) Insert P in the right set remember structure, and its associated state
N.

(c) Look for all different symbols in state ij of DASG i for all values o f j
in P. For each new symbol x, create a transit ion labeled by x between
state N and the state returned from Merge called with pairs Q, where
Q is defined as the pairs in P with all the positions upda ted to 5(ii, x),
where 5 stands for the transit ion function. If 5(ij , x) does not exist,
or is the state F , we remove the pair corresponding to string j .

(d) Return state N.

Step (b) takes time O(logStates($)) = O(Llogn) and we need a bit of care
in step (c). To look for all different symbols defined by the set of positions P,
we assume that there is a lexicographical order between the symbols, and that
the edges of each DASGj are ordered. Then, we can look all the edges in t ime
proport ional to the number of edges to obtain all possible different symbols. If d
is the number of different symbols, then at most Ld edges are inspected. Because
d edges will be then generated, the t ime used is proport ional to L for each new
state created. At the same time that we inspect the edges, we build the new set
of pairs Q. The size of the stack is at most L max~(Isil) = o(nn) .

The t ime for each call to merge in the worst case is then O(Llogn). There
are as many calls to merge as matches between the strings (or edges created
by Merge). The construction of the individual DASGs takes t ime O (~ i]sl] 2)
and the construction of the table of representatives takes t ime and space O(n).
Hence, the total t ime is o(nIEdges($)] log n + n2/L). This leads to the following
theorem:

THEOREM 5.2 It is possible to construct the DASG for a set of L strings using
O(Ln21ogn) worst case time and O(n 2) space for arbitrary alphabets, or using
O(LIEInlogn) worst case time and O((L + IEI)n) space for finite alphabets.

The time to test membership o fa subsequence s is in the worst case O(Is [log c),
and O(ls[) for small alphabets by using an array in each state. For arbitrary al-
phabets , we can achieve O(lsl) average t ime by using a hashing table.

5 . 1 A n A p p l i c a t i o n : T h e L o n g e s t C o m m o n S u b s e q u e n c e

Additionally to fast searching of subsequences in a text or a set of strings, we
can also use the DASG to solve the longest common subsequence problem, and

117

some of its variants. For that purpose, we append to each edge (transition) the
number of strings that are represented by that edge. Then, to know which is
the longest common subsequence problem between k < n strings, we search for
the longest sequence of edges belonging to k or more strings. The LCS of all the
strings is when k = n. This LCS can also be computed while the au tomaton is
being built. In all these cases, we find all common subsequences in optimal time.

Hence, the DASG can be used to solve the LCS problem and many variants
of it in t ime O(n 2 log n) using O(Ln 2) space. This improves over the solution
presented in [6] that uses O(nc + LclPI) t ime and O(nc + IP]) space, where [PI
is the total number of matched points between all the strings. Because]P] may
be as big as O(n2), this algori thm runs in O(n 3) worst case t ime for arbitrary
alphabets (O([Eln 2) for finite alphabets) using O(n 2) space.

6 Conc luding Remarks

We define the DASG of a text, giving different algorithms to build it. If the alpha-
bet is known and finite, the DASG presented in section 3 uses only O(n log [~1)
space and preprocessing time, and O(Is I log I~I) searching t ime for a subsequence
s. To achieve this, we have introduced encoding as a technique to reduce the
number of transitions in an automaton.

For arbitrary alphabets, the implicit representation of section 4 uses only
O(n) space, but O(ls]logn) searching time.

We used the number of transitions to measure the size of an automaton, and
this problem shows that a minimal state au tomaton is in general not a minimal
space automaton.

Remains as open problems the uniqueness of the minimal DASG and the
complexity of transit ion function minimization in a DFA for a general case.

A related problem, is to search for a sequence of substrings. Using a Patricia
tree [8], where each internal node have an ordered list of all the positions associ-
ated to the corresponding prefix, we can solve this problem in logarithmic time,
using O(nlogn) space on average, for a text of size n.

We extended the definition of the DASG to a set of strings, and we use it to
solve the LCS problem between those strings, and several variations of it using
O(n 2 log n) t ime and O(n 2) space improving previous solutions for the case of
more than two strings. Other application of this DASG is related to subset
membership problems.

A c k n o w l e d g e m e n t s

We wish to thanks the helpful comments of Gaston Gonnet.

118

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Aho, A., Hopcroft, J. and Ullman, J. The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Aho, A., Hirschberg, D. and U]]man, J. "Bmmds on the Complexity of the
Longest Common Subsequence Problem", JACM 23 (1976), 1-12.

Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., and
Seiferas, J. "The Smallest Automaton Recognizing the Subwords of a Text",
Theoretical Computer Science, 40 (1985), 31-55.

Garey, M. and Johnson, D. Computers and Intractability, A Guide to the
Theory of NP-Completeness, Freeman, New York, 1979.

Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1969.

Hsu, W. and Du, M. "Computing a longest common subsequence for a set
of strings", BIT 24 (1984), 45-59.

Itoga, S. "The string merging problem", BIT 21 (1981), 20-30.

Morrison, D. "PATRICIA-Practical algorithm to retrieve information coded
in alphanumeric", JACM 15, 4 (Oct 1968), 514-534.

