
Completion Procedures as 
Transition Rules + Control 

Pierre LESCANNE* 
Centre de Recherche en Informatique de Nancy 

LORIA 
Campus Scientifique, BP 239, 

54506 Vando2uvre-l~s-Nancy, France 
email:  l escanne@poincare .c r in . f r  

Abs t rac t  

A description of the completion of a set of identities by a set of inference rules has 
allowed recent progresses in proving its completeness. But there existed no attempt 
to use this description in an actual implementation. This paper shows that this is 
feasible using a functional programming language namely CAML. The implementation 
uses a toolkit, a set of transition rules and a short procedure for describing the control. 
A major role is played by the data structure on which both the transition rules and 
the control operate. Three versions of the classical Knuth-Bendix completion and two 
versions of the unfailing completion are proposed. 

1 C o m p l e t i o n  p r o c e d u r e s  as sets  of  t rans i t ions  r u l e s  

The interest of rewriting techniques in programming, algebraic and computer algebra spec- 
ifications is well-known as is its ability to provide proof environments essentially based on 
completion procedures [FG84,GG88,KS83,Fag84,Les83]. In this introduction, I suppose the 
reader is familiar with this concept. Indeed my goal is not to present it, but  to study how 
methods developed essentially with a theoretical purpose, namely proving completeness can 
be used to present simple short and understandable programs. This paper can also be seen 
as a set of exercises on the use of a functional language to program high level procedures 
and as a bridge between theory and practice. Readers who want to get more introduc- 
tory informations are invited to look at Appendix A or to Dershowitz survey Completion 
and its Applications [Der87]. The completion procedure is a method used in equational 
logic to built from a set of identities an equivalent canonical set of rewrite rules i.e., a 
confluent, noetherian and interreduced set of rules used to compute normal forms. If  one 
tracks the history of the presentation of this procedure, one can notice different methods 
of description. In their seminal paper [KBT0] Knuth and Bendix describe essentially the 
procedure in natural  language (see Appendix B), in [Hue80] Huet uses a style similar to 
Knuth 's  book, The Art of Computer Programming, in [Hue81] he uses a program structured 
by while loops, in [Kir84] H. Kirchner uses a recursive procedure and in [For84] Forgaard 
proposes an organization of the procedure around tasks to be performed. In the following, a 

*The research was sponsored by PRC "programmation avanc~e et outfls de l'inteUigence artificielle", 
CNRS and INRIA 



29 

completion will be seen as a set of inference rules or more precisely a set of transition rules 
acting on a data structure. The idea of using inference rules when dealing with completion 
is not new and leads to the beautiful proofs of completeness proposed by Bachmair and 
Dershowitz [Bac87,BDH86,BD87] and their followers [GKK88,Gan87]. The completeness is 
the ability of the procedure to eventually generate a proof by normalization or a rewrite 
proof for every equational theorem. In this paper, I want to show how this description leads 
to actual, nice and elegant programs when used as a programming method and I illustrate 
that  by an actual CAML implementation [FOR87b]. Appendix C gives the basic notions 
that  are useful to understand the programs. Actually the inference rules one considers in 
completion are specific in the sense that  they transform a t-uple of objects into a t-uple of 
objects with the same structure. This is why I refer to them as transition rules. Thus the 
basic components of such a procedure are four, 

• a d a t a  s t r u c t u r e  on which the transition rules operate, sometimes called the uni- 
verse, 

• a set  o f  t r a n s i t i o n  ru les ,  that  are the basic operations on the data  structure, 

• a con t ro l ,  that  is a description of the way the transition rules are invoked I, 

• a t oo lk i t  that  is shared by several completion procedures. 

When one wants to describe a specific completion procedure, usually one uses the following 
method. First one chooses the data structure, then one chooses transition rules and often 
at the same time the control. The toolkit is something that remains from one procedure 
to the other in many cases, it was partly borrowed from the "CAML Anthology" [FOR87c] 
as a natural at tempt to reuse pieces of codes already debugged and tested. As we will see 
the control is typically data  driven and can be easily expressed by rewrite rules. In the 
following, the influence of these choices on the efficiency of the procedure will be illustrated 
through three refinements of the Knuth-Bendix completion procedures and a two unfailing 
completions. Indeed, we will see how, starting from a naive implementation of the comple- 
tion, improvements can be obtained by changing the data structure and consequently the 
transition rules and the control. These ideas are implemented in my program ORME. 

2 The N-completion 

In this section, I give a naive implementation of the completion, called the N-completion, 
where N stands for naive. It is already an improvement of the set of rules of Appendix A in 
order to take the computation of critical pairs into account. Its control part is fully given 
in Figure I and its data  structure has three components, namely 

• E is a set of identities, either critical pairs or given identities, 

• T is a set of rules, the non marked rules in Huet's terminology [Hue81], 

• R is a set of rules whose critical pairs have been computed, the marked rules. 

In the procedure, ordering is a parameter which is a relation used to orient the identities into 
rules, by the way it is also a parameter of Orientation. There are three kinds of transition 

1To give a gastronomic comparison [Ore83], the control is the recipe. 



30 

let  rec NCompletion ordering (R,T,E) 
match  (T,E) w i t h  

I,I - >  (R,I,I) 1" s u c c e s s  ,) 

= let COMP = NCompletion ordering in 

( ::),[] - >  COMP (repeat_list [Simplleft T by T;Simplleft T by R; 
Simpl_left l=L_by T;Simpl left R_by R; 
Simpl right T;Simpl_right_R] 

(Deduction(R,T,E))) 

i -,(-::-) - >  let  ( R ' , T ' , E ' )  = repeat list[Remove trivial E;Simpl E](R,T,E) in ,o 

(ma t ch  E '  with  
- >  C O M P ( R ' ; T ' , E ' )  

t (-::-) - >  COMP(Orientation ordering ( R ' , T ' , E ' )  
? fa i lwi th  "non orientable equation"));; 

Figure 1: The N-completion 

rules, their names are taken according to Dershowitz [Der87] (see also Appendix A). De- 
duction computes critical pairs, in this case it computes critical pairs between one rule in T, 
usually the smallest one to be more efficient, and all the rules in R. Orientation chooses an 
identity that  can be oriented by an ordering and produces a rule, if no identity is orientable, 
it fails. This requires an reduction ordering, currently ORME contains an ordering based on 
polynomial interpretations [BL87b], implementing other orderings would not be too difficult 
since the CAML Anthology [FOR87c] contains the recursive path ordering and a CAML 
implementation of the transformation ordering also exists [BL87a,Ga188]. Remove_triviat_E 
removes from E a trivial identity. The rules SimpLteft_T_by_T, SimpLleft_T_by_R etc. sim- 
plify terms in the rules or the identities, repeat_list repeats the application of of a list of 
inference rules until they all fail. The control given in Figure 1 has essentially three steps, 
namely success, when T and E are empty, computing critical pairs after simplification of 
the rules, when E is empty, and orienting an identity into a rule after simplification of the 
identities, when E is not empty. In the orientation part it could happen that by simplifi- 
cation all the identities disappear, in this case one does nothing, that is just translated by 
a recursive call to COMP with the same parameters. The recursive calls mean that one 
restarts the process. The completion terminates with success when E and T are empty. 
The system works as a machine where the identities enter E and proceeds through T and R. 
Its description is therefore really similar to this of an automaton. 

3 The  S-comple t ion  

Another name for rewrite systems is sometime simplifying systems and the theory of rewrite 
systems is a theory of simplification, that  could be applied to many fields other than com- 
puter algebra or software specification. Therefore the main aim of orienting identities is to 
use them to simplify whenever it is possible. But as noted by Hsiang and Mzali [HM88], the 
N-completion makes a bad use of simplification. Indeed a rule is not used for simplification 
as soon as it has been generated. Thus in a better implementation, when an identity is 
oriented into a rule it enters a set S where it is used to simplify all the other identities and 



3] 

let  rec SCompletion ordering (R,T,S,E) = let  COMB = S_Completion ordering in 
m a t c h  (T,S,E) w i t h  

H , [ ] - >  (R,[],[],[]) success 

_,(::),_ - >  (COMP (R ' ,T '@S' ,N,E ' )  
whe re  R ' , T ' , S ' , E '  = 

repeat_list [Simpl left T by S;Simpl right T by S; 
Simplleft R by_S;Simpl right R by_S] (R,T,S,E)) 

(_::_),~,~ - >  COMB (Deduction (R,T,S,E)) 

_,~,(_::) - >  let  ( R ' , T ' , S ' , E ' )  = repeatlist[Remove trivial_E;Simpl E](R,T,S,E) 
in (ma tch  E ~ w i t h  

[] - >  C O M B ( R ' , T ' , S ' , E ' )  
] (_::_) - >  COMB (Orientation ordering ( R ' , T ' , S ' , E ' )  

? faUwlth "non orientable equation"));; 

10 

Figure 2: The S-completion 

rules. In the S-completion, the data  structure is made of four components, 

• E like in the N-completion, 

• S a set of oriented identities or rules that  are used to simplify others identities or rules 
and that  I call the simplifiers, during the completion S contains zero or one rule, 

• T a set of rules already used for simplifying, but whose critical pairs are not yet 
computed, 

• R like in the N-completion. 

The only difference with the N-completion is the set S through which a rule has to go, 
before entering T. The step of simplification is clearly distinguished from the three others. 
It is performed when S is not empty. The completion process ends when there is no more 
identity or rule in E, S and T. 

4 T h e  A N S - c o m p l e t i o n  

The S-completion can still be improved since it computes at the same time the critical pairs 
between all the rules in R and one rule in T. It should be better to compute the critical 
pairs between one rule in R and one rule in T at a time. As previously, S contain the 
simplifiers. In addition, a set C is created to contain one rule extracted from T with which 
critical pairs with rules of R are computed. To keep track of the rules whose critical pairs 
are computed with the rule in C, R is split into two sets A (for _Mready computed) and N 
(for not yet computed). Thus the data  structure contains, 

• E like in the S-completion, 

• S like in the S-completion, 



32 

• T is a set of rules coming from S and waiting to enter C, 

• C is a set that  contains one or zero rule and whose critical pairs are computed with 
one in N, 

• N is the part  of R whose critical pairs have not been computed with C but whose 
critical pairs with A U N have been computed, 

• A is a set whose critical pairs with A U N U C have been computed. 

The transition rules are adapted to work with this new data  structure and three new rules 
are introduced. Deduction computes the critical pairs between the smallest rule in N and 
the rule in C. Internal_Deduction computes the critical pairs obtained by superposiug the 
rule(s) in C on itself (themselves). A_C2N moves the rules in A and C into N to start  a new 
"loop" of computation of critical pairs, according to the emptyness of the components of 
the data  structure. The procedure has now clearly six parts, namely success, simplification, 
orientation, deduction, internal deduction and beginning of a new loop of computation of 
critical pairs. Typically this cannot be easily structured by a while loop because at each time 
the iteration on the computations of the critical pairs can be interrupted by a simplification. 
A data  driven control is then much better  (Figure 3). 

5 The unfailing completion 

The previous method may fail because at certain time no rule can be oriented, this is for 
instance the case if (x • y -= y * x) E E. A method called either unfailing completion or 
unfailing Knuth-Bendix or UKB has been proposed by Hsiang and Rusinowitch [HR87] and 
Bachmair, Dershowitz and Hsiang [BDH86] and is complete for proving equational theorems 
in equational theories. The idea is to refute the equality to be proved, thus variables become 
Skolem constants, terms become ground terms and the equality becomes a disequality i.e., 
a negation of an equality. One does not orient the identities. But because one works with 
an ordering total  on ground terms, one knows that  for any pair of ground terms one can 
tell which one is simpler and therefore one can tell whether a term that  matches a side of 
an identity can be transformed in the other side in a decreasing way. In some sense, these 
new pairs of terms are not rules but "abstract" sets of rules on ground terms. To precise 
the difference with identities and rules, let me propose the word likeness for them. The 
aim of unfailing completion is then to wake confluent the rewrite relation on ground terms 
defined by likenesses. Such a relation which is confluent on ground terms is called ground 
confluent. Although the likenesses are not oriented, one tries however to save generation of 
too many critical pairs by not keeping those of the form (s, t / obtained from a superposition 
u by s ~ u  ~ t  if either u < s or u < t, because this kind of equality will never be 
used for rewriting ground terms. This is what makes this procedure different from classical 
paramodulation.  As a refutation procedure, at each step, an a t tempt  to refute the negation 
of the disequality is performed. The da ta  structure of this naive unfailing completion is a 
follow 

• E is again the set of identities, 

• C is a set that  contains one or zero likenesse and whose critical pairs are computed 
with one in N,  



33 

let rec ANS Completion ordering (A,N,C,T,S,E) = 
let COMP = ANS_Completion ordering in 

match (N,C,T,S,E) with 
-,1,~,[],I - >  (A,N,C,T,S,E) (* success ~') 

I- , - , - , ( - : : - ) , - -> (COMP (A ' ,N ' ,C ' ,T '@S ' , t ,E ' )  
where  A ' ,N ' ,C~,T ' ,S ' ,E  ' = 

repeat list [Simpl_left_A by S;Simpl right A by_S; 
Simpl left N_by S;Simpl right N by_S; 
Simpl left C_by_S;Simpl right C_by_S; 
Simpl left_T by S;Simpl right T by_S] 

(A,N,C,T,S,E)) 

1(} 

...... [],( :: ) - >  let A ' , N ' , C ' , T ' , S ' , E '  = repeatlist[Removetrivial_E; 
Simpl E](A,N,C,T,S,E) in 

(match E'  wi th  
[ ] - >  COMP(A' ,N ' ,C ' ,T ' ,S ' ,E ' )  

I (-::-) - >  COMP(Orientation ordering (A ' ,N ' ,C ' ,T ' ,S ' ,E ' )  
? failwlth "non orientable equatioa")) 20 

(_::_),L],_,H,[] - >  COMP (Deductioa(A,N,C,T,S,E)) 

[] , L] ,_, [] , [] - >  COMP (AC2N crit (Internal_Deduction (A,N,C,T,S,E))) 

_,[],( ::_),[],[] - >  (COMP([],A@N,[r],T',~,I) where  r,T' = least Size T);; 

Figure 3: The ANS-completion 



34 

l e t  r e e  UnfailingCompletion ordering (e,A,N,C,E) = 
le t  COMP = UnfailingCompletion ordering in 

l e t  e '  = Gnormalize ordering (A @ N @ C @ E) e in 
i f  matches < < x  - x > >  e '  

t h e n  (e ' ,A,N,C,E) (~ refutation *) 
e l s e  m a t c h  (N,C,E) w i t h  

_,[],[] - >  (e' ,A,N,C,E) (* end of the completion ~') 

_,[],( :: ) - >  let  ( A ' , N ' , C ' , E ' )  -- Clean E (S i mp l e  ordering 
(Simpl_N ordering (A,N,C,E))))10 

in ( m a t c h  E '  w i t h  
[] - >  COMP ( e ' , A ' , N ' , C ' , E ' )  

I eq :: E "  - >  COMP(e ' ,  F Subsumption ordering ([], A '  @ N ' ,  [eq], E " ) ) )  

(_::),(_::),_ - >  COMP(e ' ,  (Deduction ordering (A,N,C,E))) 

~,[_],_ - >  COMP(e ' ,  (A_C2N (InternalDeduction ordering (A,N,C,E))));; 

Figure 4: The unfailing completion 

* N is a set f likeness whose critical pairs have not been computed with C but whose 
critical pairs with A (J N have been computed, 

- A is a set whose critical pairs with A U N U C have been computed. 

It  should be noticed that  the idea of computing the critical pairs between only two pairs 
at a time is used, but not the idea of putting a high priority to simplification and since 
there is no simplification the identities enter directly C from E. With the disequality to be 
refuted, the procedure has five parameters. The last four ones remind the data structure of 
the classical completion. Obviously, there is no Orientation transition rule, but there are 
Deduction and Internal_Deduction as previously. < <  x ~ x > >  is an external notation for 
the disequality whose both sides are x. There are four steps in this procedure, either success 
or, simplification, or deduction or, the beginning of a new "loop" of computation of critical 
pairs. If one runs this algorithm on examples, one quickly realizes that  many generated 
identities are instances of existing identities or obtained by inserting in a same context sides 
of instances of identities and therefore do not carry new information. Rules Subsumption 
or F_Subsumption remove these useless identities. Subsumption filters the identities that  
matches another one and F_Subsumption tries to remove identities of the form C[s] = C[t], 
where C[ ] is a context, when the identity s = t already exists. Gnormalize takes a ground 
term and returns its normal form using identities. However, when rewriting with identities 
as in refutation care must be taken with variables that can be introduced. The usual solution 
is to instantiate them by a new least constant. 

6 An improved unfailing completion: the ER-completion 

The previous unfailing completion has the advantage of being short and easy to understand. 
However its main drawback is that  it makes no difference between non orientable identities 



35 

and rules. This can be fixed by refining considerably the data structure, using ideas from the 
ANS-completion. The new data structure contains eleven components. They are obtained 
by splitting the corresponding components of the ANS-completion into two parts, a E-part 
and a R-part. 

• E is not changed and is again the set of identities, 

• RS the simplifiers obtained from rules E by orientation, 

• E$ the identities from E that cannot be oriented, they are used in F_Subsumption, 

• RT the R-part of T, 

• ET the E-part of T, 

• RC the R-part of C, 

• EC the E-part of C, 

• RN the R-part of N, 

• EN the E-part of N, 

• RA the R-part of A, 

• EA the E-part of A, 

The transition rules are changed accordingly and one gets a procedure I call the ER-unfailing 
completion (see Figure 5) which performs as a classical completion if all the identities can 
be oriented. The fact that everything which is orientabte is actually oriented is a major 
improvement for the efficiency of the procedure. The structure of the completion procedure 
gets now more complex and requires studies on how to make it more modular. 

7 C o n c l u s i o n  

The main idea of the approach presented here is to decompose the algorithm into basic 
actions and to describe some kind of abstract machine where these actions as the instruc- 
tions. This may remind either Forgaard's description of REVE based on tasks [For84], 
or ERIL IDle85] where users have access to the basic operations or Huet's first descrip- 
tion [HueS0]. The rigorous and formal approach of this paper gives precision and concision 
and leads to a better understanding of the program and therefore to a better confidence. 
Since one is closer to the proof of completeness there are more chance that the implemen- 
tation is both correct and complete. Another important aspect of this approach is that 
modifications and improvements are easily done. Basically this level of programming allows 
to study very high level optimizations [Ben82] and when an efficient procedure is discovered, 
a low level implementation can be foreseen. Here I made many implementation choices that 
still can be discussed, but since they are rather explicit this discussion is easy and changes 
can be quickly made. However, as well illustrated by the ER_completion compared with 
the unfailing completion, it should also be noticed that the complexity of the completion 
procedures described by transition rules increases exponentially with the size of the number 
of components of the data structure, which implies that some kind of modularity has to be 
found. 



36 

le t  tee  Unfailing_Completion ordering (e,((EA,RA,EN,RN,EC,RC,ET,RT,ES,RS,E) as  STATE)) = 
let  COMP = Unfailing_Completion ordering and  ord = ordering in 

le t  e '  = Gnormalize ordering (EA @ EN @ EC @ ET @ ES @ E) e "  
where  e "  = (normalize (RA @ RN @ RC @ RS @ RT) e) in 

i f  matches < < x  x> e '  
t h e n  (print_state "REFUTATION" (e' ,STATE);(e' ,STATE)) (* refutation *) 
else m a t c h  (EN,RN,EC,RC,ET,RT~ES,RS,E) w i th  

.... [],[],[],[],[],[],[] - >  (e' ,STATE) (* end of the completion *) 

. . . . . . . . . . . . .  ( : : ) , _ - >  ( C O M P ( e ' , E A ' , R A ' , E N ' , R N ' , E C ' , R C ' , E T ' , R T ' @ R S ' , E a b , [ ] , E ' )  
whe re  (EA'  ,RA'  ,EN' ,RN' ,EC '  ,RC ' ,ET '  ,RT' ,ES' ,RS' ,E '  ) = Simp by RS (STATE)) 

............ (_::),[],_ - >  ( C O M P ( e , E A ' , R A ' , E N ' , R N ' , E C ' , R C ' , E T '  @ES ~,RT',[] ,RS' ,E')  
whe re  (EA'  ,RA' ,EN ' ,RN' ,EC ' ,RC ' ,ET'  ,RT ' ,ES ' ,RS ' ,E'  ) = 

F Subsume_by ES ord (STATE)) 

............ [],[],( :: ) -> let ((EA',RA',EN',RN',EC',RC',ET',RT',ES',RS', E') 
as STATE') = 

Clean E ord (STATE) in ( m a t c h  E '  w i th  
- >  COMP (e ' ,STATE')  ~o 

] ( : : )  - >  COMP(e' ,Orientation ord (STATE'))) 

-,(-::-),~,L] ..... ~,~,[] - >  COMP(e ' ,  RN RC Deduction (STATE)) 

(-::-),-,0,[-] ..... [],[1,[] - >  COMP(e ' ,  EN_RC Deduction ord (STATE)) 

-,(-::-),L],[] ..... [],[],~ - >  COMP(e ' ,  RN EC Deduction ord (STATE)) 

(_::-),-,L],[] ..... [],[],[1 - >  COMP(e ' ,  EN_EC Deduction ord (STATE)) 

[],~,H,L] ..... [],[],H - >  COMP(e ' ,  A C2N (aCflnternal_Deduction(STATE))) 
30 

[],[],[_],[] ..... [],[],[] - >  COMP(e ' ,  A C2N (EC_Internal Deduction ord (STATE))) 

.... N,~,(-::-),N,[~,[],[]-> (COMP(e',I,N,EA@EN,RA@RN,[e],N,ET',0,[],[],~) 
whe re  e ,ET'  = (least Size ET)) 

.... [],[],[],(_::_),[],[],[] - >  (COMF(e',[],[],EA@EN,RAQRN,[],[r],[],RT',[],[],[]) 
where  r ,RT'  = (least Size RT)) 

. . . .  1 , 1 , ( - : : - ) , ( - : : - ) , 1 , 1 , 1  - >  
le t  r ,RT'  = least Size RT and  e ,ET'  = least Size ET in 
if  Size r < =  Size e 41 
t hen  COMP(e ' ,F  Subsume_by ES ord ([],[],EA@EN,RA@RN,[],[r],ET,RT',[],[],[])) 
e l s e  COMP(e ' ,F  Subsume by_ES ord (N,[],EA@EN,RA@RN,[e],[],ET',RT.~,~,[])) 

Figure 5: The ER unfailing completion 



37 

Another interesting aspect of the programming by transition rules is that simple snap- 
shots exist, therefore the process can easily be stopped after each rule and restarted on this 
state. Thus backtracking on the choice of the orderings as implemented in REVE or any 
kind of backtracking to insure fairness [DMT88]~ backups, breakpoints or integration of an 
already completed rewrite system in another equational theory can be easily handled. 

But this approach does not address low level controls, for instance refinements that 
computes one critical pair at a time. This indeed requires a level of granularity in the 
actions that cannot be handled by the current form of the data structure. Attempts to 
fully formalize all the tasks, including substitutions and unifications should answer this 
question [GS88,HJ88]. 

All the procedures presented in this paper are a part of ORME, a set of CAML proce- 
dures that were run for completing a set of examples. Both the programs and the examples 
can be obtained from the author upon request. 

I would like to thank Leo Bachmair~ Fran~oise Bellegarde, Jieh Hsiang, Jean-Pierre 
Jouannaud, Jean-Luc Remy, Michael Rusinowitch and the EURECA group at CRIN who 
provided me with stimulating discussions, GSrad Huet who gave me access to the CAML 
Anthology and Atain Laville for wise advices on how to use CAML. 

R e f e r e n c e s  

[Bac87] L. Bachmair. Proof methods for equational theories. PhD thesis, University of 
Illinois, Urbana-Champaign, 1987. 

[BD87] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. 
In Proceedings Second Conference on Rewriting Techniques and Applications, 
Springer Verlag, Bordeaux (France), May 1987. 

[BDH86] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In 
Proc. Syrup. Logic in Computer Science, pages 346-357, Boston (Massachusetts 
USA), 1986. 

[Ben82] J .L.  Bentley. Writing Efficient Programs. Prentice HM1, 1982. 

[BL87a] F. Bellegarde and P. Lescanne. Transibrmation orderings. In 12th Coll. on Trees 
in Algebra and Programming, TAPSOFT, pages 69-80, Springer Verlag, 1987. 

[BL87b] A. BenCherifa and P. Lescanne. Termination of rewriting systems by polyno- 
mial interpretations and its implementation. Science of Computer Programming, 
9(2):137-160, October 1987. 

[Der87] N. Dershowitz. Completion and its applications. In Proc. Colloquium on Reso- 
lution of Equations in Algebraic Structures, MCC, 3500 West Balconies Center 
Drive~ Austin, Texas 78759-6509, May 4-6 1987. 

[Dic85] A.J.J. Dick. ERIL equational reasoning: an interactive laboratory. In B. Buch- 
berger, editor, Proceedings of the EUROCAL Conference, Springer-Verlag, Linz 
(Austria), 1985. 

[DMT88] N. Dershowitz, L. Marcus, and A. Tarlecki. Existence, uniqueness and construc- 
tion of rewrite systems. SIAM J. Comput., 17(4):629-639, August 1988. 



38 

[FagS4] 

[FG84] 

[For84] 

[FOR87a] 

[FOR87b] 

[FOR87c] 

[Gal88] 

[Gan87] 

[GG88] 

[GKK88] 

[GS88] 

[HJ88] 

[HM88] 

[HR87] 

[HueS0] 

[HueSl] 

[KB70] 

F. Fages. Le syst~me KB. Manuel de rdfdrence, prdsentation et bibliographie, 
raise en a~uvre. Technical Report, Greco de Programmation, Bordeaux, 1984. 

R. Forgaard and J. Guttag. REVE: A term rewriting system generator with 
failure-resistant Knuth-Bendix. Technical Report, MIT-LCS, 1984. 

R. Forgaaxd. A program for generating and analyzing term rewriting systems. 
Technical Report 343, Laboratory for Computer Science, Massachusetts Institute 
of Technology, 1984. Master's Thesis. 

Projet FORMEL. The CAML Primer. Technical Report, INRIA LIENS, 1987. 

Projet FORMEL. CAML: the reference Manuel. Technical Report, INRIA-ENS, 
March 1987. 

Projet FORMEL. The CAML Anthology. July 1987. Internal Document. 

B. Galabertier. Impldmentation de l'ordre de terminaison par transformation. 
Technical Report, CRIN, Septembre 1988. 

H. Ganzinger. A completion procedure for conditional equations. In Proc. 1st 
International Workshop on Conditional Term Rewriting Systems, pages 62-83, 
Springer-Verlag, 1987. Extended version to appear in Journal of Symbolic Com- 
putation. 

S. Garland and J. Guttag. An Overview of LP, The Larch Prover. Technical 
Report, MIT, 1988. 

I. Gnaedig, C. Kirchner, and H. Kirchner. Equational completion in order- 
sorted algebras. In M. Dauchet and M. Nivat, editors, Proceedings of the 13th 
Colloquium on Trees in Algebra and Programming, pages 165-184, Springer- 
Verlag, Nancy (France), 1988. 

J. Gallier and W. Snyder. Complete sets of transformations for general E- 
unification. Journal of Theorieal Computer Science, 1988. 

J. Hsiang and J-P. Jouannaud. General e-unification revisited. In Proceedings 
of 2nd Workshop on Unification, 1988. 

J. Hsiang and J. Mzali. Algorithme de Compldtion SKB. Technical Report, LRI, 
Orsay, France, 1988. Submitted. 

J. Hsiang and M. Rusinowitch. On word problem in equational theories. In 
Proceedings of 14th International Colloquium on Automata, Languages and Pro- 
gramming, Springer-Vertag, Karlsruhe (West Germany), 1987. 

G. Huet. A complete proof of correctness of the Knuth-Bendix completion algo- 
rithm. Technical Report 25, INPAA, August 1980. 

G. Huet. A complete proof of correctness of the Knuth and Bendix completion 
algorithm. Journal of Computer Systems and Sciences, 23:11-21, 1981. 

D. Knuth and P. Bendix. Simple Word Problems in Universal Algebra, 
pages 263-297. Pergamon Press, 1970. 



39 

[Kir84] 

[KS83] 

[Les83] 

[OreS3] 

H. Kirchner. A general inductive completion algorithm and application to ab- 
stract data types. In 1~. Shostak, editor, Proceedings 7th international Con- 
ference on Automated Deduction, pages 282-302, Springer-Verlag, Napa Valley 
(California, USA), 1984. 

K. Kapur and G. Sivakumar. Experiments with an architecture of RRL, a rewrite 
rule laboratory. In Proc. of an NSF Workshop on the Rewrite Rule Laboratory, 
pages 33-56, 1983. 

P. Lescanne. Computer Experiments with the REVE Term Rewriting Systems 
Generator. In Proceedings, lOth A CM Symposium on Principles of Programming 
Languages, ACM, 1983. 

F. Orejas. Good food considered helpful. Bulletin of EATCS, 20:14-22, June 
1983. 

A Introduction to completion procedures 

Let us take a simple example namely the type Lists where the constructors are [], [_], a, b 
and @ and satisfy the relations 

[ 
x@[ 

(x@y)@z--~x@(y@z) 

and a function flatten is given by: 

flatten([ ])---+[ ] 

f l atten( a )---~a 
ftatten(b)---*b 

flatten( a@x )---*a@ flatten( x ) 

f latten( b@x )--*bQ flatten( x ) 
flatten([x]Qy)-  flatten(x)Q flatten(y) 

The term f latten(N@ [ ]) can be rewritten into flatten(Ix]) by the second rule and into 
flatten(x) by three rewrites, namely to flatten(x)@flatten([ ]) by the last rule, to flatten(x)@[ ] 
by the fourth rule and to flatten(x) by the second rule. flatten(Ix]Q[ ]) is cMled a superpo- 
sition and (flatten(x)@flatten([ ]), flatten([x])) a critical pair. If both parts of the critical 
pair rewrite to the same terms, the critical pair is said convergent, otherwise it is said 
divergent. 

((Xl@(x2@y))@z, (xl@x2)@(y@z)> 

is a convergent critical pair and 

(flatten( x )@ flatten([ ]), flatten(Ix])) 

is a divergent critical pair. A completion procedure is a way to generate a rewrite system 
without such divergent critical pairs with the same proving power. It is based on inference 



40 

rules like the following ones where one works on a data structure with two sets, namely E 
that contains the identities and R that contains the rules or oriented identities. 

Delete: E U { s = s } ; R t - E ; R  
Compose:E; R U {s -o t} F- E; R U {s -o u}if t -OR u 
Simplify: E U  {s = t } ; R  F- E U  {s = u } ; R i f t  ---+R u 
Orient: E U { s = t } ; R ~ - E ; R U { s ~ t } i f s > t  
Collapse: E ; R U { s ~ t} F- E U { u = t } ; R if s -oR u by a rule 

1--+ r E R wi th  s D l 
Deduce: E; R F- E U {s = t}; R if s ~ R  u -oR t for some u 

Delete removes trivial identities from E. Compose reduces the right-hand side of a rule if 
it can be rewritten by a rule in R. Simplify simplifies an identity. Orient transforms an 
identity into a rule provided the left-hand side is greater than the right-hand side for a given 
ordering. Collapse transforms an identity into a rule when the left-hand side is rewritten. 
Deduce creates new identities from superpositions. 

The inference rule are used as long as they apply and the procedure can stop because 
E is empty and no rule applies or can stop with failure when no identity can be oriented 
or can run forever. It is complete if given an identity a = b to be proved there exists a step 
i such that  the Ri-normal form of a is equal to the Ri-normal form of b, where Ri is the 
value of R at i th step. Under some assumptions of fairness not given here the procedure is 
complete. 

B Original description of the Knuth-Bendix procedure 

The next paragraph is a strict quotation of the Knuth-Bendix paper [KB70]. I found 
intersting to give the actual description of the algorithm we work on for now close to two 
decades. The corollary which is mentioned describe the concept of critical pair and (6.1) 
shows the stability of the congruence generated by a set of identities after adjunction of an 
equational consequence. 

The following procedure may now be used to a t tempt  to complete a given 
set of reductions. 

Apply the tests of the corollary to Theorem 5, for M1 A1, A2 and #. If in 
every case ~ = ~ ,  R is complete and the procedure terminates. If some choice 

! a I I  of A1, ~2, /~ leads to ~; # ~r~', then either ~r~ > a~, v~' > a~ or aoga o. In the 
latter case, the process terminates unsuccessfully, having derived an equivalent 
a;  -= cry(R) for which no reduction [...] can be used. In the former cases, we add 
a new reduction (a;, a~ p) or (ag, a~), respectively, to R and begin the procedure 
again. 

Whenever a new reduction (A t, pl) is added to R, the entire new set R is 

checked to make sure it contains only irreducible words. This means, for each 

reduction ()~, p) in R we find irreducible words ,~o and Po such that )~ _!+ ~o and 
p 2+ po, with respect to R - {(A,p)}. Here it is possible that Ao = Po in which 
case by (6.1) we may remove ()~, p) from R. Otherwise we might have )~o > po or 
P0 > ,~o, and (A, p) may be replaced by (~o, Po) or (po,)~o) respectively [...]. We 
might also find that Ao~P0, in which case the procedure terminates unsuccessfully 
as above. 



4] 

C Some basic not ions  of  CAML 

CAML is a polymorphic functional language of the ML family. Its basic constructions used 
here are the following. 

le t  introduces an identifiers and its definition by a subexpression that will replace each 
occurrence of the identifier in the body that  follows and which is introduced by in. 

w h e r e  is similar to let,  but is placed after the body. 

m a t c h  pattern w i t h  identifies a structure that will be checked for a use as a rewrite system 
in the part that  follows the with. Each rule is introduced by a pattern and the 
corresponding computation follows the sign - >. The rules are separated by signs I 
and are evaluated with a priority according to their position. In a pattern, the sign _ 
means any value. For instance, (_ :: _) matches any non empty list and [_] matches 
any list with one element. The empty list is N" 

f a i lw | th  signals an exception to the a caller, such an exception is caught b y  a ?. 

A full description appears in [FOR87b,FOR87a]. 


