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Abstract. There are many cryptographic protocols the security of which
depends on the difficulty of solving the discrete logarithm problem ( [8],
{91, [14). ete.). In [10] and [18] it was described how to apply the number
field sieve algorithm to the discrete logarithm problem in prime fields.
This resulted in the asymptotically fastest known discrete log algorithm
for finite fields of p elements, Very little is known about the behaviour of
this algorithm in practice. In this report we write about our practical ex-
perience with our implementation of their algorithm whose first version
was completed in October 1994 at the Department of Computer Science
at the Universitat des Saarlandes.

1 Introduction

The importance of the Discrete Logarithm Problem has its roots in its crypto-
graphic significance. Many protocols in cryptography, for example the Digital
Signature Staundard [14]. are secure if the underlying Discrete Logarithm Prob-
lem 1s difficult to solve.

A lot of algorithus have already been created to find a solution to it and there-
fore to break one cryptosystem associated with it.

There is an early method which proves to be quite successful for groups of
smooth orders, i.e. which have no large prime factor. It was published by Pohlig
and Hellman [17] and independently by Silver. It cau be improved by an idea of
Shanks [19]. We actually use the very practical improvement of Pollard [16].
The first of the class of index calculus algorithms to which the algorithm we
discuss belongs to was published by Kraitchik and Cunningham and later redis-
covered aud analyzed by Adleman, Merkle and Pomerance [5]. It has a running
time of L,[1,6] for some ¢ > 0. With L,[v, ] we mean the commonly used
expression

Ly[v, 6] = exp(é(log p)* - (loglog p)' ™).

There arc variations of this index calculus algorithin, discovered by Coppersmith,
Odlyzko and Schroeppel [4] with conjectured running tine L,,[%, 8]
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The first algorithm with expected running time Lp[%,3§] was detected by
Dan Gordon [10] in 1992. This was improved by Oliver Schirokauer [18] in 1993
achieving an expected running time of L,[3, (6—94)%].

It is based on the Number Field Sieve, a method which has already been
used to factor integers ([1],[2]).

If this algorithin proves to be valuable in practice, the security parameters
of much implemented cryptosystems have to be thought over. In this report
we write about our practical experience with our first implementation of their
algorithm whose first version was completed in October 1994 at the Department
of Computer Science at the Universitit des Saarlandes.

For our implementation we used the methods described in [10] and [18]. After
a short description of their algorithm we show how the general problem can be
treated conveniently. Furthermore we consider the running time in practice, and
give some impressive results concerning the comparison with our implementation
of the algorithm of Pohlig and Hellinan, which has an expected running time of
L,(1, % ). Clearly, as the algorithm of Pohlig and Hellman is not an index calculus
method, there is need for a comparison with an implementation of the methods
of Coppersmith, Odlyzko and Schroeppel [4].

2 The Discrete Logarithm Problem in IF,

We consider IF,(-), the cyclic multiplicative group of the prime ficlds of p ele-
ments, p prime, which has order p — 1.

Let a.b € IF,,.

If there exists ¢ € INgy such that

ul;l,' — I),

we define the least such z € INg as the discrete logarithm of | to the base a.

3 The General Number Field Sieve (GNFS)

With a. b € IF,,, we determine the discrete logarithm « of b to the base a modulo
q € IN where ¢ is a prime divisor of p— 1. Then we combine the results for every
g dividing p — 1 via the Chinese remainder algorithm. In order to determine the
discrete logarithm x modulo ¢, we use the GNFS to construct g—th powers in
IF,.

If we are able to find integers s,? with the property

@' b = w! mod p

for some w € IF,,, and a rational integer ¢ coprime to ¢, then we have computed
2 mod q. If this is the case, writing b = ¢® mod p leads to

= —st”! mod g.
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So the task is to construct a ¢-th power in IF,, written as a nontrivial product
of powers of a and b.
First, choose an irreducible polynomial

XY= X" 4 an X" 4+ . 4+ a1 X + ag,

an integer m and a rational factorbase FB;.
We denote by I the field Q[a]. We will work in the ring of integers Ox C K, «
a zero of f in C.
We choose an algebraic factor base F8; consisting of first degree prime ideals
with nor less than somne bound.
For a set M of integers and an integer ! we say that ! is M -smooth, if all the
prime divisors of I lie in M. We call I to be m—smooth for an integer m, [ is
{1,..., m}-smooth.

After the choice of the polynomial f and the factor bases FB| and F B3, the
following conditions on f must be satisfied;

— fim) = 0 mod p,

m = h-bwhere his a FB; smooth integer,

— p does not ramify in O,

the constant term of f is a FB;-smooth integer,

— p does not divide the discriminant of f,

g does not ramify in O for each divisor q of p — 1 we want to apply the
algorithm to.

Because of the first condition the map

giZla] — F,

= m

18 a ring homomorphism.
The algorithm determines a non empty set S of pairs (¢, d) with the following

property:

= [ls(c +dmjee is only divisible by a and b and
~ [lele +da)=¢ is a g-th power in Z[a].
Thercfore. the following congruence holds.

H(C + (]m]"” fnd H S@((’ + (‘-1(),)&-,4

= plw?)

w9 mod p

t

It is clear immediately that [Jo(c +dm)®? is a g—th power in IF,,.
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4 The Sieving Stage

In the sieving stage we collect pairs (¢, d) of integers for which

- ¢+ dm is FB;-smooth
— ¢+ do is FBy—smooth.

Each pair which satisfies these conditions we call a hit.
If we have more than |FB;] + [F B2} hits collected, a solution of a linear
systeimn mod ¢ leads to an equation

[T+ dm) =[] elc + da)
= plw?)
= w’ mod p

where the left side is only divisible by « and b.

In the case of a, b being primes, we have «*b' = w? mod p as desired. If ¢, b
are not primes, we get a simall linear system modulo ¢. It is convenient to avoid
this by using tle reduction we describe in section 6.

5 Constructing ¢-th powers in Og

In the previous section the coustruction of a g-th power in Oklis required. The
details of this construction are to be found in [18]. In the following we give a
brief overview,

Let
,
¢Og = H Tp
p=1
be the decomposition of ¢ into prime ideals of Ogand
e= lem ,{N(r,) —1}.
It follows that
¢ =1mod Of /7, for vy € O /mpand 1 < p <1

Define A to be the following map.

A (Or, ) — g0k /* Ok (+)

71" =1
Because of ¢ not being ramified in O, this is actually a homomorphism of semi

groups and a homomorphism on the group of units of O .
We consider a special case of the main result of [18].
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Propositionl. Let v be an element of Oy whose norm is not divisible by q. Let
U be the group of units of Ok . Let

U'=4{nelU|n=1modqOk}.
Then v 18 a q-th power in O, if

) the class number of K is not divisible by ¢,

i) U C U9,
i) ordg () = 0 mod ¢ for all prime ideals @ of Oy,
w) A(v) = 0.

For each pair (¢,d) which we have detected as a hit we compute the image
under A modulo ¢* using the a—power basis of Z[a]/¢*Z]a].

n—1
Me 4 do) = Z bjaj mod ¢*O.
1=0
We alin

Z M +da) = 0 mod ¢*.

But all the Ae + da) are multiples of ¢. Therefore we can divide each b; by ¢
and then take the sum mod ¢ instead of computing mod ¢*.

With this argument we supply to the exponent vector of the prime ideals the
coefficients b; of the image under A. This means the exponent vector gets ex-
tended by n eutries,

This concludes the construction.

6 A Reduction of the General Problem

It is convenient to transform the original discrete logarithm problem into an
easier one, which means the numbers a, b are prime and smaller than a given
bound. We require the following conditions on @ and b and we will show how to
change the original task appropriately.

Condition 1: « shall be a prime € FB;
Condition 2: b shall be a prime < /p

We give a brief description how this can be achieved.

1. We factor p — 1 = [[/_, ¢ using the elliptic curve method because this
method is fast enough for numbers having less than 40 digits.

2. We find a generator ¢ modulo p, which is in our rational factor base 5.

3. We find ! such that o' - b = ¢ mod pis /p-smooth

’
€
._||7.1
¢ = b'-.

4. For every i/ we solve ¢%* = &; mod p:
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(a) using the GNFS (m = h - s;, h FB—smooth) we find a relation

' ©3

g% -5 =d” mod p

1
for 1 <3<,
(b) 1t follows that x; = —Z% mod q;”.
7
5. We solve g* = amod p, z = zj mod q 7 and compute

log, b= & —lmod ¢}

7 A 25-digit example

The first example which could not be done with our implementation of the
Pohlig~Hellnian procedure was the following.

We solved
7" = 17 mod p,

where p is the 25-digit number 1234567890123456789000421.

Factoring p — 1 by trial division equals
1234567890123456789000421 —~ 1 = 2%-3 -5

where ¢ is the 23—digit prime number 20576131502057613150007.

Since 75 Z Ll mod p for ¢’ € {2,3,5,¢}, 7 is a generator of IF,.
Because of the 23-digit prime factor ¢ in the factorization of p — 1, our imple-

mentation of the methods of Pohlig-Hellman Pollard was not successtul within
96 hours.

So we started our GNFS algorithm by using the polynomial
FIX) = X3 £ 57007X? — 27942X ~ 31727

and set = 107257599 with f{m) = 0 mod p.
As b= 17 is an element of our rational factor base there is no need of satisfying
condition 3 of section 6.

The primes of both factor bases were the first-degree primes with norm less than
2400; no large primes were used.
The sieving interval for ¢ + din, ¢ + da was chosen as follows:

—4000000 < ¢ < 4000000
1< d < 500.
The sieving procedure was performed on a Sparc ELC workstation with 16 MB
RAM within 12 hours.

The solution of the 728 x 703 linear system1 mod ¢ was done on a Sparc ELC
workstation with 64 MB RAM within & hours. The solutions of = mod 22,3,5
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were easily to obtain by using the Pohlig—Hellman -Shaunks procedure. In the final
step we had to combine the results by using the Chinese~-Remainder—Algorithm
and

x = 256351350915151146893061 mod 1234567890123456789000420

was established.

8 A 40-digit example

At February 2, 1995, the solution of our second interesting example has been
achieved with the aid of Zayer’s implementation of the General Number Field
Sieve, which has already been used successfully to factorize a 70-digit number
and to sieve in the case of a 107—digit number [2].

Here we solved
23" = 29 mod p,

where p is the 40-digit number 3108193812051968080419611909199224122909.
Factoring p — 1 by trial division equals
3108193812051968080419611909199224122909 — 1 = 22 .32. ¢, where

¢ 1s the 38-digit prime number 86338717001443557789433664144422892303.

h— 1
Again 237 # 1 mod p for ¢' € {2,3,¢}, and 23 is a generator of IF,.
The GNFS algorithnt has been started by using the polynomial

FIX) = X2 4 67025431X% 4 3599000298704X — 6293411590817

and the integer m = 14593810375959 with f(m) = 0 mod p.

Again b = 29 is an element of our rational factor bhase, so there is no need to
satisfy condition 3 of section 6.

The primes of the rational factor base are the 1493 primes p < 12503.

The primes of the algebraic factor base are the 1978 first-degree prime ideals
with norm less than 17321. The sieving interval for ¢+ din, ¢ + do was chosen as
follows

~5000000 < ¢ < 5000000
1 < d < 5000.

The sieving procedure was done on a Sparc ELC workstation with 16 MB RAM
within 21 hours. The solution of the 3500 x 3477 linear system mod g was
obtained on a Paragon iassively parallel system at KFA in Jiilich within 40
minutes on 60 nodes.

The task was carried out by a structured Gauss implementation of Thomas
Denny (6], which uses the LIP package of Arjen Lenstra [13]. The solutions of
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r mod 2%, 3,5 were easily obtained by using the Pohlig-Hellman-Shanks pro-
cedure. In the final step we had to combine the results using the Chinese-
Remainder-Algorithm and

r = 1761149741453474132304575201715643940920
mod 3108193812051968080419611909199224122908

was established.

9 Experimental Results of the Pohlig-Hellman Algorithm

The algorithm of Pohlig and Hellinan works well in the case of ¢ being small. We
want to know how small the biggest prime factor ¢ should be so that compared
with the GNFS implementation this algorithin is faster. Our experimental results
show that there is no reasou to work with it if ¢ > 1012,

As above, the computations have Leen done on a Sparc ELC workstation with
16 MB RAM (21 Mips).

As the running time of both algorithins depends on the largest priwe factor of
p — 1, we have used the hardest primes p, namely those primes where B;—l is
a prime, too. So the amount of time needed to solve the whole problem can
be viewed as the time to determine the solution in the subgroup of quadratic
residues mod p which has order 1’;—1

We cousider twenty discrete log problems, ten with primes of thirteen decimal
digits and ten with primes of fifteen decimal digits.

DL-Problem Running time
2= 5 mod 2000000000123 6 min 25 sec
2" = 5 mod 2000000001443 | 45 min 538 sec
13 =17 mod 2000000001599 | 36 min 40 sec
5= 7 mod 2000000002487 | 19 min 10 sec
11 =13 mod 2000000003879 | 99 min 7 sec
27 = 5 mod 2000000004347 18 min 2 sec
27 = 5 mod  2000000007107! 22 min 2 sec
27 = 5 mod 2000000007683 | 41 min 14 sec
5 = 10 mod 2000000007767 15 min 33 sec
5 = 7 mod 2000000008367 | 24 min 56 sec
2 = 5 mod 100000000005083 | 84 min 22 sec
57 = 10 mod 100000000005527 | 307 min 34 sec
5% = 7 mod 100000000007807 | 354 min 38 sec
57810 mod 1000000000088631{ 215 min 15 sec
13¥ = 19 mod 100000000010279 | 186 min 33 sec
2" = 5 mod 100000000012307 | 117 min 59 sec
2* = 5 mod 100000000013027| 262 min 48 sec
17 = 23 mod 100000000015439) 557 min 8 sec
2" = 5 mod 100000000016747 | 197 min 43 sec
| 2 = 6 mod 100000000017899 | 250 min 30 sec
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This is an average runniug time of 32 min. 55 sec. for the 13-digit primes
and an average running time of 253 min. 27 sec for the 15-digit primes.

10 GNFS versus Pohlig-Hellman—Algorithm

We have solved the problems of the section before with our Number field sieve
implementation.

We start with our choice for the 13-digit primes p. Here we have chosen a
polynomial of degree 2 and m = 1388297.

If one takes m = ,/p instead, the average norm of ¢ + a is 3.38 - 10°, which is
slightly larger compared to our choice of m, where we got 1.21-10°.

Each factor base is bounded by a value hetween 200 and 300, so we expect to
get between 100 and 140 factor base elements totally.

So the polynomials are determined by m

FIX) = X2 4 5231TX + (p — m? — 52317m).

We have allowed onc large prime for each of the two factor bases. The large
prime bound for Z is 2000000 and for Oy it is 4000000. A description of the
large prime variation cau be found in [11].

The choice of the parameters in the case of the 15 digit primes was quite sumilar.
With m = 9964218 we have an average norm of 9.9 - 10% instead of 3.4-10° with

m = \/]_)

Here the polynomials are

FIX) = X2 4 71692X + (p— m? — 52317m).

The large prime bounds are chosen as above.

In the following table we list the number of full relations, i.e. relations without
large primes as well as the number of single large prime relations with either a
large rational prime or a prime ideal with large norm and the number double
large prime relations, i.e. a ratioual single large prime and an algebraic single
large priwe.

We have listed the running times of the sieve aud the solution of the linear
system mod q.
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Prime | full single double | Sieve LS total

2000000000123 | 63 95 48 [ 02:51 01:48 04:39
2000000001443 | 133 0 0 | 04:29 02:14 06:43
2000000001599 | 98 105 63 | 03:07 01:46 04:33
2000000002487 | 51 70 56 [ 03:08 01:53 05:01
2000000003879 | 35 42 26 | 03:47 01:19 05:06
2000000004347 | 33 70 37 | 05:05 02:20 07:25
2000000007107 | 40 67 39 | 05:42 02:46 08:27
2000000007683 | 174 303 122 | 05:24 03:46 09:10
2000000007767 | 61 96 41 | 07:03 02:22 09:25
2000000008367 § 55 85 28 | 05:24 03:36 09:00

| 100000000017899 | 50 102 3

160000000005083 | 72 123 53 | 05:32 04:18 09:50

100000000005527 | 111 148 50 | 03:34 03:38 07:12
100000000007807 | 80 87 49 1 03:24 08:17 11:41
100000000008863 | 124 87 54 | 03:57 08:41 12:37
100000000010279 | 114 143 51 | 03:14 03:43 06:57

100000000012307 | 68 145 48 | 06:38 06:04 12:42
100000000013027 7 95 86 54 | 05:02 06:04 11:06
100000000015439 | 104 110 64 | 04:38 04:20 08:58
100000000016747 | 137 103 04:01 03:47 07:48
07:42  02:45 10:27 |

(2 S

This is an average running time of 6 min. 59 sec. for the 13--digit primes and

an average runuing time of 9 min. 56 sec for the 15-digit primes.
All the integer cowputations were performed by using the libl package of Ralf
Dentzer [7]. which we have embedded in a C++ class library called LiDIA [15].
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