
Verifiable Signature Sharing

Matthew K. Franklin Michael K. Reiter

AT&T Bell Laboratories, Holmdel, New Jersey, USA
franklin.reiter0research.att.com

Abstract. We introduce Verifiable Signature Sharing (VCS), a cryp-
tographic primitive for protecting digital signatures. VCS enables the
holder of a digitally signed document, who may or may not be the origi-
nal signer, to share the signature among a set of proxies so that the honest
proxies can later reconstruct it. We present efficient VCS schemes for ex-
ponentiation based signatures (e.g., RSA, Rabin) and discrete log based
signatures (e.g., ElGamal, Schnorr, DSA) that can tolerate the malicious
(Byzantine) failure of the sharer and a constant fraction of the proxies.
We also describe our implementation of these schemes and evaluate their
performance. Among the applications of VXS is the incorporation of dig-
ital cash into multiparty protocols, e.g., to enable cash escrow and secure
distributed auctions.

1 Introduction

In this paper we introduce a new cryptographic primitive for protecting digital
signatures, called Verifiable Signature Sharing (VCS). VCS enables the holder
of a digitally signed document, who may or may not be the original signer, to
share the signature among a set of prozies so that the honest proxies can later
reconstruct it. At the end of the sharing phase, each proxy can verify whether
a valid signature for the document can be reconstructed, even if the original
signature holder and/or some proxies are malicious. In addition, malicious prox-
ies gain no information about the signature held by an honest sharer prior to
reconstruction (but do see the document itself).

While VCS can be solved in theory using known cryptographic techniques,
the approach taken here is to focus on practicalsolutions to this problem. In fact,
our study of VES was motivated by an effort to implement common financial
trading vehicles in computer systems. For instance, V E S provides an elegant
way to escrow digital cash [5, 71: by verifiably sharing the bank’s signature of a
bank note, the moneyholder can escrow (in the true sense) the monetary value
of the note among the proxies. That is, each proxy can verify that the proxies
collectively possess the cash, but the cooperation of sufficiently many proxies is
required to spend it. This ability, in turn, facilitates secure distributed financial
services, such as sealed-bid auctions. By having bidders escrow cash bids with a
set of auction servers, the winner’s payment can be guaranteed while the losers’
payments are protected. A separate paper reports on the implementation of an
auction service using these techniques [14].

L.C. Guillou and J.-J. Quisquater (Eds.): Advances in Cryptology - EUROCRYPT ’95, LNCS 921, pp. 50-63, 1995
0 Springer-Verlag Berlin Heidelberg 1995

51

More generally, ~VES has applications whenever a signed document should
become valid only under certain conditions (e.g., a will, a "springing power of
attorney" [17], or an exchange of contracts). Verifiably sharing the document's
signature, with "trigger" instructions given to all proxies, ensures that the sig-
nature will not be released until the honest proxies believe that the triggering
events have occurred.

We have developed Vi7S schemes for many digital signature schemes, includ-
ing RSA [24] (with public exponent 3), Rabin [22], ElGamal [12], Schnorr [25],
and the Digital Signature Standard [11]. Our protocols are simple and efficient.
Sharing requires a single broadcast from the signature holder to the proxies,
followed by a single round of broadcasts among the proxies. Reconstruction
requires no interaction, beyond a single message sent from each proxy to the
reconstructor. Our protocols can tolerate a malicious shaTer and a constant frac-
tion of malicious proxies. Almost all of our protocols ensure the secrecy of the
signature in a strong sense (related to simulatability), but we consider a weaker,
heuristic notion of secrecy as well. Some of our protocols exploit precomputation
by the proxies to improve performance. We summarize our results in Table 1,
which includes performance data in milliseconds for our protocols on a network
of sPARCstation 10s, for 512-bit moduli and the minimum number of proxies
that can tolerate one faulty proxy.

scheme faults precomp? secrecy test size share time recon time
RSA (e = 3) |_(n - l)/5j yes strong n = 6 330 ms 6 ms
Rabin _[n — l)/4j yes strong n = 5 251 ms 3 ms
ElGamal [(n - l)/3j lio strong n = 4 862 ms 321 ms
Schnorr [(re — l)/3j no strong n = 4 514 ms 117 ms
PSA ~ [(n - l)/3j no weak~ n = 4 587 ms " 116 ms

Table 1. Summary of results {n — number of proxies)

The rest of this paper is structured as follows. In Section 2, we place VSS in
the context of related work. Section 3 presents our system model and definitions.
V27S for exponentiation-based signature schemes is presented in Section 4, and
for discrete log-based schemes in Section 5. VES schemes with heuristic secrecy
are discussed in Section 6. Section 7 addresses the performance of the schemes,
including a discussion of the numbers in Table 1. We conclude in Section 8.

2 Related Work

In this section, we describe previous cryptographic research to which Verifiable
Signature Sharing is connected, and from which we have borrowed many of our
techniques.

52

VES is related to, but different from, the idea of threshold signature schemes
(see survey [lo]). Such schemes enable any subset of sufficiently many members
of an organization to sign documents on behalf of the organization. Some of the
functionality of our VCS schemes could be achieved by the sharer distributing
the ability to sign the document among the proxies using a threshold signature
scheme. One important difference is that the sharer must be the original signer
of the document. A second difference is that a too-large coalition gains the
ability to forge any document, rather than just reconstruct those signatures
that are shared. We can state this second difference another way. Threshold
signature schemes-and, more generally, function sharing schemes [9]-enable
the efficient computation of a secret function (signing) on a public input (the
document). VCS enables the efficient computation of a public function (signature
verification) on a shared secret input (the signature).

VES is related to a distributed verification protocol for undeniable signa-
tures, due to Pedersen [21]. In an undeniable signature scheme, each signed doc-
ument has associated with it some secret information, distinct from the signer’s
private key. To verify an undeniable signature of a document requires interaction
with the possessor of the corresponding secret information. Pedersen shows how
the original signer of a document can distribute the ability to verify it. In this
case, the signed document is public, the secret information for that signature
is shared among the verifiers, and the private key of the signer is uninvolved in
the verification. Some of his methods, which in turn are based on ideas from
Feldman [13], are central to our VES schemes for ElGamal, Schnorr, and DSA.

VCS is related to “fair public-key cryptosystems” [20]. These schemes also
enable certain public predicates, related to encryption and decryption keys, to
be evaluated efficiently on shared secret inputs. The shared secret input in this
case is a private decryption key. The public predicate is that the decryption key
bears the appropriate inverse relationship to the public key.

The notion of secure distributed computation, or “mental games” [15, 2, 61,
is also closely related. That work builds on secret sharing [26, 41 and verifiable
secret sharing [8, 13, 211 techniques. General and powerful “completeness theo-
rems” for securely evaluating arbitrary boolean or arithmetic circuits yield VES
as a special case. However, the message complexity of these general solutions
(and the number of encryptions) is typically a large constant times the size of
the circuit. The circuit size of known public-key signature schemes is too large
for these methods to be feasible. By adapting some of the techniques of earlier
schemes in novel ways, we achieve VCS with low communication complexity.

3 Model and Definitions

A VES scheme is a pair of protocols (for “sharing” and “reconstructing”) involv-
ing a dealer D (called the “sharer” in the Introduction), n proxies P I , . . . , Pn,
and a reconstructor R. The dealer begins with a document m and a signature
~ (m) for the document, created by itself or by another. At the end of the sharing
protocol, the honest proxies either accept or Teject. If the honest proxies accept,

53

then they know m (but not o(m)) at the end of the sharing protocol, and the
reconstructor will know u(m) (and rn if desired) at the end of the reconstruction
protocol. The reconstructor does not participate in the sharing protocol, and the
dealer does not participate in the reconstruction protocol.

Faulty parties (proxies and/or the dealer) are assumed to be controlled by
a single adversary, who can see the contents of their memories, and can cause
them to deviate from the protocol in an arbitrary manner (Byzantine faults). The
reconstructor is assumed to be honest throughout the reconstruction protocol.
Since our reconstruction protocols are non-interactive, the only effect of a faulty
reconstructor is to prevent its own success.

We assume that the dealer can send an authenticated message privately to
any proxy, and that any proxy can send an authenticated message privately to
the reconstructor. We also assume that the dealer or any proxy can reliably
broadcast a message to the set of proxies (Byzantine Agreement [19]). More pre-
cisely, each reliable broadcast in our VES protocols results in the same message
being delivered to all honest proxies (and thus is te~rninatingin the sense of [16]),
and this message is the same as the message broadcast if the sender is honest.

Finally, the dealer and the proxies are assumed to know the public key of the
original signer, which is assumed to be a valid public key.

3.1 t- Resilience

We say that our VES scheme is t-resilient if the following conditions hold:

Completeness: If the dealer is honest, and at most t proxies are faulty, then
each honest proxy will accept.
Soundness: If at most t proxies are faulty and any honest proxy accepts at the
end of the sharing protocol, then every honest proxy accepts at the end of the
sharing protocol and reconstruction will be successful (regardless of whether the
dealer is honest or faulty).
Secrecy: Anything that can be computed by an adversary that controls up to t
faulty proxies, after participating in k sharing protocols with an honest dealer,
can also be computed by the adversary without participating in any sharing
protocols (i.e., from the k unsigned documents and the public keys of the original
signer).

We will say that our VES scheme is t-resilient with “heuristic secrecy” if
only completeness and soundness can be proven, while heuristic evidence sup-
ports some weaker version of secrecy, e.g., that no “useful” information c a n be
computed from what is seen by a computationally bounded adversary.

3.2 Secret Sharing

Our protocols make extensive use of the polynomial based secret sharing scheme
due to Shamir [26]. A dealer wishes to share a secret s, from a finite field F ,
among n parties. The dealer chooses al , . . . , at from the uniform distribution

54

on F ; this is denoted all.. .at E R F . Let g(c) = atz‘ + . . - + ala: + S. Party i
is given the share (i, g (i)) , 1 5 i 5 n. The parties S c (1.. .n}, IS1 = t + 1,
can recover the secret using the Lagrange formula for interpolation (2 = 0):
g (z) = CiES c ig(i) , where ci = I-I. . .(z - j)(i - j)-’. No subset of up to t
shares yields any information about the secret.

Our VZS schemes for exponentiation based signatures use polynomial based
secret sharing over the ring Z,, where N is the product of two large primes. The
properties of secret sharing still hold in this case (e.g., see [9]). In particular, the
Lagrange interpolation formula is well-defined as long as n is smaller than the
prime factors of N (and thus (i - j)- ’ mod N always exists).

3 E SB.7 # I

4 VES for Exponentiation Based Signatures

In this section, we present VES schemes for exponentiation based signature
schemes, i.e., RSA with public exponent 3, and Rabin. The following is an infor-
mal description of how the protocol works for RSA. The signature is the cube
root of the hash of a document. The dealer uses Shamir’s polynomial based secret
sharing scheme to share the signature among the n proxies, using some degree
t polynomial. The dealer then broadcasts the corresponding points of the cube
of this polynomial. The proxies convince themselves that (1) a value has been
shared using a degree t polynomial; and (2) the cube of this polynomial shares
the cube of the signature, i.e., the hash of the document itself. This is enough
to ensure that reconstruction will be successful.

To improve the communication complexity of the sharing protocol, we will
assume in this section that the proxies have performed some precomputation
before participating in any sharing or reconstruction. Specifically, the i th proxy
knows (only) the value a t i of a large number of random degree t polynomials.
One such “pre-shared” polynomial will be used per execution of the sharing
protocol. The proxies can then convince themselves that the signature-sharing
polynomial has degree t by adding one of the pre-shared polynomials to it,
and verifying the degree of the sum. The proxies can precompute these pre-
shared polynomials using standard multi-party secure computation protocols.
The computation for all shared polynomials can proceed in parallel, requiring
only a constant number of rounds of communication. Alternatively, a single
trusted source can provide the proxies with such values, and then destroy itself.

4.1 RSA Signatures

Suppose that the signature scheme is (“hashed”) RSA with encrypting exponent
e = 3, decrypting exponent d , and modulus N. The dealer begins with m, ~ (r n) ,
where ~ (m) = (/ ~ (m)) ~ mod N for some publicly known one-way hash function
h. Assume that pl(z),pz(z), . . . are a supply of random degree t polynomials
shared among the proxies, i.e., each proxy P; holds pl(i),pZ(i),.. .. No proxy
knows anything further about these polynomials. The polynomial pj(z) will be

55

used in the j t h sharing protocol. We do not consider concurrent executions of
the sharing protocol.

Sharing Protocol

1. D sends messages privately and by reliable broadcast to the proxies:
a. D chooses a t , . . . , a1 E R ZN, and finds f(z) = atat + . . + alz + a(m).
b. D + P; privately: y; = f (i) mod N (for all i, 1 5 i 5 n).

c. D -+ P I , . . . P, by reliable broadcast: rn, y: mod N , . . . , y: mod N .
2. Let the broadcast values (from lc) be denoted m, 21, . . . , z,. Assume that this

is the j t h sharing protocol in which the proxies are participating. Each proxy
P; computes T; = p , (i) +yj mod N , and makes the following reliable broadcast
to all proxies:
a. (~ i , COMPLAIN), if z, # y: mod N .
b. (T , , ALLOW), otherwise.

ditions are met (and REJECTS otherwise):
a . The values 2 1 , . . . , z, lie on a polynomial g of degree at most 3t .
b. g(0) = h(m).
c. The values TI, . . . , T, that were reliably broadcast (in 2) lie on a polynomial

f' of degree t , with at most t errors. (Any nonsensical response is counted
as an error.)

d. At most t proxies COMPLAINED (in 2a) or contributed an error to f' (in

3. Without further communication, each proxy ACCEPTS if the following con-

3c) *

Reconstruction Protocol

1. Each proxy P, sends to R the following information:
a. The value yi that was privately sent to it (in l b of the sharing protocol);
b. The values z1,. . ., z, that were reliably broadcast (in l c of the sharing

c. The error locations (proxy identities) in the degree t polynomial f' com-
protocol);

puted at the end of the sharing protocol.
2. Without further communication, R reconstructs the signature as follows:

a. R finds 21,. . . , zn by majority vote of the lists received in l b of this protocol.
b. R finds ERROR-LOCS, the majority vote of the lists of error locations

received in l c of this protocol.
c. R discards every private share y, (received in la of this protocol) such that
zi # y! mod N or such that i is in ERROR-LOCS.

d. R interpolates the remaining private shares (received in la of this protocol)
to find a degree t polynomial (with no errors). The signature is taken to be
the value of the resulting polynomial at zero.

Theorem 1 This VES scheme is t-resilient whenever n 2 5t + 1.

56

Proof. It suffices to show that the three conditions for t-resilience are satisfied.
Suppose at most t proxies are faulty.

Completeness: If the dealer is honest, then 21, . . . , z,, lie on the polynomial
g(z) = (f (~)) ~ , which is of degree at most 3t (since the degree o f f is at most t) .
So, each honest proxy will recover g through interpolation. Only a faulty proxy
will complain or give a bad ri in step 2, so at most t are seen to do SO by each
honest proxy. Thus all honest proxies will accept.

Soundness: We claim that the reconstruction protocol will be successful, and
all honest proxies will accept, whenever any honest proxy accepts at the end of
the shaTing protocol, Let & be the value sent privately by the (possibly faulty)
dealer D to Pi, let rn, 21,. . . ,in be the values broadcast by fi to the proxies,
and let $i be the value broadcast by Pi to the other proxies. If any honest proxy
accepts during the sharing protocol, then every honest proxy will accept (since
the information on which they base their decisions was all received by reliable
broadcast). It suffices to show that the reconstruction will be successful when
all honest proxies accept.

If all honest proxies accept, then all found the same degree t polynomial
through + I , . . . , in with at most t errors. Since all honest proxies agree on the
polynomial, all sent the same error locations to R, and so ERROR-LOCS will
consist of exactly these locations (by majority vote). R will also recover 21, . . . ,in
exactly as they were reliably broadcast by B, again by majority vote from the
honest proxies. Since a degree t polynomial passes through $1,. . .,in minus
points at ERROR-LOCS, a (different) degree t polynomial f passes through
$1,. . . , $n minus points at ERROR-LOCS and faulty proxies (except with neg-
ligible probability). The points 61,. . . , Cn minus points at complainer locations
and faulty proxies have cubes that agree with 21, . . . , in.

Let 4 be the unique degree 3t polynomial that passes through 21,. . . ,in. Then
f3 and 6 agree at the points of all proxies minus complainers, error locations, and
faulty proxies. Thus they have at least n - 2t 2 3t + 1 points in common. Since
both are degree 3 4 this means that = 6. Thus it only remains to be shown
that R recovers f . The points from all honest proxies, minus error locations
and complainers, are included in the interpolation by R, and a point from a
faulty proxy is included only when it lies on f (since otherwise its cube will be
inconsistent). Hence at least t + 1 points are included, and so f is recovered.

Secrecy: For every sharing protocol that is executed with an honest dealer,
the adversary sees a random degree 3t polynomial g that passes through the
hash of the document, a random degree t polynomial f' (together with "allow"
messages from the honest proxies), and at most t points on the cube root of g.
This probability distribution can be sampled by an adversary who knows only
the document that is being signed: choose f * at random; choose t random values
to be the cube roots, cube them, and then find a random degree 3t polynomial g
that passes through the hash of the document and the cubes (t + 1 points). For
any computation that involves participation in sharing protocols, the adversary
could perform an equivalent computation by simulating its participation instead.

57

4.2 Rabin Signatures

Using Rabin's signature scheme, n(m) = mod N, where h is a one-way
hash function and the factorization of N is the private key of the signer. The
same scheme as for RSA signatures now works (with squares instead of cubes).
Protection against t faulty proxies requires n 2 4t + 1.

5

In this section, we present VES schemes for discrete log based signature schemes,
illustrating our methods with ElGamal and Schnorr signature schemes.

VCS for Discrete Log Based Signatures

5.1 Verifiable Discrete Log Sharing

Central to our VES schemes is a scheme to verifiably share the discrete log of
a public value. This scheme is essentially the Verifiable Secret Sharing scheme
due to Pedersen [21], although small differences arise from differences in security
models. We assume that p , q , g are known to all parties before the start of the
protocol, where p is a large prime, q is a large prime factor of p - 1, and where
g has order g in 2; , i.e., (9) = { g l mod p, . . . , g p - l mod p } has g elements. The
dealer broadcasts a and shares a value p, claiming that (1) a E (g), and (2) p is
the discrete log of a modulo p with respect to the base 9. The sharing protocol
ends with the proxies convinced of this claim.

Sharing Protocol

1. D sends messages privately and by reliable broadcast to the proxies:
a. D chooses a t , . . . , a1 ER Z,,, and finds f(z) = atzt + . . . + ala + P.
b. D -+ P; privately: pi = f (i) mod g (for all i, 1 5 i 5 n).
c. D + P I , . . . , Pn by reliable broadcast: a, gal mod p , . . . , 9'' mod p .

makes the following reliable broadcast to all proxies:
a. COMPLAIN if gpi $ a n i = l (u j) i J mod p .
b. ALLOW otherwise.

3. Without further communication, each proxy ACCEPTS if the following are
true (and REJECTS otherwise):
a. At most t proxies COMPLAINED (in 2a). (Any nonsensical response is

counted as a COMPLAIN.)
b. aq f 1 modp.

2. Let the broadcast values (from lc) be denoted a, u1,. . . , ut. Each proxy Pi

Reconstruction Protocol

1. Each proxy P, sends to R the following information:
a. The value p; that was privately sent to it (in l b of the sharing protocol);
b. The values a, ul, . . . , ut that were reliably broadcast (in l c of the sharing

protocol) ;

2. Without further communication, R finds the discrete log of CY as follows:
a . R finds a, 211,. . ., ut by majority vote of the lists received in step l b of this

protocol.
b. R discards every private share pi (received in la of this protocol) that is

inconsistent with a, u1,. . . , ut, i.e., if gp’ $ Q n;=l(Uj,” mod p.
c. R interpolates the remaining private shares (received in la of this protocol)

to find a polynomial in Z , [z] of degree at most t (with n o errors). The
discrete log is taken to be the value a t zero of this polynomial.

The definition of t-resilience for VES from Section 3.1 can be extended in the
obvious way to log sharing schemes. For the proof (of soundness) of the following
theorem, i t will be useful to define the “g-log” of an element of 2;. Choose
gl,.. . , gk such that every element y E 2; can be written as gz n,=, g;”’ mod p
for exactly one z , 0 5 z 5 q - 1. Call z the “g-log” of y mod p.

Theorem 2 This Zog sharing scheme is t-resilient whenever n 2 3t + 1.

k

Proof. The conditions for t-resilience are met.
Completeness: No honest proxy complains in step 2a when the dealer is honest,
and so at most t complaints are broadcast. Moreover, 1 m o d p for any
a E (g), and so each honest proxy accepts.
Soundness: If any honest proxy accepts at the end of the sharing protocol,
then all honest proxies accept (since the decision is based solely on information
sent to all proxies by reliable broadcast). It suffices to show that reconstruc-
tion will be successful whenever all honest proxies accept. Let the broadcast
from step Ic of the sharing protocol (and of step 2a of the reconstruction pro-
tocol) be &, GI,. . . , &. Let the private share sent to each proxy Pi in step l b
be ,&. Let &j be the “g-log” of i i j modulo p for all j , 1 5 j 5 t, i.e., 9’3
i$ nf=, gfj’ mod p (for some z j l , . . ., z j k) . Let a be the g-log of & modulop, i.e.,
gp = nf=, gi; mod p (for some z1, . . . , ze) . Let f(z) = 6trt + * * + ;la: + 6.
Suppose that (i, b;) passes the test in step 2b of the reconstruction protocol, and
thus is used by R in its interpolation in step 2c. Then ,ai & nS=l(iij)” mod p,

and so gbi = (n;=, gf’)gb gBJi’ m o d p (for some z i , . . . , z;), and thus

step 2c of reconstruction, R will interpolate only points that lie on f(z). Further-
more, the interpolation will include all points from honest proxies who did not
complain in step 2a of the sharing protocol. Since there are at least n- 2t 2 t + 1
such points, R will successfully recover f(z), and thus find f(0) mod q , the g-log
of &. Since & passed step 3b of the sharing protocol, & E (g), i.e., the g-log of 6
is in fact the discrete log of &.
Secrecy: For every sharing protocol that is initiated by an honest dealer, the
adversary controlling t faulty proxies sees (1) the element a E (9) whose discrete
log is to be shared, (2) go’ mod p, . . . , ga’ mod p, for random a l l . . . , at E R Zp‘,
and (3) t points on f (z) = atzt+. . .+alz+P m o d p where is the discrete log of

gai = - (n;=, gft)gf(i) mod p. By uniqueness of g-logs, bi f(i) mod q. Thus, in

59

a. Suppose that the faulty proxies are Pl, . . . , Pt. The probability distribution
of the adversary's view of the protocol can be sampled by an adversary who
knows only a, as follows. Choose the t points to be (l ,p l) , . . . , (t,Pt), where
P I , . . . , ER Z,. Let b;, be the a, j entry of the inverse of the Van der Monde
matrix whose z, j entry is iJ , 0 5 a, j 5 t . Then each '11; = go' mod p can be
computed by zli = (a)b i~ nf=l(gPjb*i) mod p.

5.2 ElGamal Signatures

Using the log sharing scheme from Section 5.1 (or simple variants), we can con-
struct VES schemes for many variants of ElGamal signature [12]. For example,
let the public key be g , p , y where p is a large prime with large prime factor q,
g has order q in Zp, and y = gx m o d p for some a. Let the private key be a.
The signature of a document m is given by ~ (m) = [r, s], where r = g k mod p
for k ER Z,, and where s = k-'(m - z r) mod q . A signature can be publicly
verified by checking that gm = yTra mod p . This is a slight modification of the
original scheme proposed by ElGamal (computing s modulo q instead of modulo

Using the log sharing scheme from Section 5.1, we can construct a VES
scheme for this signature scheme. The dealer D reliably broadcasts m,r to all
proxies. Each proxy can now compute gm y-' T' mod p . D now uses
the scheme from Section 5.1 to verifiably share s to the proxies, i.e., to verifiably
share the log of r' m o d p with respect t o the base r. Instead of step 3b of the
sharing protocol, the proxies verify that r9 z 1 modp.

The reconstruction protocol for the VZS scheme is essentially the same as
the reconstruction protocol for the discrete log sharing scheme. The only modi-
fication is that each proxy also sends r to the reconstructor, who determines the
actual r by majority vote.

P - 1).

gm-"

Theorem 3 This VES scheme is t-resilient whenever n > 3t + 1.

Proof. The conditions for t-resilience are met.

Completeness: When the dealer is honest, each honest proxy accepts the log
sharing protocol, and verifies that rg 1 mod p , and thus accepts.

Soundness: Suppose that the (possibly faulty) dealer broadcasts m,P to the
proxies. If iq 1 mod p, then i has order q in Zp, and thus the assumptions for
the discrete log sharing scheme are met. The old step 3b of the sharing protocol of
the discrete log scheme is unnecessary, since r^i gmy-' mod p is known to have
order q by construction. If the honest proxies accept the log sharing protocol,
then reconstruction will successfully recover B such that ii gmy-' modp.
Thus gm

Secrecy: The adversary chooses a random r E (g), and then simulates the log
sharing protocol for gmy-' mod p , as described in part 3 of the proof of resilience
for log sharing (Theorem 2).

y'ii mod p, i.e., [.", $1 is a valid signature of m.

60

5.3 Schnorr Signatures

In a Schnorr signature, the public key is g , p , y where p is a large prime, 4 is
a large prime factor of p - 1, g has order q in Z;, and y = g" mod p for some
z. The private key is z. The signature of a document m is given by a(m) =
[c, z] where c = h(g' mod p, m) for random T and one-way hash function h, and
where z = cz + r mod q. A signature can be publicly verified by checking that
c = h(g"y-' mod p, m).

Using the log sharing scheme from Section 5.1, we can construct a VES
scheme for Schnorr signatures. The dealer D reliably broadcasts m, c, u to all
proxies, where u = gz modp. D shares z with the proxies so that they are
convinced they hold shares of the log of u mod p with respect to the base g. The
proxies accept if they accept the log sharing protocol and c = h(uy-' mod p, m).
In the reconstruction protocol, R finds u , c by majority vote from the proxies,
and reconstructs z as in the log sharing scheme.

Theorem 4 This VES scheme as t-resilient whenever n 2 3t + 1.

Proof. The conditions for t-resilience are met.
Completeness: When the dealer is honest, each honest proxy accepts the log
sharing protocol, and sees that c = h(uy-' mod p, m).
Soundness: Suppose that the (possibly faulty) dealer broadcasts m, 0,: to all
proxies. If the honest proxies accept, then (1) t = h(12y-~ mod p, m) and (2)
R will recover i as the log of 0 mod p with respect to the base g. Thus 13 =
h(giyPi mod p , m), i.e., [E , a] is a valid signature of m.

Secrecy: The adversary chooses a random r , finds w = g+ modp, finds c =
h(w, m), and finds u = w y c mod p. The adversary then follows the simulation
from part 3 of the proof of resilience for log sharing (Theorem 2).

6 VES for the DSA with Heuristic Secrecy

In this section, we consider VES schemes for which the secrecy requirement
is weakened. Previously, we have required that the adversary learns nothing
from participating in these protocols, in the strong sense that its view could be
simulated without participation. We replace this with a heuristic condition that
the adversary appears to learn nothing useful. Of course, it is impossible to prove
such an informal condition.

In the DSA, the public key is g , y, p, q where p is a large prime, q is a large
prime factor of p - 1, g is a generator of Z;, and y = g" mod p for some private
key z E Zi . The signature of a document m is a(m) = [r, s], where r = (9' mod
p) mod q for some k E R Z i , and where s = Ic-l(h(rn) + rr) mod q for a one-
way hash function h into Z i . To verify a signature, anyone can check that r =
(gulyua mod p) mod q , where u1 = h(m)s-l mod q, and where u2 = r3-l mod q.

A VES scheme with heuristic secrecy for DSA proceeds as follows. D reliably
broadcasts m, s, a to all proxies, where a = yu2 mod p. D does a verifiable share

61

of I L ~ to the proxies so that they are convinced it is the log of a modp with
respect to the base y. The proxies accept if they accept the log sharing protocol,
and if yu ad mod p , where v = (g " l a mod p) mod q. The signature will be
easy to reconstruct since r = 212s mod q.

Theorem 5 This VES scheme is t-resilient with heuristic secrecy whenever n 2
3t + 1.

Proof. The conditions for t-resilience with heuristic secrecy are met.
Completeness: When the dealer is honest, each honest proxy accepts the log
sharing protocol. Furthermore, the test y" E ad mod p will succeed for every
honest proxy, since it compares values that were reliably broadcast by the dealer.
Soundness: Suppose that the (possibly faulty) dealer broadcasts m, 3, & to
the proxies. If the honest proxies accept the log sharing protocol, then re-
construction will successfully recover 62 , the y-log of & mod p. R will recon-
struct the signature to be [Q g 3 mod q, 31. We claim that this is a valid signa-
ture of m: yUaa hi y" &gQ" mod PImod 4 mod p, and thus 6 2 3 mod q =
(g"1& mod p) mod q = (g"1y"l mod p) mod q. Thus [023 mod q , $1 passes the
test for being a valid signature of m.
Heuristic Secrecy: An adversary controlling t faulty proxies sees m, s, LY and t
shares of u ~ . The t shares reveal no useful information, since they come from a
distribution that is uniformly random. There appears to be no way to recover T

from m, 3, a, y without an ability to take discrete logs, but it is difficult to prove
this because of the complex dependencies among these values.

- -

7 Performance

As described in Section 1, this work was motivated by a practical effort to ex-
periment with a number of financial trading vehicles in real systems. We have
implemented the VZS schemes described here as part of this effort. Our present
implementation uses the arbitrary precision arithmetic package of Cryptolib [18]
and the reliable multicast protocol of Rampart [23]. This reliable multicast proto-
col, which incorporates timeouts into its methods of fault detection and recovery,
satisfies the "reliable broadcast" portion of our communication model, under the
assumption that messages from honest parties induce timeouts in other honest
parties sufficiently infrequently.

A brief summary of the performance for our implementation, in the case of
no failures, is shown in Table 1 (see Section 1). The tests described in Table 1
were performed among user processes on a network of moderately loaded, sin-
gle processor SPARCstation 10s running SunOS 4.1.3. The moduli N (for RSA
and Rabin) and p (for ElGamal, Schnorr, and DSA) were 512 bits long in these
tests. The modulus q was 160 bits long for Schnorr and DSA, and 511 bits long
for ElGamal. The column titled "share time" describes the mean latency in mil-
liseconds (ms) of the sharing protocol for each VES scheme presented, beginning
when the dealer initiates the protocol and ending when the proxies accept. This

62

cost includes the computational costs incurred by the dealer and the proxies,
as well as the communication latency of the n + 1 reliable multicasts. The pri-
vate messages from the dealer to the proxies are piggybacked on the dealer’s
reliable multicast, each encrypted so that only the intended proxy can decipher
it (using symmetric key encryption in our implementation). The column titled
“recon time” shows the computational latency incurred by the reconstructor in
the reconstruction protocol of each VES scheme. The latency of the communica-
tion from the proxies to the reconstructor (and the accompanying voting at the
reconstructor) is not included in these times, because for some applications that
we envision, proxies may not communicate to the reconstructor simultaneously.

The experience of implementing these schemes revealed a number of opportu-
nities to exploit concurrency and precomputation to improve the latency of the
protocols. For instance, in each scheme a proxy can perform many of the tests
for determining acceptance or rejection in parallel with reliably multicasting its
ALLOW/COMPLAIN message, because many of these tests depend only on in-
formation multicast from the dealer. In addition, since polynomial interpolation
is used heavily in these protocols, it is useful to compute the interpolation co-
efficients (i.e., the quantities ci; see Section 3.2) prior to executing the protocol,
if the modulus is known in advance. The numbers in Table 1 reflect the use of
both of these optimizations. Moreover, the noisy interpolation steps in the RSA
and Rabin schemes were optimized for the case t = 1; see [3] for an algorithm
for arbitrary t. The column labeled “precomp?~’ in Table 1 refers only to the
pre-sharing of polynomials in the RSA and Rabin schemes, and not to the local
precomputation of interpolation coefficients in all of the implementations.

8 Conclusions

We have identified a new cryptographic primitive for protecting digital signa-
tures, called Verifiable Signature Sharing, and have provided practical implemen-
tations of this primitive for RSA, Rabin, ElGamal, Schnorr, and DSA signatures.
Our experimental data confirms that these techniques perform sufficiently well
to be useful in a wide range of applications, including the integration of digital
cash into secure protocols. In a separate paper [14], we describe the use of these
techniques to construct a secure distributed auctioning system.

For some of our VES schemes, further speed-ups are possible by making small
modifications to the underlying signature scheme. It is an intriguing open ques-
tion to find new signature schemes that best balance the efficiencies of signature
construction, signature verification, and verifiable signature sharing.

References

1. D. Beaver, S. Micali, and P. Rogaway, “The round complexity ofsecure protocols,”

2. M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” ACM STOC 1988, 1-9.

ACM STOC 1990, 503-513.

63

3. E. Berlekamp and L. Welch, “Error correction of algebraic block codes,” U.S.

4. G. Blakely “Safeguarding cryptographic keys,” AFIPS National Computer Con-

5. D. Chaum, “Security without identification: transaction systems to make big

6. D. Chaurn, C. Crkpeau, and I. DamgLrd, “Multiparty unconditionally secure pro-

7. D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” Crypto 1988,

8. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing
and achieving simultaneity in the presence of faults,” IEEE FOCS 1985, 383-395.

9. A. DeSantis, Y. Desmedt, Y. Frankel, and M. Yung, “HOW to share a function
securely,” ACM STOC 1994, 522-533.

10. Y. Desmedt, “Threshold cryptography,” European Transactions on Telecommu-
nications and Related Technologies 5 (1994), 449-457.

11. NIST FIPS PUB 181, “Digital signature standard,” U.S. Department of Com-
merce/National Institute of Standards and Technology.

12. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Information Theory IT-31 (1985), 469-472.

13. P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,”
IEEE FOCS 1987, 4427-437.

14. M. K. Franklin and M. K. Reiter, “The design and implementation of a secure
auction service,” IEEE Symposium on Security and Privacy, Oakland, CA, 1995
(to appear).

15. 0. Goldreich, S. Micali, and A. Wigderson, “HOW to play any mental game,”
ACM STOC 1987, 218-229.

16. V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,”
In Distributed Systems (2nd edition), Chapter 5, Addison-Wesley, 1993.

17. J. Hoffman, “New power-of-attorney form is introduced,” The New York Times,
October 1, 1994.

18. J. Lacy, D. Mitchell, and W. Schell, “CryptoLib: cryptography in software,” 4th
USENIX Security Workshop, pp. 1-17, 1993.

19. L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM

20. S. Micali, “Fair public-key cryptosystems,” Crypto 1992, 113-138.
21. T. Pedersen, “Distributed provers with applications to undeniable signatures,”

Eurocrypt 1991, 221-242.
22. M. Rabin, “Digitalized signatures and public key functions as intractable as fac-

toriaation,” Technical Report MIT/LCS/TR-212, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, 1979.

23. M. K. Reiter, “Secure agreement protocols: Reliable and atomic group multicast
in Rampart,” 2nd ACM Conf. Computer and Comm. Security, 68-80, 1994.

24. B. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” CACM 21 (1978), 120-126.

25. C. Schnorr, “Efficient signature generation by smart cards,” J. Cryptology 4

26. A. Shamir, “HOW to share a secret,” CACM 22 (1979), 612-613.

Patent Number 4,633,470.

ference 48 (1979), 313-317.

brother obsolete,” CACM 28 (1985), 1030-1044.

toCOlS,” ACM STOC 1988, 11-19.

319-327.

TOPLAS 4 (1982), 382-401.

(1991), 161-174.

	Introduction
	Related Work
	Model and Definitions
	t- Resilience
	Secret Sharing

	VES for Exponentiation Based Signatures
	RSA Signatures
	Rabin Signatures

	VCS for Discrete Log Based Signatures
	Verifiable Discrete Log Sharing
	ElGamal Signatures
	Schnorr Signatures

	VES for the DSA with Heuristic Secrecy
	Performance
	Conclusions
	References

