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Abstract. We introduce Verifiable Signature Sharing (VCS), a cryp- 
tographic primitive for protecting digital signatures. VCS enables the 
holder of a digitally signed document, who may or may not be the origi- 
nal signer, to share the signature among a set of proxies so that the honest 
proxies can later reconstruct it. We present efficient VCS schemes for ex- 
ponentiation based signatures (e.g., RSA, Rabin) and discrete log based 
signatures (e.g., ElGamal, Schnorr, DSA) that can tolerate the malicious 
(Byzantine) failure of the sharer and a constant fraction of the proxies. 
We also describe our implementation of these schemes and evaluate their 
performance. Among the applications of VXS is the incorporation of dig- 
ital cash into multiparty protocols, e.g., to enable cash escrow and secure 
distributed auctions. 

1 Introduction 

In this paper we introduce a new cryptographic primitive for protecting digital 
signatures, called Verifiable Signature Sharing (VCS). VCS enables the holder 
of a digitally signed document, who may or may not be the original signer, to 
share the signature among a set of prozies  so that the honest proxies can later 
reconstruct it. At the end of the sharing phase, each proxy can verify whether 
a valid signature for the document can be reconstructed, even if the original 
signature holder and/or some proxies are malicious. In addition, malicious prox- 
ies gain no information about the signature held by an honest sharer prior to 
reconstruction (but do see the document itself). 

While VCS can be solved in theory using known cryptographic techniques, 
the approach taken here is to focus on practicalsolutions to this problem. In fact, 
our study of VES was motivated by an  effort to implement common financial 
trading vehicles in computer systems. For instance, V E S  provides an elegant 
way to escrow digital cash [5, 71: by verifiably sharing the bank’s signature of a 
bank note, the moneyholder can escrow (in the true sense) the monetary value 
of the note among the proxies. That is, each proxy can verify that the proxies 
collectively possess the cash, but the cooperation of sufficiently many proxies is 
required to spend it. This ability, in turn, facilitates secure distributed financial 
services, such as sealed-bid auctions. By having bidders escrow cash bids with a 
set of auction servers, the winner’s payment can be guaranteed while the losers’ 
payments are protected. A separate paper reports on the implementation of an 
auction service using these techniques [14]. 
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More generally, ~VES has applications whenever a signed document should
become valid only under certain conditions (e.g., a will, a "springing power of
attorney" [17], or an exchange of contracts). Verifiably sharing the document's
signature, with "trigger" instructions given to all proxies, ensures that the sig-
nature will not be released until the honest proxies believe that the triggering
events have occurred.

We have developed Vi7S schemes for many digital signature schemes, includ-
ing RSA [24] (with public exponent 3), Rabin [22], ElGamal [12], Schnorr [25],
and the Digital Signature Standard [11]. Our protocols are simple and efficient.
Sharing requires a single broadcast from the signature holder to the proxies,
followed by a single round of broadcasts among the proxies. Reconstruction
requires no interaction, beyond a single message sent from each proxy to the
reconstructor. Our protocols can tolerate a malicious shaTer and a constant frac-
tion of malicious proxies. Almost all of our protocols ensure the secrecy of the
signature in a strong sense (related to simulatability), but we consider a weaker,
heuristic notion of secrecy as well. Some of our protocols exploit precomputation
by the proxies to improve performance. We summarize our results in Table 1,
which includes performance data in milliseconds for our protocols on a network
of sPARCstation 10s, for 512-bit moduli and the minimum number of proxies
that can tolerate one faulty proxy.

scheme faults precomp? secrecy test size share time recon time
RSA (e = 3) |_(n - l)/5j yes strong n = 6 330 ms 6 ms
Rabin \_[n — l)/4j yes strong n = 5 251 ms 3 ms
ElGamal [(n - l)/3j lio strong n = 4 862 ms 321 ms
Schnorr [(re — l)/3j no strong n = 4 514 ms 117 ms
PSA ~ [(n - l)/3j no weak~ n = 4 587 ms " 116 ms

Table 1. Summary of results {n — number of proxies)

The rest of this paper is structured as follows. In Section 2, we place VSS in
the context of related work. Section 3 presents our system model and definitions.
V27S for exponentiation-based signature schemes is presented in Section 4, and
for discrete log-based schemes in Section 5. VES schemes with heuristic secrecy
are discussed in Section 6. Section 7 addresses the performance of the schemes,
including a discussion of the numbers in Table 1. We conclude in Section 8.

2 Related Work

In this section, we describe previous cryptographic research to which Verifiable
Signature Sharing is connected, and from which we have borrowed many of our
techniques.
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VES is related to, but different from, the idea of threshold signature schemes 
(see survey [lo]). Such schemes enable any subset of sufficiently many members 
of an organization to sign documents on behalf of the organization. Some of the 
functionality of our VCS schemes could be achieved by the sharer distributing 
the ability to sign the document among the proxies using a threshold signature 
scheme. One important difference is that the sharer must be the original signer 
of the document. A second difference is that a too-large coalition gains the 
ability to forge any document, rather than just reconstruct those signatures 
that are shared. We can state this second difference another way. Threshold 
signature schemes-and, more generally, function sharing schemes [9]-enable 
the efficient computation of a secret function (signing) on a public input (the 
document). VCS enables the efficient computation of a public function (signature 
verification) on a shared secret input (the signature). 

VES is related to a distributed verification protocol for undeniable signa- 
tures, due to Pedersen [21]. In an undeniable signature scheme, each signed doc- 
ument has associated with it some secret information, distinct from the signer’s 
private key. To verify an undeniable signature of a document requires interaction 
with the possessor of the corresponding secret information. Pedersen shows how 
the original signer of a document can distribute the ability to verify it. In this 
case, the signed document is public, the secret information for that signature 
is shared among the verifiers, and the private key of the signer is uninvolved in 
the verification. Some of his methods, which in turn are based on ideas from 
Feldman [13], are central to our VES schemes for ElGamal, Schnorr, and DSA. 

VCS is related to “fair public-key cryptosystems” [20]. These schemes also 
enable certain public predicates, related to encryption and decryption keys, to 
be evaluated efficiently on shared secret inputs. The shared secret input in this 
case is a private decryption key. The public predicate is that the decryption key 
bears the appropriate inverse relationship to the public key. 

The notion of secure distributed computation, or “mental games” [15, 2, 61, 
is also closely related. That work builds on secret sharing [26, 41 and verifiable 
secret sharing [8, 13, 211 techniques. General and powerful “completeness theo- 
rems” for securely evaluating arbitrary boolean or arithmetic circuits yield VES 
as a special case. However, the message complexity of these general solutions 
(and the number of encryptions) is typically a large constant times the size of 
the circuit. The circuit size of known public-key signature schemes is too large 
for these methods to be feasible. By adapting some of the techniques of earlier 
schemes in novel ways, we achieve VCS with low communication complexity. 

3 Model and Definitions 

A VES scheme is a pair of protocols (for “sharing” and “reconstructing”) involv- 
ing a dealer D (called the “sharer” in the Introduction), n proxies P I , .  . . , Pn, 
and a reconstructor R. The dealer begins with a document m and a signature 
~ ( m )  for the document, created by itself or by another. At the end of the sharing 
protocol, the honest proxies either accept or Teject. If the honest proxies accept, 
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then they know m (but not o(m)) at the end of the sharing protocol, and the 
reconstructor will know u(m) (and rn if desired) at the end of the reconstruction 
protocol. The reconstructor does not participate in the sharing protocol, and the 
dealer does not participate in the reconstruction protocol. 

Faulty parties (proxies and/or the dealer) are assumed to be controlled by 
a single adversary, who can see the contents of their memories, and can cause 
them to deviate from the protocol in an arbitrary manner (Byzantine faults). The 
reconstructor is assumed to be honest throughout the reconstruction protocol. 
Since our reconstruction protocols are non-interactive, the only effect of a faulty 
reconstructor is to prevent its own success. 

We assume that the dealer can send an authenticated message privately to 
any proxy, and that any proxy can send an authenticated message privately to 
the reconstructor. We also assume that the dealer or any proxy can reliably 
broadcast a message to the set of proxies (Byzantine Agreement [19]). More pre- 
cisely, each reliable broadcast in our VES protocols results in the same message 
being delivered to all honest proxies (and thus is te~rninatingin the sense of [16]), 
and this message is the same as the message broadcast if the sender is honest. 

Finally, the dealer and the proxies are assumed to know the public key of the 
original signer, which is assumed to be a valid public key. 

3.1 t- Resilience 

We say that our VES scheme is t-resilient if the following conditions hold: 

Completeness: If the dealer is honest, and at most t proxies are faulty, then 
each honest proxy will accept. 
Soundness: If at most t proxies are faulty and any honest proxy accepts at the 
end of the sharing protocol, then every honest proxy accepts at the end of the 
sharing protocol and reconstruction will be successful (regardless of whether the 
dealer is honest or faulty). 
Secrecy: Anything that can be computed by an adversary that controls up to t 
faulty proxies, after participating in k sharing protocols with an honest dealer, 
can also be computed by the adversary without participating in any sharing 
protocols (i.e., from the k unsigned documents and the public keys of the original 
signer). 

We will say that our VES scheme is t-resilient with “heuristic secrecy” if 
only completeness and soundness can be proven, while heuristic evidence sup- 
ports some weaker version of secrecy, e.g., that no “useful” information c a n  be 
computed from what is seen by a computationally bounded adversary. 

3.2 Secret Sharing 

Our protocols make extensive use of the polynomial based secret sharing scheme 
due to Shamir [26]. A dealer wishes to share a secret s, from a finite field F ,  
among n parties. The dealer chooses al ,  . . . , at from the uniform distribution 
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on F ;  this is denoted all.. .at E R  F .  Let g(c) = atz‘ + . . -  + ala: + S. Party i 
is given the share (i, g ( i ) ) ,  1 5 i 5 n. The parties S c (1.. .n}, IS1 = t + 1, 
can recover the secret using the Lagrange formula for interpolation (2 = 0): 
g ( z )  = CiES c ig( i ) ,  where ci = I-I. . .(z - j)(i - j)-’. No subset of up to t 
shares yields any information about the secret. 

Our VZS schemes for exponentiation based signatures use polynomial based 
secret sharing over the ring Z,, where N is the product of two large primes. The 
properties of secret sharing still hold in this case (e.g., see [9]). In particular, the 
Lagrange interpolation formula is well-defined as long as n is smaller than the 
prime factors of N (and thus (i - j )- ’  mod N always exists). 

3 E SB.7 # I  

4 VES for Exponentiation Based Signatures 

In this section, we present VES schemes for exponentiation based signature 
schemes, i.e., RSA with public exponent 3, and Rabin. The following is an infor- 
mal description of how the protocol works for RSA. The signature is the cube 
root of the hash of a document. The dealer uses Shamir’s polynomial based secret 
sharing scheme to share the signature among the n proxies, using some degree 
t polynomial. The dealer then broadcasts the corresponding points of the cube 
of this polynomial. The proxies convince themselves that (1) a value has been 
shared using a degree t polynomial; and (2) the cube of this polynomial shares 
the cube of the signature, i.e., the hash of the document itself. This is enough 
to ensure that reconstruction will be successful. 

To improve the communication complexity of the sharing protocol, we will 
assume in this section that the proxies have performed some precomputation 
before participating in any sharing or reconstruction. Specifically, the i th proxy 
knows (only) the value a t  i of a large number of random degree t polynomials. 
One such “pre-shared” polynomial will be used per execution of the sharing 
protocol. The proxies can then convince themselves that the signature-sharing 
polynomial has degree t by adding one of the pre-shared polynomials to  it, 
and verifying the degree of the sum. The proxies can precompute these pre- 
shared polynomials using standard multi-party secure computation protocols. 
The computation for all shared polynomials can proceed in parallel, requiring 
only a constant number of rounds of communication. Alternatively, a single 
trusted source can provide the proxies with such values, and then destroy itself. 

4.1 RSA Signatures 

Suppose that the signature scheme is (“hashed”) RSA with encrypting exponent 
e = 3, decrypting exponent d ,  and modulus N. The dealer begins with m, ~ ( r n ) ,  
where ~ ( m )  = ( / ~ ( m ) ) ~  mod N for some publicly known one-way hash function 
h. Assume that pl(z),pz(z), . . . are a supply of random degree t polynomials 
shared among the proxies, i.e., each proxy P; holds pl(i),pZ(i),.. .. No proxy 
knows anything further about these polynomials. The polynomial pj(z) will be 
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used in the j t h  sharing protocol. We do not consider concurrent executions of 
the sharing protocol. 

Sharing Protocol 

1. D sends messages privately and by reliable broadcast to  the proxies: 
a. D chooses a t , .  . . , a1 E R  ZN, and finds f(z) = atat + . . + alz + a(m). 
b. D + P; privately: y; = f ( i )  mod N (for all i, 1 5 i 5 n). 

c. D -+ P I ,  . . . P, by reliable broadcast: rn, y: mod N ,  . . . , y: mod N .  
2. Let the broadcast values (from lc) be denoted m, 21, . . . , z,. Assume that this 

is the j t h  sharing protocol in which the proxies are participating. Each proxy 
P; computes T; = p ,  (i) +yj mod N ,  and makes the following reliable broadcast 
to  all proxies: 
a. ( ~ i ,  COMPLAIN), if z, # y: mod N .  
b. ( T , ,  ALLOW), otherwise. 

ditions are met (and REJECTS otherwise): 
a .  The values 2 1 ,  . . . , z, lie on a polynomial g of degree at most 3t .  
b. g(0) = h(m). 
c. The values TI, . . . , T,  that were reliably broadcast (in 2) lie on a polynomial 

f' of degree t ,  with at most t errors. (Any nonsensical response is counted 
as an error.) 

d. At most t proxies COMPLAINED (in 2a) or contributed an error to f' (in 

3. Without further communication, each proxy ACCEPTS if the following con- 

3c) * 

Reconstruction Protocol 

1. Each proxy P, sends to  R the following information: 
a. The value yi that was privately sent to  it (in l b  of the sharing protocol); 
b. The values z1,. . ., z, that were reliably broadcast (in l c  of the sharing 

c. The error locations (proxy identities) in the degree t polynomial f' com- 
protocol); 

puted at the end of the sharing protocol. 
2. Without further communication, R reconstructs the signature as follows: 

a. R finds 21,. . . , zn by majority vote of the lists received in l b  of this protocol. 
b. R finds ERROR-LOCS, the majority vote of the lists of error locations 

received in l c  of this protocol. 
c. R discards every private share y, (received in la  of this protocol) such that 
zi # y! mod N or such that i is in ERROR-LOCS. 

d.  R interpolates the remaining private shares (received in la of this protocol) 
to  find a degree t polynomial (with no errors). The signature is taken to be 
the value of the resulting polynomial at zero. 

Theorem 1 This VES scheme is t-resilient whenever n 2 5t + 1. 
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Proof. It suffices to show that the three conditions for t-resilience are satisfied. 
Suppose at most t proxies are faulty. 

Completeness: If the dealer is honest, then 21, . . . , z,, lie on the polynomial 
g(z) = ( f ( ~ ) ) ~ ,  which is of degree at  most 3t (since the degree o f f  is at most t ) .  
So, each honest proxy will recover g through interpolation. Only a faulty proxy 
will complain or give a bad ri in step 2, so at  most t are seen to do SO by each 
honest proxy. Thus all honest proxies will accept. 

Soundness: We claim that the reconstruction protocol will be successful, and 
all honest proxies will accept, whenever any honest proxy accepts at the end of 
the shaTing protocol, Let & be the value sent privately by the (possibly faulty) 
dealer D to Pi, let rn, 21,. . . ,in be the values broadcast by fi to the proxies, 
and let $i be the value broadcast by Pi to the other proxies. If any honest proxy 
accepts during the sharing protocol, then every honest proxy will accept (since 
the information on which they base their decisions was all received by reliable 
broadcast). It suffices to show that the reconstruction will be successful when 
all honest proxies accept. 

If all honest proxies accept, then all found the same degree t polynomial 
through + I , .  . . , in with at most t errors. Since all honest proxies agree on the 
polynomial, all sent the same error locations to R, and so ERROR-LOCS will 
consist of exactly these locations (by majority vote). R will also recover 21, . . . ,in 
exactly as they were reliably broadcast by B, again by majority vote from the 
honest proxies. Since a degree t polynomial passes through $1,. . .,in minus 
points at ERROR-LOCS, a (different) degree t polynomial f passes through 
$1,. . . , $n minus points at ERROR-LOCS and faulty proxies (except with neg- 
ligible probability). The points 61,. . . , Cn minus points at complainer locations 
and faulty proxies have cubes that agree with 21, . . . , in. 

Let 4 be the unique degree 3t polynomial that passes through 21,. . . ,in. Then 
f3 and 6 agree at  the points of all proxies minus complainers, error locations, and 
faulty proxies. Thus they have at least n - 2t 2 3t + 1 points in common. Since 
both are degree 3 4  this means that = 6. Thus it only remains to be shown 
that R recovers f .  The points from all honest proxies, minus error locations 
and complainers, are included in the interpolation by R, and a point from a 
faulty proxy is included only when it lies on f (since otherwise its cube will be 
inconsistent). Hence at least t + 1 points are included, and so f is recovered. 

Secrecy: For every sharing protocol that is executed with an honest dealer, 
the adversary sees a random degree 3t polynomial g that passes through the 
hash of the document, a random degree t polynomial f' (together with "allow" 
messages from the honest proxies), and at most t points on the cube root of g. 
This probability distribution can be sampled by an adversary who knows only 
the document that is being signed: choose f * at random; choose t random values 
to be the cube roots, cube them, and then find a random degree 3t polynomial g 
that passes through the hash of the document and the cubes (t + 1 points). For 
any computation that involves participation in sharing protocols, the adversary 
could perform an equivalent computation by simulating its participation instead. 
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4.2 Rabin Signatures 

Using Rabin's signature scheme, n(m) = mod N, where h is a one-way 
hash function and the factorization of N is the private key of the signer. The 
same scheme as for RSA signatures now works (with squares instead of cubes). 
Protection against t faulty proxies requires n 2 4t + 1. 

5 

In this section, we present VES schemes for discrete log based signature schemes, 
illustrating our methods with ElGamal and Schnorr signature schemes. 

VCS for Discrete Log Based Signatures 

5.1 Verifiable Discrete Log Sharing 

Central to our VES schemes is a scheme to verifiably share the discrete log of 
a public value. This scheme is essentially the Verifiable Secret Sharing scheme 
due to Pedersen [21], although small differences arise from differences in security 
models. We assume that p , q , g  are known to all parties before the start of the 
protocol, where p is a large prime, q is a large prime factor of p - 1, and where 
g has order g in 2; , i.e., ( 9 )  = { g l  mod p, . . . , g p - l  mod p }  has g elements. The 
dealer broadcasts a and shares a value p, claiming that (1) a E (g), and (2) p is 
the discrete log of a modulo p with respect to the base 9. The sharing protocol 
ends with the proxies convinced of this claim. 

Sharing Protocol 

1. D sends messages privately and by reliable broadcast to the proxies: 
a. D chooses a t , .  . . , a1 ER Z,,, and finds f(z) = atzt + . . . + ala + P. 
b. D -+ P; privately: pi = f ( i )  mod g (for all i, 1 5 i 5 n). 
c. D + P I ,  . . . , Pn by reliable broadcast: a, gal  mod p ,  . . . , 9'' mod p .  

makes the following reliable broadcast to all proxies: 
a. COMPLAIN if gpi $ a n i = l ( u j ) i J  mod p .  
b. ALLOW otherwise. 

3. Without further communication, each proxy ACCEPTS if the following are 
true (and REJECTS otherwise): 
a. At most t proxies COMPLAINED (in 2a). (Any nonsensical response is 

counted as a COMPLAIN.) 
b. aq f 1 modp. 

2. Let the broadcast values (from lc) be denoted a, u1,. . . , ut. Each proxy Pi 

Reconstruction Protocol 

1. Each proxy P, sends to R the following information: 
a. The value p; that was privately sent to it (in l b  of the sharing protocol); 
b. The values a, ul, . . . , ut that were reliably broadcast (in l c  of the sharing 

protocol) ; 



2. Without further communication, R finds the discrete log of CY as follows: 
a .  R finds a, 211,. . ., ut by majority vote of the lists received in step l b  of this 

protocol. 
b. R discards every private share pi (received in la  of this protocol) that is 

inconsistent with a, u1,. . . , ut, i.e., if gp’ $ Q n;=l(Uj,” mod p. 
c. R interpolates the remaining private shares (received in la of this protocol) 

to  find a polynomial in Z , [ z ]  of degree at  most t (with n o  errors). The 
discrete log is taken to be the value a t  zero of this polynomial. 

The definition of t-resilience for VES from Section 3.1 can be extended in the 
obvious way to log sharing schemes. For the proof (of soundness) of the following 
theorem, i t  will be useful to define the “g-log” of an element of 2;. Choose 
gl,.. . , gk such that every element y E 2; can be written as gz n,=, g;”’ mod p 
for exactly one z ,  0 5 z 5 q - 1. Call z the “g-log” of y mod p. 

Theorem 2 This Zog sharing scheme is t-resilient whenever n 2 3t + 1. 

k 

Proof. The conditions for t-resilience are met. 
Completeness: No honest proxy complains in step 2a when the dealer is honest, 
and so at most t complaints are broadcast. Moreover, 1 m o d p  for any 
a E (g), and so each honest proxy accepts. 
Soundness: If any honest proxy accepts at the end of the sharing protocol, 
then all honest proxies accept (since the decision is based solely on information 
sent to all proxies by reliable broadcast). It suffices to  show that reconstruc- 
tion will be successful whenever all honest proxies accept. Let the broadcast 
from step Ic of the sharing protocol (and of step 2a of the reconstruction pro- 
tocol) be &, GI,. . . , &. Let the private share sent to each proxy Pi in step l b  
be ,&. Let &j  be the “g-log” of i i j  modulo p for all j ,  1 5 j 5 t, i.e., 9’3 
i$ nf=, gfj’ mod p (for some z j l ,  . . ., z j k ) .  Let a be the g-log of & modulop, i.e., 
gp = nf=, gi; mod p (for some z1, .  . . , ze) .  Let f(z) = 6trt + * * + ;la: + 6. 
Suppose that (i, b;) passes the test in step 2b of the reconstruction protocol, and 
thus is used by R in its interpolation in step 2c. Then ,ai & nS=l(iij)” mod p, 

and so gbi = (n;=, gf’)gb gBJi’ m o d p  (for some z i ,  . .  . , z;), and thus 

step 2c of reconstruction, R will interpolate only points that lie on f(z).  Further- 
more, the interpolation will include all points from honest proxies who did not 
complain in step 2a of the sharing protocol. Since there are at  least n- 2t  2 t + 1 
such points, R will successfully recover f(z), and thus find f(0) mod q ,  the g-log 
of &. Since & passed step 3b of the sharing protocol, & E (g), i.e., the g-log of 6 
is in fact the discrete log of &. 
Secrecy: For every sharing protocol that is initiated by an honest dealer, the 
adversary controlling t faulty proxies sees (1) the element a E (9) whose discrete 
log is to be shared, (2) go’ mod p, . . . , ga’ mod p, for random a l l . .  . , at E R  Zp‘, 
and (3) t points on f (z)  = atzt+. . .+alz+P m o d p  where is the discrete log of 

gai = - (n;=, gft)gf(i) mod p. By uniqueness of g-logs, bi f(i) mod q. Thus, in 
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a. Suppose that the faulty proxies are Pl, . . . , Pt. The probability distribution 
of the adversary's view of the protocol can be sampled by an adversary who 
knows only a, as follows. Choose the t points to  be ( l ,p l ) ,  . . . , (t,Pt), where 
P I , .  . . , ER Z,. Let b;, be the a, j entry of the inverse of the Van der Monde 
matrix whose z, j entry is iJ ,  0 5 a, j 5 t .  Then each '11; = go' mod p can be 
computed by zli = (a )b i~  nf=l(gPjb*i) mod p. 

5.2 ElGamal Signatures 

Using the log sharing scheme from Section 5.1 (or simple variants), we can con- 
struct VES schemes for many variants of ElGamal signature [12]. For example, 
let the public key be g , p ,  y where p is a large prime with large prime factor q,  
g has order q in Zp, and y = gx m o d p  for some a. Let the private key be a. 
The signature of a document m is given by ~ ( m )  = [r, s], where r = g k  mod p 
for k ER Z,, and where s = k-'(m - z r )  mod q .  A signature can be publicly 
verified by checking that gm = yTra mod p .  This is a slight modification of the 
original scheme proposed by ElGamal (computing s modulo q instead of modulo 

Using the log sharing scheme from Section 5.1, we can construct a VES 
scheme for this signature scheme. The dealer D reliably broadcasts m,r to  all 
proxies. Each proxy can now compute gm y-' T' mod p .  D now uses 
the scheme from Section 5.1 to verifiably share s to  the proxies, i.e., to  verifiably 
share the log of r' m o d p  with respect t o  the base r.  Instead of step 3b of the 
sharing protocol, the proxies verify that r9 z 1 modp. 

The reconstruction protocol for the VZS scheme is essentially the same as 
the reconstruction protocol for the discrete log sharing scheme. The only modi- 
fication is that each proxy also sends r to the reconstructor, who determines the 
actual r by majority vote. 

P -  1). 

gm-" 

Theorem 3 This VES scheme is t-resilient whenever n > 3t + 1. 

Proof. The conditions for t-resilience are met. 

Completeness: When the dealer is honest, each honest proxy accepts the log 
sharing protocol, and verifies that rg 1 mod p ,  and thus accepts. 

Soundness: Suppose that the (possibly faulty) dealer broadcasts m,P to the 
proxies. If iq 1 mod p, then i has order q in Zp, and thus the assumptions for 
the discrete log sharing scheme are met. The old step 3b of the sharing protocol of 
the discrete log scheme is unnecessary, since r^i gmy-' mod p is known to have 
order q by construction. If the honest proxies accept the log sharing protocol, 
then reconstruction will successfully recover B such that ii gmy-' modp. 
Thus gm 

Secrecy: The adversary chooses a random r E (g), and then simulates the log 
sharing protocol for gmy-' mod p ,  as described in part 3 of the proof of resilience 
for log sharing (Theorem 2). 

y'ii mod p, i.e., [.", $1 is a valid signature of m. 
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5.3 Schnorr Signatures 

In a Schnorr signature, the public key is g , p , y  where p is a large prime, 4 is 
a large prime factor of p - 1, g has order q in Z;, and y = g" mod p for some 
z. The private key is z. The signature of a document m is given by a(m)  = 
[c, z]  where c = h(g' mod p, m) for random T and one-way hash function h, and 
where z = cz + r mod q. A signature can be publicly verified by checking that 
c = h(g"y-' mod p, m). 

Using the log sharing scheme from Section 5.1, we can construct a VES 
scheme for Schnorr signatures. The dealer D reliably broadcasts m, c, u to  all 
proxies, where u = gz modp. D shares z with the proxies so that they are 
convinced they hold shares of the log of u mod p with respect to the base g. The 
proxies accept if they accept the log sharing protocol and c = h(uy-' mod p, m). 
In the reconstruction protocol, R finds u , c  by majority vote from the proxies, 
and reconstructs z as in the log sharing scheme. 

Theorem 4 This VES scheme as t-resilient whenever n 2 3t + 1. 

Proof. The conditions for t-resilience are met. 
Completeness: When the dealer is honest, each honest proxy accepts the log 
sharing protocol, and sees that c = h(uy-' mod p, m). 
Soundness: Suppose that the (possibly faulty) dealer broadcasts m, 0,: to all 
proxies. If the honest proxies accept, then (1) t = h(12y-~ mod p, m) and (2) 
R will recover i as the log of 0 mod p with respect to the base g. Thus 13 = 
h(giyPi mod p ,  m), i.e., [E ,  a] is a valid signature of m. 

Secrecy: The adversary chooses a random r ,  finds w = g+ modp, finds c = 
h(w, m), and finds u = w y c  mod p. The adversary then follows the simulation 
from part 3 of the proof of resilience for log sharing (Theorem 2). 

6 VES for the DSA with Heuristic Secrecy 

In this section, we consider VES schemes for which the secrecy requirement 
is weakened. Previously, we have required that the adversary learns nothing 
from participating in these protocols, in the strong sense that its view could be 
simulated without participation. We replace this with a heuristic condition that 
the adversary appears to  learn nothing useful. Of course, it is impossible to prove 
such an informal condition. 

In the DSA, the public key is g ,  y, p, q where p is a large prime, q is a large 
prime factor of p - 1, g is a generator of Z;, and y = g" mod p for some private 
key z E Zi .  The signature of a document m is a(m) = [r, s], where r = (9' mod 
p) mod q for some k E R  Z i ,  and where s = Ic-l(h(rn) + rr) mod q for a one- 
way hash function h into Z i .  To verify a signature, anyone can check that r = 
(gulyua mod p) mod q ,  where u1 = h(m)s-l mod q,  and where u2 = r3-l mod q. 

A VES scheme with heuristic secrecy for DSA proceeds as follows. D reliably 
broadcasts m, s, a to all proxies, where a = yu2 mod p. D does a verifiable share 
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of I L ~  to the proxies so that they are convinced it is the log of a modp  with 
respect to the base y. The proxies accept if they accept the log sharing protocol, 
and if yu ad mod p ,  where v = ( g " l a  mod p) mod q. The signature will be 
easy to reconstruct since r = 212s mod q. 

Theorem 5 This VES scheme is t-resilient with heuristic secrecy whenever n 2 
3t + 1. 

Proof. The conditions for t-resilience with heuristic secrecy are met. 
Completeness: When the dealer is honest, each honest proxy accepts the log 
sharing protocol. Furthermore, the test y" E ad mod p will succeed for every 
honest proxy, since it compares values that were reliably broadcast by the dealer. 
Soundness: Suppose that the (possibly faulty) dealer broadcasts m, 3, & to 
the proxies. If the honest proxies accept the log sharing protocol, then re- 
construction will successfully recover 62 ,  the y-log of & mod p. R will recon- 
struct the signature to  be [ Q g 3  mod q,  31. We claim that this is a valid signa- 
ture of m: yUaa hi y" &gQ" mod PImod 4 mod p, and thus 6 2 3  mod q = 
(g"1& mod p) mod q = (g"1y"l mod p )  mod q. Thus [023 mod q ,  $1 passes the 
test for being a valid signature of m. 
Heuristic Secrecy: An adversary controlling t faulty proxies sees m, s, LY and t 
shares of u ~ .  The t shares reveal no useful information, since they come from a 
distribution that is uniformly random. There appears to  be no way to recover T 

from m, 3, a, y without an ability to take discrete logs, but it is difficult to prove 
this because of the complex dependencies among these values. 

- -  

7 Performance 

As described in Section 1, this work was motivated by a practical effort to ex- 
periment with a number of financial trading vehicles in real systems. We have 
implemented the VZS schemes described here as part of this effort. Our present 
implementation uses the arbitrary precision arithmetic package of Cryptolib [18] 
and the reliable multicast protocol of Rampart [23]. This reliable multicast proto- 
col, which incorporates timeouts into its methods of fault detection and recovery, 
satisfies the "reliable broadcast" portion of our communication model, under the 
assumption that messages from honest parties induce timeouts in other honest 
parties sufficiently infrequently. 

A brief summary of the performance for our implementation, in the case of 
no failures, is shown in Table 1 (see Section 1). The tests described in Table 1 
were performed among user processes on a network of moderately loaded, sin- 
gle processor SPARCstation 10s running SunOS 4.1.3. The moduli N (for RSA 
and Rabin) and p (for ElGamal, Schnorr, and DSA) were 512 bits long in these 
tests. The modulus q was 160 bits long for Schnorr and DSA, and 511 bits long 
for ElGamal. The column titled "share time" describes the mean latency in mil- 
liseconds (ms) of the sharing protocol for each VES scheme presented, beginning 
when the dealer initiates the protocol and ending when the proxies accept. This 
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cost includes the computational costs incurred by the dealer and the proxies, 
as well as the communication latency of the n + 1 reliable multicasts. The pri- 
vate messages from the dealer to  the proxies are piggybacked on the dealer’s 
reliable multicast, each encrypted so that only the intended proxy can decipher 
it (using symmetric key encryption in our implementation). The column titled 
“recon time” shows the computational latency incurred by the reconstructor in 
the reconstruction protocol of each VES scheme. The latency of the communica- 
tion from the proxies to the reconstructor (and the accompanying voting at the 
reconstructor) is not included in these times, because for some applications that 
we envision, proxies may not communicate to  the reconstructor simultaneously. 

The experience of implementing these schemes revealed a number of opportu- 
nities to  exploit concurrency and precomputation to  improve the latency of the 
protocols. For instance, in each scheme a proxy can perform many of the tests 
for determining acceptance or rejection in parallel with reliably multicasting its 
ALLOW/COMPLAIN message, because many of these tests depend only on in- 
formation multicast from the dealer. In addition, since polynomial interpolation 
is used heavily in these protocols, it is useful to compute the interpolation co- 
efficients (i.e., the quantities ci; see Section 3.2) prior to executing the protocol, 
if the modulus is known in advance. The numbers in Table 1 reflect the use of 
both of these optimizations. Moreover, the noisy interpolation steps in the RSA 
and Rabin schemes were optimized for the case t = 1; see [3] for an algorithm 
for arbitrary t. The column labeled “precomp?~’ in Table 1 refers only to the 
pre-sharing of polynomials in the RSA and Rabin schemes, and not to the local 
precomputation of interpolation coefficients in all of the implementations. 

8 Conclusions 

We have identified a new cryptographic primitive for protecting digital signa- 
tures, called Verifiable Signature Sharing, and have provided practical implemen- 
tations of this primitive for RSA, Rabin, ElGamal, Schnorr, and DSA signatures. 
Our experimental data confirms that these techniques perform sufficiently well 
to  be useful in a wide range of applications, including the integration of digital 
cash into secure protocols. In a separate paper [14], we describe the use of these 
techniques to  construct a secure distributed auctioning system. 

For some of our VES schemes, further speed-ups are possible by making small 
modifications to the underlying signature scheme. It is an intriguing open ques- 
tion to  find new signature schemes that best balance the efficiencies of signature 
construction, signature verification, and verifiable signature sharing. 
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