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Abstract. In this paper we consider the bit-security of two types of 
universal hash functions: linear functions on GF[2”] and linear functions 
on the integers modulo a prime. We show individual security for a l l  bits 
in the first case and for the O(1og n) least significant bits in the second 
case. Both types of functions are shown to have O(log7a) simultaneous 
secure bits. For the second type of functions, primes of length D(n) are 
needed. 
Together with the Goldreich-Levin theorem, this shows that all the com- 
mon types of universal hash functions provide so called hard-core bits. 

1 Introduction 

Most cryptographic protocols are based on the access to some source of random 
bits. Examples of such protocols are private key crypto systems, authentica- 
tion schemes, commitment schemes etc. For practical purposes it is desirable to  
reduce the number of true random bits needed. Instead we would like to deter- 
ministically expand a short truly random sequence into a longer one that is “just 
as good” as a truly random sequence of the same length. In other words we would 
like to  deterministically produce some “extra” bits that “look” totally random. 
So called hard-core bits can serve as these extra bits. Intuitively, a hard-core bit 
is a 0-1 function that cannot be approximated essentially better than simply 
guessing it. 

Another common technique is to  try to make “slightly random” sources more 
random looking. This can be achieved by means of universal hash functions, first 
introduced by Carter & Wegman in [2]. Such hash functions will map elements 
pairwise independently and the image of each element will be uniformly dis- 
tributed. Universal hash functions have been used extensively in the construction 
of pseudo random number generators (PRG’s), see for instance [5 ] .  

This paper is concerned with the relation between universal hash functions 
and hard-core bits. The first function that was shown to provide hard-core bits is 
the usual inner product taken modulo 2. This was done by Goldreich and Levin 
in [4]. This inner product was from [2] known to be a universal hash function. 
The natural question is therefore: Can we obtain hard-core bits from the other 
known universal hash functions as well? More generally, does every universal 
hash function have such hard bit(s)? Not  very surprisingly we will answer the 
first question positively. Even if the second question also could be answered 
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positively, some new proof technique seems to be needed and we must leave this 
an open problem. 

After giving some notation we first go about hash functions given by linear 
functions in a finite field of characteristic 2. Here we show that for randomly 
chosen a , z , b  E GF[2"], any single bit of the function z H az + b is a hard- 
core bit. Also, the O(1ogn) least significant bits are shown to be simultaneously 
hard-core. Next we study hash functions obtained as linear functions on the 
integers modulo a prime. Using an adaptation of the techniques used by Chor 
et al. in [l], [3], we itre able to prove both individual and simultaneous hardness 
for O(1ogn) bits. Primes of length n ( n )  are needed though. 

2 Preliminaries 

The model of computation used is that of probabilistic Turing machines. We will 
only be interested in such machines that run in time polynomial in the length of 
the input, pptm's for short. The length of the input to such a machine is referred 
to by n. In general, we denote by Iyl the length of the binary string y. By z Ecr S 
we mean an z chosen from the set S according to the uniform distribution. If S 
is a set, llSll is the cardinality of S. 

We call a function g(n)  negligible if for every constant c > 0 and for every 
sufficiently large n, g(n)  < n-c.  

By a one-way funct ion we mean a function f such that for every pptm, 
M, the probability that M on input f(z) finds an 2' E f-'(z) is negligible. 
The probability is taken over z (0,l)" and M's random coin flips. For 
simplicity all one-way function in this paper are assumed to be length-preserving, 
i.e. If(.)[ = 121. 

Let H be an efficiently sampleable family of functions were each h E H is 
computable in deterministic polynomial time and maps (0,1}" t+ (0, l}'(n), 
l ( n )  5 n. Let f be a one-way function. An approximation algorithm for H is 
a pptm that on input f(z) and the description of h E H tries to compute 
h ( z ) .  We call H a family of hard-core funct ions f o r  f with security s (n)  if for 
all approximation algorithms A: P r [ A ( f ( z ) ,  h) = h(z ) ]  < 2-'(") + s (n) .  The 
probability is taken over z EV (0, l}", h EU H and A's random choices. (When 
l (n)  = 1 we have a family of hard-core predicates.) We will sometimes just 
say that H is s(n)-secure and if H is s(n)-secure for all non-negligible s(n)  we 
simply call H a family of hard-core functions. If indeed for some A and ~ ( n ) ,  
P r [ A ( f ( z ) ,  h) = h(z)]  2 2-'(") + s(n) holds, we call A an s(n)-oracle for H. 

The following fact (a version of the Goldreich-Levin theorem from [4]) will 
be useful: 

Fact 1. Let ( T ,  z) denote the inner product,  I;='=, T ~ z , .  T h e  fami ly  offunct ions:  
b , ( z )  = (2, r )  (0 , l ) "  is Q fami ly  of hard-core predicates for 
any one-way f u n d i o n .  

Generalizing, any one-way funct ion has Q fami ly  of hard-core functions,  B, 
defined ( I S  follows: Let Ic E O(1ogn) and let T I ,  ~ 2 , .  . . , rk Eu (0, l}". Then  
13rl,r2,.,,,r,.(~) = br, (z) 0 b r , ( z )  o * 

(mod 2) for r 

o brk(x), where o means Concatenation. 
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Finally, a family of (strong) universal hash functions (UHF's) is a set of 
functions, If,,,, with each h E H,,,,,, such that h : {O, 1)" H { 0 ,  l}", n 5 n, 
and for any z1 # 2 2  E (0, l )"  and any y1, yz E (0, I}? 

~ ' % E H , , ,  [ ~ ( X I )  = Yi A h(t2) = y2] = 2-2m. 

Throughout this paper Y < k >  denotes the k least significant bits in y. For the 
special case y<1>, we write lsb(y). 

3 Hash functions given by linear functions on GF[P] 

3.1 Notation 

We will here study the family { ~ A , B ( X )  = A(t)X(t) + B(1) I A ,  B E v  GF[2"]}. 
AS usual, GF[2n] is the field of 2" elements. We assume that we have a represen- 
tation of the field as H B [ t ] / Q ( t )  where Q is an irreducible polynomial of degree 
n, Cy='=, Q;t'. We map elements 3: E (0 , l )"  to GF[2"] in the natural way by 

n 

We will use small letters (such as x) when we refer to values as binary strings 
and capital letters (such as X )  when we have polynomials. 

The notion of Isb is not well defined in GF[2"]. However it turns out that 
what bit we interpret as least significant really does not matter so let us for the 
moment define it as the constant term in the polynomials. Finally, note that the 
addition below is modulo 2. 

3.2 

We aim to show 

Theorem2. The family { l s b ( h A , B ( X ) )  I A ,  B EU Gq2.l) is  a family  of hard- 
core predicates, i .e.  it is  n-' secure for any c > 0 .  

The idea behind the proof is simple and quite intuitive. We will set' up a 1-1 
correspondence between the usual inner-product bit mod 2 and the lsb in the 
above representation. 

Observe that for any two polynomials P ( t ) ,  S( t )  we have lsb(P(t) + S( t ) )  = 
lsb(P(t)) + lsb(S(t)) so that we, for the moment, can forget about B(t)  above. 
As before, let (z, r )  be the inner product of the n-vectors r and z. 

Lemma3. Given m y  r E (0 , l ) "  ihere is a unique polynomial R(t) E GF[2"] 
such that for all  x E (0 , l )"  we have 

Security of lsb(A(t)X(t) + B ( t ) )  

(2, r )  (mod 2 )  = I s b ( b ( x ) R ( t ) ) .  (1) 

Furthermore, R(t)  can be found in polynomial t ime.  
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Proof.  Let L1 be the set of all linear functions (0,l)" CI (0,1} and Lz the set of 
all linear functions GF[2"] H (0,1}. First note that distinct r's define distinct 
linear functions: (z, r )  (mod 2) and distinct polynomials R(t) define distinct 
linear functions lsb(R(t)X(t)). Since llLlll = l lL~ll  = 2", all function in L1 can 
be expressed as (2, r )  (mod 2) for some r E {0,1}" and all functions in L2 can 
be written as Isb(R(t)X(t)) for some R(t) E GF[2"]. We conclude that there 
is a bijection between the respective set of linear functions. Finally, given the 
values of (2, r )  (mod 2) for n lineary independent z's we can in polynomial 
time, using standard linear algebra methods, find a corresponding polynomial 

0 

We can now reduce the problem of approximating the inner product to  the 
problem of approximating lsb(hA,B(X)). Theorem 2 then follows from Fact 1: 

Proof.  (Of Theorem 2.) Let T be an G(n)-oracle for lsb(A(t)X(t) + B ( t ) ) .  On 
input r Ecr (0, 1}", y = f(z), do the following: Using Lemma 3 find the unique 
R(t)  E GF[2"] such that ( r , z )  (mod 2) = lsb(R(t)d(z)) for all z E (0, l}". 
Choose B(t)  EV GF[2"] and run T on input (R, 8, y). Suppose that T outputs 
7. Output lsb(B(t)) + 7. 

If r is uniformly distributed in (0, l}", R will be uniformly distributed in 
GF[Sn]. Thus the success probability is exactly the same as that of T. The 
reduction is clearly polynomial time. 

Summing up, if b(n)  is non-negligible, we now have an approximation a lge  
rithm for the inner product bit, also with non-negligible success probability, a 
contradiction to the Goldreich-Levin theorem. 0 

R(t) E GF[2"] such that (1) is satisfied for all +(z) = X(t)  E GF[2"]. 

In fact there is nothing special about the least significant bit. 

Corollary4. A n y  single f i t ed  bit posit ion (coeficient)  in  the f a m i l y  { ~ A , B ( X )  I 
A, B Ecr GF[2"]} i s  a fami ly  of hard-core predicaies.  

Proof.  The proof is the same as before. Just note that each single bit of R(t)X(t) 
0 is a linear function GF[2"] H {0,1}. 

3.3 Simultaneous security 

The same technique as above can be used to prove 

Theorem 5. Let c be a constant.  The  f a m i l y  {(A(t)X(t)+B(t))<, log"> I A, B Eu 
GF[2"]} i s  a fami ly  of hard-core funct ions.  In general any set of O(1ogn) bits 
consti tute a fami ly  hard-core funct ions.  

The theorem will follow from the following two lemmas, the first being the well 
known XOR-lemma, see IS]. A function, h : {0,1}" H (0, l}'("), is called length- 
regular if I(n) increases with n. 

Lemma6. Let { h }  be a set  fami ly  of length-regular funct ion with lh(z)I E 
O(1ogn). Then  { h }  is a f a m i l y  of hard-core funct ions if, and only if, ihe exclusiue- 
o r  of any non-empty subset of i t s  bits is  a fami ly  hard-core predicates.  
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Next we show that the problem of approximating lsb(A(t)X(t) + B(t ) )  can be 
reduced (in polynomial time) to that of approximating the exclusive-or of any 
non-empty subset of the bits of A ( t ) X ( t )  + B ( t ) .  

Lemma 7 .  Let S be a non-empty subset of { 0 , 1 , 2 , .  . . , n - 1) and let l i (r)  be the 
i:th bat of z.  Given R(t) E GF[2”] there i s  a unique polynomial P ( t )  E Gfl2”] 
such that for all X ( t )  E Gq2”]: 

and where P can be found in time polynomial in n. 

Proof. For each i = 0, 1 , .  . ,, ra - 1, l , ( P ( t ) X ( t ) )  is a linear function GF[2”] 
( 0 , l ) .  Being a sum (mod 2) of such linear functions, xi,s l i (P ( t )X( t ) )  is also a 
linear function. Arguing as before it will suffice to show that distinct R(t )  define 
distinct functions. 

Assume that for some R(t) # 0 we have CiES l , (R( t )X( t ) )  = 0 for all 
X ( t )  E GF[2“]. Let io E S. Since we are working in a field there is some 
W ( t )  E GF[2”] such that R(t)W(t) = t’o. By assumption CiEs l i(R(t)W(t))  = 0 
but xi l i (R( t )W(t ) )  = l i ( t i 0 )  = 1, a contradiction. We must conclude 
that if kies l i ( R ( t ) X ( t ) )  = 0 IS to hold for all X ( 2 )  E GF[2”] then R(t) = 0 and 

0 hence, distinct R(t) give distinct linear functions. 

4 Hash functions given by linear functions in Zp 

4.1 Notation 

As usual, Z, denotes the field of integers modulo a prime, p. By Pk, k > 0, we 
mean the set of primes p of length n/k. Here, n = 1x1, the security parameter 
of some one-way function f(t). As in [l], [3] we devide Z, into “positive” and 
“negative” elements. The positive being {1 ,2 ,  . . . , q} and the negative {q + 
1 , q  + 2 , .  . . , p  - 1). Thus it is natural to define an absolute value for each 
I E Z, by Izlp = z if z 5 9 and (z(, = p - z otherwise. If lyl, 5 :, we say 
that y is (7,p)-small. 

We shall need a notion of “oddness” and “eveness” and so we define the 
parity of I E E ,  by parity(z,p) = lsb(Iz1,). In this way the odd/even concept 
agrees with the intuition both for positive and negative I. 

(mod p) I 
p Eu Pk, (I, b Eu z,} Note that this set is not totally universal. The least signif- 
icant bit has a “preference” for attaining the value 0. However this deviation 
tends to zero exponentially in lpl. For large p we can for all practical purposes 
consider the set to be universal. N o  polynomial time algorithm can distinguish 
this distribution from that of a “totally” universal hash function. 

The hash functions we study here is the set {ha,b,,(z) = a2 + b 
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4.2 Security of uz + b (mod p )  

In this section of the paper we show: 

Theorem& Let k be any posit ive constant,  let p EU Pk. The  f a m i l y  

{lsb(ha,b,p(x)) I a ,  6 EU zp} 

is  a family of hard-core predicates for any one-way funct ion.  

The idea behind the proof is to show that an n-‘-oracle for lsb(h,,b,p(z)) can 
be used to retrieve z (mod p ) .  We then repeat this process for several distinct 
p and combine these results using the Chinese remainder theorem to find z 

For the first part we will use a modification of the ideas used by Chor et al. 
(mod 2”). 

in [l], [3]. To get some motivation we review some of that work. 

Previous work. Chor et al. in [l], [3] use a parity oracle to invert the RSA func- 
tion by computing the gcd of E ~ ( u z ) ,  E ~ ( 6 z )  for random a ,  b.  EN is the RSA 
encryption function with composite modulus N .  This can be done by observing 
that E ~ ( a z )  = E p , ( u ) E ~ ( z )  and by using the well known bit-gcd procedure 
that only makes parity tests. We get a gcd of the form E ~ ( l z )  (with 1 known) 
and with probability 5 for large N this gcd equals 1. Since  EN(^) = 1, z is 
easily found. 

Using an lsb-oracle for parity. The first step is to  convert an lsb-oracle to 
a parity-oracle. Suppose we have a known integer j and an unknown integer i 
and that we somehow are able to obtain information on lsb(j) and Isb(j + i). 
We can deduce the parity of i from this since the parity of i is 0 if and only if 
the lsb of j equals the lsb of j + i. 

Is this true also in Zp? Not in general. If j + i causes “overflow” mod p ,  the 
parity will be missrepresented. However it is easy to see that the probability of 
such overflow is !$. Thus, if i is “small” mod p ,  we can deduce that 

parity(i,p) = 0 ($lsb(j) = lsb(j + i) for most j. 

(We shall shortly specify what is required to be considered small.) This gives 
a simple way to approximate parity(as + b (mod p ) )  using a lsb-oracle, 01: 
On input a,  b , p  choose c ,  d EU E p  and ask 01 about lsb(cz + d (mod p ) )  and 
lsb((a + c)z + ( b  + d )  (mod p ) ) .  Output 0 if 01 answers the same to both 
questions, 1 otherwise. 

To improve performance we can choose many (c ,  d)-pairs and take a majority 
decision. However, calling 01 twice for each (c, d)-pair has its drawbacks which 
we have reason to return to later. 

We next show how we can use a “very good” parity oracle and then show 
how to  obtain such from a “fairly good” lsb-oracle. 
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(: - :)-oracles for parity. Suppose we are given a prime p ,  lpl = n / k ,  chosen 
uniformly at random in pk and that we have access to a (?j - :)-oracle for parity, 
O,,,, with a! < E/2. We can now try to  retrieve z (mod p )  in the following 
fashion: Choose a, b EU Z, and assume that Q X  + b is “small”. For instance, 
assume QZ + b is (2nc,p)-small. This happens with probability &. We now 
make the following observations: If parity(az + b , p )  = 0 then QZ + b (mod p )  
is divisible by 2, and 12-’(az + b)lp is even smaller than IQZ + 61,. On the other 
hand, If parity(at + b , p )  = 1 then az + b - 1 (mod p )  is divisible by two and 
12-’(az + b - l)lp will be small. Eventually, after Ipl parity-tests (if they all 
gave correct answers), we end up with a representation y E Q”Z + b” (mod p )  
with y, a‘’ and b” known, and can easily find z (mod p ) .  Since we make exactly 
Ipl = n / k  .parity calls, the probability of getting one (or more) incorrect parity 
answer.is.,rat most ;E < 1/2. Finally note that if the initial az + b (mod p )  is 
small and the oracle makes no errors, all successive Q‘Z + b’ (mod p )  will also 
be small. We have proved: 

Lemma9. For a randomly chosen pr ime  p EU pk a (f - : ) -oracle ,  Q < k / 2 ,  
f o r  pan’ly(az + b + b, can be used t o  f ind 2 (mod p ) )  f o r  (2nc ,p) -smal l  

(mod p )  wi th probability at least &. 
Comment: There is in fact another way of proving this lemma by using the 

same gcd-technique as in [l], [3]: Choose a , b , c , d  EU ZP and use the bit-gcd 
algorithm (which only uses parity tests) t o  compute e ,  f E H, such that ez + 
f = gcd(az + p (mod p ) ) .  With probability greater than 4, 
e z  + f (mod p )  and z can easily be found. The same analysis as in [ l ] ,  [3] 
show that we make at most Sip1 + 3 = 9. + 3 parity calls on an execution of 
this algorithm. Thus a (i - :)-oracle with Q < k /18  would suffice. This can 
however be accomplished. 

Why couldn’t Chor et al. use the simpler, first technique? The reason lies 
in properties of the RSA function. The function (mod p >  is 
multiplicative: Even if z is unknown we can still use the identity hac,~c,p(z) G 

ch,,a,,(Z) (modp).  We have already mentioned that the RSA function has 
similar properties. However the first method above uses additive properties of 
ha,a ,p(z) ,  namely h o , b , p ( Z )  f c (mod p ) .  The RSA function how- 
ever, does not have such properties. 

(mod p ) ,  cz + d 
1 

= ax + 6 

ha,bfc,p(z) 

Using n-c-oracles for lsb. To allow more erroneous oracles we use a modifi- 
cation of the techniques from [l], [3]. 

We first set out to  describe the parity oracle. As mentioned, we can get a 
fairly reliable oracle for parity(az+b,p) using an oracle for lsb(az+b (mod p ) ) .  
The flaw is that  this does not work for arbitrary n-‘-oracles since we get the 
phenomenon of “error-doubling” (see [1],[3]) in asking for two points each time. 
The cure is in these two lemmas, which are slight modificationsof those in [l], [3]. 
For the sake of self containment we sketch them as well as their proofs. 
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Lemma10. It is possible to  generate (in polynomial t ime)  a list, P ,  of m E 
poly(n) points of the form r z  + s and a set of lists, L(i), i = 1,2,. . .4m3, each 
L(’) containing rn 0-1 elements. The lists satisfy: 

- The points in P are pairwise independent and uniformly distributed in Zp. 
- A2 least one of the lists L(’) satisfy: lsb(Pj) = L$a) for all but a -& fraction 

of the j9s. 

Since we now have points of the form rz  + s (mod p )  with “known” lsb, we 
(mod p ) )  to deduce only need to ask the oracle about lsb((a + r ) z  + ( b  + s) 

parity(az + b , p ) .  

Proof. We go about generating these in the following way: Let m E poIy(n) and 
divide Z, into m3/’ intervals of equal length, I; = [ip/m3l2,(i  + l)p/m”/’).  
Select r1,rz,s1,s~ Eu Z, and let the j : th point, Pj,  be r1z + s1 + j ( r z z  + sz) 

(mod p ) ,  j = 1 , 2 , .  . ., rn. It is easy to see that these points are uniformly 
distributed and pairwise independent. 

Suppose we knew intervals I i ,  , Ij, (of length p / r n 3 / 2 )  such that y = r12: + si 
(mod p )  E l i ,  and z = r2x + s2 (mod p )  E I;,. Assume that we in addition 

knew lsb(y) and lsb(z). Then, since y ,z  would now be known within p/m3/’, 
Pj = y + j z ,  would be known within (1 + j ) p / r n 3 l 2  5 2 p / f i .  Then, since 
LPj/pJ would be determined by j , i l , i 2 ,  lsb(Pj) would be determined by this 
and lsb(y), lsb(z), unless Pj would happen to lie in an interval of length 2 p / J m  
containing a multiple of p .  But the later occurs only with probability -&. 

Now, we do not actually “know” all the things assumed above, but there are 
m3 possibilities for the pair ( i l ,  iz) that determine the intervals and there are 4 
choices for the pair (lsb(y), Isb(z)). All in all we have a set of 4m3 possibilities SO 

we let L(’) consist of our calculated lsb’s for each point, based on the i:th possi- 
bility for the quadruple ( i l )  iZ,lsb(z), lsb(y)). Now, exactly one these quadruples 
is the correct one and hence, the corresponding list will contain m 0-1 elements, 
the j : th  one being equal to lsb(Pj) with probability 1 - 2 6. 
We can now use these points to get a good parity oracle. 

Lemmall. Let c (n )  = n-‘ and let a > 0 be any constant. Given an c(n)-  
oracle for lsb(az + b (mod p ) )  we can in polynomial t ime construct a set of 
4m3 oracles, na E poly(n),  such that at  least one of them is a (f - :)-oracle for 
par i t y (az+b ,p )  for randomly chosen a ,  2, b , p  such that az+b  is ( 2 e ( n ) , p ) - s m d .  

Proof. Same as in [l], [3]. Each oracle gets the sample points P and the j : th  
oracle gets the list L ( j )  as created in Lemma 10. In order to  get a vote for the 
parity of some uz + b (mod p )  
in P and then only needs to ask the lsb-oracle about lsb((a + u)z + ( b  + V )  

(mod p ) )  is already “known” as I,!’). The 
oracle that gets the correct choices for L ( j )  can be shown to be a (f - :)-oracle 
for parity(az + b , p ) ,  provided ax + b is (2c(n),p)-small. 

(mod p ) ,  the oracle uses a point Pi = ux + v 

(mod p ) ) .  Recall that lsb(uz + v 
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The number of sample points, m, needed to make the majority decision reli- 
able enough depends on ~ ( n ) ,  LY but can be shown to be polynomial in n ,  ~ ( n ) - ' ,  

0 see [l], [3] for details. 

We can now prove the main theorem of this section: 

Proof. (Of Theorem 8.) Assume that for some constant c > 0 we have a n-'- 
oracle, 01, for lsb(az + 6 (mod p ) )  for randomly chosen p ,  a ,  6, z as in the for- 
mulation of the theorem. Choose uniformly a t  random a set of 4n2c+r primes 
from Pt: p 1 , p 2 , .  . . , p4n2c+r. 

For each pi, use Lemma 11 to  convert the Isb-oracle into a set of 4m3 parity- 
oracles, 0 , , 1 , 0 i , 2 , .  . . , Oi,4,,,3, one of them being a (4 - %)-oracle for parity. 

Next, using Lemma9, for each p i ,  use each Oi,, to get a list of suggestions 
for z (mod pi): zi,~, z ; , ~ , .  . ., ~i,~,,,3. 

Any set of k correct congruences 2: G z;,, (mod p i )  for distinct p;'s will 
by the Chinese remainder theorem determine 2 (mod 2"). Let X be the ran- 
dom variable that counts the number of i ' s  for which the corresponding list 
zi,1, z i , 2 , .  . . , ~ i . 4 ~ 3  does contain such a correct modular equation. By lemmas 9 
and 11, we see that X is binomially distributed with expectance a t  least nc+' 
and variance at  most n2'+'. By Chebyshevs inequality, we can bound the prob- 
ability that X < k from above by O(n-'). Thus, the probability of retrieving 
the n-bit string I is a t  least 1 - n-". The result can of course be checked by 
evaluating f and comparing to f(z). 

We do not know which of the parity oracles that is the good one for each pi 
and hence neither which of the corresponding z,,, 's to use. However, there are 
O(nk(2c+'))  k-subsets in all and for each such there are 4'7"' ways to choose 
these Zi,j's. We have a total of O(nk((2c+')m3k) E poly(n)  possibilities and each 
of them can be computed in polynomial time. The entire algorithm is therefore 
polynomial time. 0 

4.3 Security of other bits 

The same reasoning as in [l], [3] also gives 

Theorem 12. Let a ,  b , p  be chosen as in Theorem 8. Let c be any positive con- 
stant and let j < clog Ipl. Then: 1 .  The j : th  least significant bit of az + b 

(mod p )  is  n-'-secure. 2. The j least significant bits are simultaneously se- 
cure. 

To see 1, note that in the proof of Lemma 11 we can afford to try all possibilities 
for the j least significant bits. Also, in Lemma 9 we can "guess" the j - 1 least 
significant bits (or assume that they are 000. . . O )  and start the algorithm from 
the j : th  bit. 

The simultaneous security follows from 1 and from Yao's unpredictability 
criterion, [7]: Predicting the j : th bit given the j - 1 first bits is equivalent to  
distinguishing the j least significant bits from random bits. 
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What about other bits? We first note that it is easy to see that the internal 
bits are secure with respect to a perfect oracle. Furthermore, we have recently 
been able to  show the following result. 

Theorem13. For “certain” primes p E pk, for any i = crn/k, 0 < a < 1, the 
i:th bit of ax + b (mod p )  for a ,  b Eu Z, i s  a family of hard-core predicates for 
any one-way function. 

The intuitive definition for “certain primes” is primes “sufficiently far from” a 
multiple of 2’. At the present time some refinements will have to be made to  
make this set sufficiently dense among the set of all primes in pk. We will explore 
this further in the full paper. 

5 Open problems 

The proof of Theorem 8 does not hold if we choose Ipl too small. However, we 
ask if it would be possible to improve the result to allow for primes significantly 
shorter than L?(n). For instance, is the theorem still true if lpl M fi? 

The three common examples of UHF’s often given in the literature are: 

1. Multiplication by a randomly chosen boolean matrix. 
2. Linear functions on GFIB”]. 
3. Linear functions on Z,. (Almost universal.) 

The results in [4] together with the above results show that all these give a 
logarithmic number of hard-core bits. The natural conjecture must be that all 
UHF’s give hard-core bits. We note that both the proof in [4] as well as the 
proofs given here rely heavily on the explicit construction of the hash function. 
Some new technique seems called for to approach the general case. 
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