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Abstract. Recently, a new class of feedback shift registers (FCSRs) was 
introduced, based on algebra over the 2-adic numbers. The sequences 
generated by these registers have many algebraic properties similar to 
those generated by linear feedback shift registers. However, it appears to  
be significantly more difficult to find maximal period FCSR sequences. Jn 
this paper we exhibit a tpchnique for easily finding FCSRs that generate 
nearly maximal period sequences. We further show that these svquence 
have excellent distributional properties. 'lhey are balanced, and nearly 
have the deBruijn property for distributions of subsequences. 

Index Terms - Binary sequences, feedback with carry shift registers, 
deBruijn property, 2-adic numbers. 

1 Introduction 

Pseudorandom sequences with a variety of statistical properties, such as large 
period, high linear span, and good statistical distributions, are important in 
many areas of communicat,ions and computing, such a.s cryptography, spread 
spectrum communications, error correcting codes, and Monte Carlo integration. 
Thus  devices for generating sequences with such good properties are basic tools 
for t he  design of stream ciphers (as wcll as for other applications). While such 
properties alone are insufficient t o  make sequences useful for encryption, they 
are initial minimal requirements. Once wc can generate sequences with these 
properties, various techniques can be used to further scramble sequcnces making 
them suitable for encryption, while perhaps retaining good statistical properties. 

One class of sequences tha t  has many nice properties is the class of linear 
feedback shift register (LFSR) sequences. Maximal pcriod LFSR sequences (or 
m-sequences) are known to have large period and a balance of zeros and ones, 
and  to become deRruijn sequences when a single zcro is inserted [3]. These 
properties, as well as the availability of algebraic tools for their analysis, have 
led to thcir use in a number of construct>ions of key stream generators. Examples 
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include nonlinear feedforward functions [6], nonlinear combining functions [14], 
and clock controlled shift registers [a] .  

Recently a new class of binary sequence generators, feedback with carry shaft 
registers (or FCSRs) has been described by Klapper and Goresky [S, 91. They 
have many of the nice algebraic properties of LFSR sequences and, it is hoped, 
will serve as building blocks for stream ciphers in much the same way that LFSR 
sequences have in the past. In this paper we study some of the basic statisti- 
cal properties of FCSR sequences. We show how to construct, in an effective 
manner, FCSRs with very large period. Previously described methods for doing 
this required the choice of a prime number 9 for which 2 is a primitive root. 
Unfortunately, there is no known effective way of testing this condition, nor is it 
even known whether t>here are infinitely many such primes. Here we show that 
if p is a prime number such that 2 is a primitive root modulo p and modulo p 2 ,  
then for any positive integer e ,  using y = p e  as the connect,ion integer of a FCSR 
results in an output sequence with period 4(y) = p e  - p e - ’ .  The condition that 
2 be primitive modulo p 2  is known to hold whenever 2 is primitive modulo p for 
p < 2.10”. We also give an explicit procedure for finding the initial settings of 
FCSRs with this period. 

W e  further show that the sequences so constructed have excellent statislical 
properties in the sense that they are nearly deBruijn sequences. Recall that  a 
deBruijn sequence is a sequence bfa of period N such that every sequence of 
length log(N) ( N  must be a power of 2) occurs precisely once in each period 
of bfa. In other words, the numbers of occurrences of any two subsequences of 
length log(N) are equal. For sequences whose period is not a power of 2,  the 
best we can hope for in this regard is that the numbers of occurrences of any 
two sequences differ by at most one. This, in fact, is the case when y is prime 
and 2 is a primitive root modulo y [8]. When y is a power of a prime and 2 is 
a primitive root modulo q ,  we show that the numbers of occurrences of any two 
subsequences differ by at  most two. This holds for subsequences of a n y  length. 

Finally, we consider an arithmetic, or “with carry,” analog of the cross- 
correlation of two sequences. We show that for any two decimations of a FCSR 
sequence of the type described above, the arithmetic correlations are identically 
zero, except when the two sequences coincide. 

2 Feedback with Carry Shift Registers 

In this section we review the operation of FCSRs a.nd recall their basic algebraic 
properties. See [S, 91 for details. Let 9 be an odd positive integer, and let, 4 + 1 
have the binary expansion q +  1 = yi2i with qi E {0, 1). For convenience we 
also let yo = -1, so y = qi2i. The coefficients q l , .  . . , q,. are to be thought 
of as the taps on a feedback register. We can think of q as giving a recurrence 
with carry on the output sequence of this register. 

Definitionl. The FCSR with connect,ion integer q is a feedback register with 
T bits of storage plus additional memory for carry. If the contents of the register 
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at any given time are (aT-1, ~ ~ - 2 , .  . . , a l ,  ao) and the memory is rn, then the 
operation of the shift register is defined as follows: 

A l .  Form the integer sum 0 = EL=, q k u , . - k  + m. 
A2. Shift the contents one step to the right, outputting the rightmost bit ao. 
A3. Place a, = u ( mod 2) into the leftmost cell of the shift register 
A4. Replace the memory rn with ( ~ 7  - .,.)/a. 

Such a register outputs an infinite binary sequence a = (uo, a l ,  a2, . .). The 
analysis of FCSR sequences employs the 2-adic number associated with a, i.e., 
the power series with indeterminate replaced by 2, N = CEO aiZi. This 2-adic 
number plays a role similar to that of the generating function in linear feedback 
shift register theory. See [ll] for background on 2-adic numbers. For convenience 
from time to  time we speak of cy as being the output of a FCSR, or as being 
periodic, or as having any other property that should more properly be attributed 
to the sequence a. 

The following facts are known about FCSRs and their output sequences [8,9]. 

1. A binary sequence a is eventually periodic if and only if its associated 2- 
adic number cy is a rational number c / q .  It is strictly periodic if and only if 
moreover - q  < c 2 0. 

2. If a i s  the output sequence of a FCSR, and cy is the associated 2-adic number, 
then a is eventually periodic and cy = c / q  where q is the connection number 
of a FCSR that outputs a. In this case we can write 

r -1  r-2-1 

where m is the initial state of the extra memory. 
3. Conversely, every eventually periodic binary sequence a whose associated 

2-adic number can be written a = c/y for integers c , q ,  with q odd, is the 
output of a FCSR with connection number q. 

4. Suppose a is the output sequence of a FCSR with connection integer q .  Let y 
be the inverse of 2 modulo q .  Then there exists A E Z / ( q )  such that for every 
i ,  a, = (Ay' mod q )  mod 2. This composition of mod operations means first 
reduce modulo q to a number between 0 and y - 1, then reduce the result 
modulo 2. 

5. Adding b to  the initial memory changes N by -b2'/q. 

As a consequence of the exponential representation of FCSR sequences, it is 
apparent that the period of the output of a FCSR with connection number q 
can be no more than the cardinality of the multiplicative group of the integers 
modulo q1 (Z/(q))*. 

T = I(Z/(d)*l .  
Definition 2. An !-sequence is a FCSR sequence with maximuni possible period 
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An t-sequence is analogous to an ni-sequence in LFSR theory. Such a sequence 
is generated by connection numbers q for which 2 is a p r i m i t i v e  root. The best 
we can hope is that t,he period is q - I .  This occurs when q is prime and 2 is a 
primitive root modulo q .  The search for primes q such that 2 is a primitive root 
is relatcd to a large body of corikmporary number theory. It is believed t,hat 
there are infinitely many primes q with this property [5]. However, finding such 
primes (and even finding large primes at  all) is problematic. 

In this paper we consider two fundamental questions about FCSR sequences: 

1. How can we guarantee the output seqnence has large period? 
2. What are the statistical properties uf large period FCSR sequences? 

The first question can be divided into two parts: 

1. How can we guarantee that the 2-adic number c / q  has large period? Equiv- 
alently, how can we guarantee that 2 is a primitive root modulo q and c is 
relatively prime to q? 

2. Given a rat,ional number c / q ,  how can we efficiently construct the initial 
loading of a FCSR that outputs c/q? 

3 Finding L-Sequences for Prime Powers 

In this section we give a method for generating !-sequences based on FCSRs 
whose connection numbers are prime powers. Note that) if q is not a prime power, 
then Z/(q)* is not, a cyclic group, so 2 cannot be primitive and we can have no 
1-sequences. The following fact is well known, but we include a brief proof for 
completeness. 

Theorem 3. Let q b P  a power of a przme p ,  say  q = p e .  If 2 zs a pramztave root 
modulo p 2 ,  then 2 is a przmaizue rood modulo q as well. 

Proof: The order of the multiplicative group of integers modulo q is 4 ( q )  = 
p e - l ( p  - 1). Thus 2 p e - ' ( p - l )  1 mod q ,  and we must show that there is no 
prime number 1 > 1 dividing p e p l ( p  - 1) such lhat 2 p e - ' ( p - 1 ) / t  E 1 mod y. We 
do SO by induction on e .  That is, we may assume that, the order of 2 modulo 
pe-' is pe-2 (p  - 1). Also note that if 2 is a primitive root modulo p 2 >  it must 
also he a primitive root modulo p. 

Suppose t divides p - 1. From the fact, that 2 P  2 mod p ,  it follows that 
2 p - ' / t  f 1 mod p ,  contradicting the primit,ivity of 2 modulo p .  

Thus we may assume t = p. Thus ye  divides 2P'-2(p-1)  - 1, but by induction 
p e p '  does not divide 2pc-3(P-1) - 1. Also, pep' divides 2P"-'(P-1) - 1. Thus 
t?Pe-3(p-1)  = 1 + peP2y for some y relatively prime to p .  R u t  then 

p e - l y  mod p e  2 P e - ' ( Z J - I )  - 1 = (1 +pe-2y)P  - 1 

when e 2 3.  Thus p' docs riot divide 2pe-2 (p-1 )  - 1, a contmdictiori. 
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Suppose we have a prime p for which 2 is primitive. Checking whether 2 is 
primitive modulo p 2  is quite easy. Suppose this is not the ca.se. ‘The order of the 
multiplicative group Z / ( p 2 ) *  is p(p - I ) ,  so for some divisor t # 1 of p(p - I) ,  
the order of 2 is p ( p  - l ) / t .  That is, p 2  divides 2p(J’-’) l t  - 1. We may assume t 
is prime. Thus either t = p or t is a divisor of p - 1. 

If t is a divisor of p- 1, then p is a divisor of 2 p ( p - ’ ) l f  - 1. But 2 P  -- 2 mod p, 
so p divides 2 ( p - ’ ) i t  - 1. This contradicts the assumpt,ion that, 2 is primitive 
modulo p .  Thus t = p, so p 2  divides 2 P - l  - 1. It follows that, to  check whether 2 
is a primitive root modulo p 2 ,  it suffices to check whether p 2  divides 2P-1 - 1. 

‘I’hus we can find !-scquences as follows: choosc a small prime p for which 
2 is primitive (for small p this can be checked easily); check that p 2  does not 
divide 2 P - I  - 1; choose e > 0 and let q = p e ;  choose an integer c relatively 
prime to p, with 0 < c < q ;  and constriict the FCSR with connection integer q 
and output -c /q .  This gives us a FCSR, whose output is strictly periodic with 
period lZ / (q)*  I = p e  - pep’ .  In the next scction we discuss the construction of 
the initial loading of the FCSR for a given -c/y. 

One can ask about the abundance of primes p for which 2 is a primitive 
root modulo p 2 .  Hardy a.nd Wright point, out, that the condition t,hat p 2  divides 
2p-I  - 1 holds for only two primes p less than 3 .  l o 7  [4, p. 731, and by computer 
search Bornbieri has extended this limit to  2 .  lo1’ [l]. (The two primes are 1093 
and 3511.) In both cases 2 is not primitive modulo p .  Thus for a large number 
of primes, we need only check the primitivity of 2 modulo p .  In fact, i t  is riot 
known whether there are any primes p such that 2 is primitive modulo p but) not 
modulo p 2 ,  though there is no compelling reason to believe there are no such 
primes. 

4 Initial Loading of a FCSR 

In this section we describe how an initial loading can be chosen for a FCSR that 
guarantees the output will be purely periodic and will have the maximum period 
for the given connection number. 

It has been shown that,  for a given rational number c / q ,  the initial loading 
for an FCSR that gives output c / q  can be found by the following procedure 
[a, 91. 

131. Set m-1 = c .  
B2. For each i = 0,  1 ,  . . . , r - 1 corriputc the following numbers: 
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If we use the initialloading (~ ' -1 ,  a,.-z, . . . , u1, an) and initialmemory m,-l E 
R, then the resulting FCSR outputs the 2-adic expansion of c / q .  If c is relatively 
prime to q ,  then the period of the sequence is T = ordq(2). However if c and y 
have a common factor then the period may be smaller but at  least it will divide 
ord,(2). Thus for q = p e  with 2 primitive modulo p 2  (and hence also modulo 
y), if we randomly choose c, check that gcd(c,p) = 1, and then find an initial 
loading using the above procedure, we will find an initial loading that gives a 
period p e  - pe-' strictly period output sequence. The expected number of ran- 
dom choices of c needed to achieve this is p / ( p  - l),  since the probability that c 
is relatively prime to p is ( p  - 1)/p. 

Alternatively, we may want more control over the initial setting of the reg- 
ister. We can choose the initial contents of the register, then attempt to find an 
initial value of the memory that gives the desired output sequence. We proceed 
as follows. 

1. Randomly choose bits au,  . . , a,-l E {0,13 
2 .  Compute 

r -1  r - d - I  

3.  Let 

4. Check gcd(2'm - z ,  q )  = 1.  If so, use no, . . ' ,  0,-1 as the initial loading, and 
(4). In some cases [ ( z  + y)/2'] = m as the initial memory. If not, repeat (1) 

[z/2'1 + 1 and can also be tried as the the initial memory. 

To see that this gives a maximal period purely pcriodic seqiience for q ,  it 
suffices to  check that 0 5 2'm - z < y, since the output from the q-FCSR with 
these initial values is z - 2'm/y. Rut this follows immediately from the choice 
of m 

The big question is the time complexity. First observe that in any given 
repetition of (1) ~ (4), the probability of success is at least ( p e  - p"') /pe = 
( p  - l)/p. Thus the expected number of trials is only p / ( p  - 1). 

The most costly part of this algorithm is step (2). This can be done quickly 
using a divide and conquer algorithm similar to divide and conquer multiplica- 
tion. For F - 1 bit integers q and a ,  we define the operation 

r -1  k 
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If we write q = q’ + 2[‘/’]q‘’ and a = a’ + 2[‘/’]a’’, t8hen we have 

sernimult(q, a,  r)  = 

q’a’ + 2[T/21(scmimult(q’, a”, r - [r/21> + scmimult(q”, a’, r ~ [r/2])). 

Thus the time it takes to  compute semimult(q, a ,  r) satisfies a recurrence 

T ( r )  = 2T([r/21) + S([7=/21) + S(r) ,  

where S(r) is the time it takes to  multiply two r bit numbers. Thus T(r)  5 
S(r) + cr for some constant c. Furthermore, if we use the Schonhage-Strassen 
algorithm [15], then S(r) = O(rlogrlog1ogr).  This can be improved to S( r )  - 
r l o g r  using Pollard’s nonasymptotic algorithm for r < 237 on a 32 bit machine 
or r < 270 on a 64 bit machine [13]. 

Finally, observe that gcd(2‘m - z, q )  = 1 if and only if gcd(2‘m - z lp> = 1. 
This can be checked using the Euclidean algorithm in S ( r  log(p)’) bit operations. 

In summary, a desired initial loading can be found in less than expected 
2rlog r + S(T log(p)’) time for r < 237 on a 32 bit machine, or r < 270 on a 64 
bit machine. 

5 Distributional Properties 

In this section we show that the sequences constructed above have excellent 
distributional properties. First we note that they are balanced. 

Proposition4. Let q be a power o f  a przme p ,  s a y  q = p e ,  and suppose that 2 
2s przmattve modulo q .  Let a be any rnaxzmal peraod FCSR sequence, generated 
by a FCSR wrth connectzon znteger q. The number of zeros and the number o f  
ones zn one perzod of a are equal. 

Furthermore we can consider higher order distributions. We show next that 
these sequences are close to  having the deBruijn property that each subsequence 
of length log of the period occurs exactly once in each period. We show that for 
any two such subsequences, their numbers of occurrences can differ by at most 
two 

Theorem5. Let q be a power of a prime p ,  say q = pe, and suppose lhat 2 
i s  primitive modulo q .  Let s be any nonnegative integer, and .let A and B be s 
bit subsequences. Let a be any  maximal period, purely periodic FCSR sequence, 
generated by a FCSR with connection integer q .  Then the numbers of occurrences 
of A and B in a with their starting positions in a fixed period of a daffer by at 
most 2. 

Proof: The purely periodic FCSR sequences with connection integer q are pre- 
cisely the 2-a.dic expansions of rational numbers -x/q, with 0 5 t < q [8, 91. 
Such a sequence has maximum period if and only if p does not divide 2. Since 2 
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is primitive modulo y, the cyclic shifts of b f a  correspond to the set of all rational 
numbers -z/q,  with 0 5 z < y. Thus  an s bit subsequence A occurs in bfa if 
and  only if it occurs as the first s bits in the  2-adic expansion of some rational 
numbers - x / q  with 0 5 x < q and p not dividing x .  Two rational number - x l / q  
and - xz /q  have the same first s bits if and only if -xl/q -xZ /q  rriod Z", if 
and only if 21 E 22 niod 2'. Thus we want t o  count t,he number of x with a 
given first s bits, 0 5 x < q ,  and z not divisible by p .  

Let 2' < q < 2''+'. If s > r ,  there are eit,her zero or one such x ,  so the result 
follows. Thus  we may assume s 5 T .  

We first count the number of x with the first s bits fixed and 0 5 x < y, 
ignoring the  divisibility condition. If A = Q O ,  , u s - l 1  we let a = c::,' a i P .  
Let y = C:==, yi2 i ,  and q' = If a < q' ,  then every choice of a, ,  . . , a, 
with El=, ai2i 5 Cr,, q;2i gives a unique z in the right range. If a >_ q', then 
every choice of u S l  ,a, with El=, ai2i < xi==, q;2i gives a unique x in the 
right range. Thus for different choices of A, the numbers of such z differ by at 
most, one. 

Next we consider those x for which 0 5 2 < y and p divides 2. T h a t  is, x = py 
for some y, and 0 5 y < y/p = p" - ' .  As above, X I  = py1 and x2 = p y ~  have 
the  same first, s bits if and only if the same is true of y1 and y2. The preceding 
paragraph shows that the numbers of siich y for different choices of the first s 
bits differ by at most one. But if 2 = py, then y A mod 2' if and only if 
z p A  mod 2', so for any B and C ,  the number of 2s  divisible by p with first 
s bits equal t o  B differs from the  number of 2s divisible by p with first s bits 
equal to C by a t  most 1. We have 

I{x : 0 5 x < q 1  y l x ,  Ax E a mod a s )  I 
= l{x : 0 5 x < q A x a mod 2'}1 - I { x  : 0 5 2 < y,  pix, Ax F N mod 2')l 

As a varies the two terms on the right hand sidc vary by at, most one from their 
values for any fixed choice of a .  This t,he difference varies by at most 2.  0 

I t  is easy to check tha t  the difference can be as large as 2. 

6 Arithmetic Correlations 

Traditionally, the shifted cross-correlations of two sequences have been used as a 
measure of the extent to which the  sequences are independent. These values are 
small if corresponding bits in one sequence are as likely to be equal as they are to 
be different. In the case of FCSR sequences, it appears quite difficult to compute 
cross-correlations in the usual sense. There is, however, an arithmetic (or "with 
carry") analog of the cross-correlation. This has been studied previously in the  
case of autocorrelation funct,ions by Mandelbaum [12]. 

Definition6. Let a and 11 he tjwo evcntiially periodic sequences with period N ,  
and let 0 5 r < N .  Let b' be the sequence formed by shifting b by T positions, 
ba = bitT. Then the shifted u d h m e t i c  cross-correlation Qab(r)  of a and b is 
the difference between the number of zeros and the number of ones in a complete 
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period of the periodic part of the sequence formed by subtracting b' from a with 
c a r r y .  When a = b, t,he cross-correlaliori is called the a u t o c o r r e l a t i o n  of a. 

This corresponds to forming the 2-adic numbers a and f? associated with a 
and b, cotiipiiting y = (Y - 2-T/3,  and t,aking the difference between the number 
of coefficients that are zero and the number of coefficients that are one in a single 
period of y. Even when a a.nd b are purely periodic, there may be a transient 
prefix before y becorries periodic. However, in  this case the purely periodic part 
of y is guaranteed t80 begin after at  most Ar bit,s. 

In the case of' m-sequences and standard correlations the cross-correlations 
must be at  least one in absolute value, simply because the periods of the se- 
quences are odd. In general, the larger a family of sequences, the larger the 
maximum cross-correlst,ions in llie family. Remarkably, we can exhibit fami- 
lies of sequences in which al l  arithmet,ic correlations are identically zero. This 
generalizes a result of Mandelbaurri showing that, shifted autocorrelatioris of e- 
sequences ha.sed on prime connection integers are identkally zero [12]. Recall 
that a sequence b is a k- fold deciniatioiz of a sequence a if h is formed by taking 
every kth term of' a. 'I'hat, is, bi = ski. 

Theorem7. Let a be a'n l - s e q u e n c e  based on  c o n n e c t i o n  i n t e g e r  q = y e ,  p p r i m e .  
L e t  k a n d  712 be i n t e g e r s  t ha t  arc  re la t ive ly  p r i m e  t o  th,e p e r i o d  ye - p e p '  o f  a. L e t  
b a n d  c be k-fold a,nd Iri-fold d e c i m a t i o n s  o j a ,  rcspec t ive ly .  L e t  r be a n y  shift. 
If c is a shzfl  of b! t h e n  t h e r e  is o n e  .ualuc of r f o r  w h i c h  @b ,Jr )  = p e  - y e - ' .  
rn a l l  o t h e r  c a s e s  ( w h e t h e r  or riot c is a shij? of b), 0bJc(i-) = 0. 

One can see, for example, that if we choose q 1 25, then the decimations of 
the sequence of bits in t8he 2-adic exparision of - l / q  give eight cyc.lically distinct 
sequences of period 20 with ideal pairwise arithrietic correlations. In the classical 
theory of cross-correlations, any family of five or more sequence with this period 
must have maximum cross-correlation at lcast, 5 .  

7 Conclusions 

We have derrionstrated that a large class of FCSR sequences are [-sequences. 
This means that, t,lieir periods are exponent,ially larger than the amount of initial 
information (taps OII the register, initid register contents, and initial memory) 
required to  generate t,he sequences. We have fi~rt~her shown t,hat these sequences 
have excellent, statistical propcrt,ies, being nearly deBruijn sequences. 

Thc picture for FCSR.s whose connection number is not a. prime power is more 
c.omplicatecl. If q = n p 9 ! ' ,  then the cardiriality of Z / ( q )  is n , " = , p { ~ - ~ ( p i  - 1). 
IIowever, this group is tlie product, of cyclic groups of order p;'- (pi - 11, so 
the order of its rriaxinial order elemerit is thc least coninion multiple of the 
p2"'-l(p; - 1). Since each of the pi - 1 are even, the order of' 2 cannot be the 
order of t,he full group. By t h e  Chinese remairidcr theorem, the order o f2  modulo 
q is the least common inultiple of the orders of 2 modulo p; ' ,  i = 1 ,  . . . , k .  Thus 
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if the pi are chosen so that 2 is primitive modulo each p i ,  then its order modulo 
q is 

k 

lcm{pf,-’(pi - 1)) = I ’ Ip~~- l lcm{p~ - 1). 

In fact, if we choose the pi so that the greatest common divisor of any two of the 
pi - 1 is 2, then the order of 2 modulo q is n,”=, p:f-’lcm{pi - 1}/2k-1. This is 
the largest we can hope for for the period of a FCSR whose connection number 
has k distinct prime factors. 

The question of distributional properties of general FCSR sequences also 
remains. I t  would be nice to have bounds of the form in Section 5 in more 
general cases, or even just in the case described in the preceding paragraph. 

Various extensions of the notion of FCSR have been suggested, based on 
complete valued fields other than the 2-adic numbers [lo, 71. The questions 
discussed in this paper can be asked in these settings as well. 

Finally, now that we have established that certain FCSR. sequences have good 
statistical properties, it remains to show that they can be modified (say with 
nonlinear feedforward functions, or by using nonlinear combiners) so t8hey have 
large linear span and large 2-adic span. This would give us  sequences with good 
statistics and resistance to the Berlekamp-Massey and 2-adic rational approxi- 
mation algorithms, and thus good candidates for use in stream ciphers. 

i=l 
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