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Abstract. Differential cryptanalysis is a general attack based on the
notion of differences. The success of the attack is derived from the proba-
bility of a differential. While it has been observed that the distribution of
differentials can be modeled as a Markov chain, there have been few anal-
yses that take advantage of this observation because of the prohibitive
computations involved. In this paper we apply the Markov approach to
the differentially 2-uniform mappings, and show that they converge ex-
ponentially fast with high probability.

1 Introduction

Differential cryptanalysis is a general attack based on the distribution of differ-
ences in a cipher [3, 2]. The notion of difference can be defined arbitrarily, but
in this paper we will assume it to mean the XOR (exclusive-or) of two binary
strings. The probability of an r-round differential AP, AC, is the probability
that a pair of plaintexts of difference AP have a ciphertext difference of AC,
after r-rounds. A cipher is called iterated if there is a function F, the round
function, such that the cipher operates by applying F repeatedly. Lai, Massey
and Murphy [10] have observed that it is possible in some ciphers to model the
distribution of differentials in an iterated cipher as a homogeneous Markov chain
P when the subkeys are assumed to be independent. The states of the chain cor-
respond to the set of nonzero differences. Such ciphers are called Markov ciphers,
examples of which include DES [14] and IDEA [9]. If P\") = [Pi(jr)] is the rth
power of P, then the probability of the differential AP = i, AC, = j is given as
Pi(j’.). If it can be shown that all entries of P(") are tending to some small value
¢ as r becomes large, this is taken as strong evidence that product ciphers built
from the round function F will be resistant to differential cryptanalysis.

A typical analysis of a Markov chain would then proceed to classify the
states so as to determine the asymptotic behaviour of P("), State classification
is usually performed by inspection but this is not possible when P is large, as
is the case for DES and IDEA with 228 entries each. However, some general
properties of the P matrix suggest an approach to approximate its asymptotic
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behaviour. It is known [9] that P is doubly stochastic when F is bijective, and
PY) tends to the uniform distribution when P is ergodic (defined below). This
means that il P could be shown to be ergodic, all entries of P{") would be tending
towards the value 1/2™ where n is the block size. We are then confronted with
the following two problems: (a) demonstrate that P is ergodic, and (b) determine
the rate at which P approaches the unifrom distribution if it is ergodic. Note
that (a) will determine if the differences are distributed uniformly, while (b) will
determine an appropriate number of rounds for the cipher. Hornauer, Stephan,
and Wernsdorf (8] were able to prove that certain round functions F yield ergodic
transition matrices P by examining the group of mappings that could be formed
by iterating the round function. Results [or more general chains are reported by
O’Connor and Goli¢ [13, 12] where a combinatorial approach is used to show
that if F is selected uniformly then P is ergodic with probability tending to one.
On the other hand, there are no known results related to the rate of convergence
of specific chains, However, Lai {9] has performed experiments on “inini’ verions
of IDEA (8-bit block length) and shown the convergence to be rapid.

1.1 Results

In this paper we examine round functions that are differentially 2-uniform [11],
meaning that the XOR table entries for nonzero input differences are either zero
or two. As we will show, the answer to (a} depends on the density of nonzero
entries in P, while (b) depends on the magnitude of the nonzero entries in P, both
of which are known when F is differentially 2-uniform. Our main result is then to
show that transition matrices P derived from differentially 2-uniform mappings
F are ergodic with high probability and are expected to converge exponentially
fast to the uniform distribution. This is proven by bounding the second largest
eigenvalue of P,

The paper proceeds as follows. In scction 2 we review concepts related to finite
Markov chains, and show that differentially 2-uniform mappings are highly likely
to have ergodic transition matrices P. In section 3 we introduce the concept of a
rapidly mixing Markov chain, and in section 3.1 show that P rapidly approaches
the uniform distribution with high probability.

Throughout the paper we will use bold notation to refer to objects related to
the round function F, such as P and G. As many definitions and concepts will
apply to all Markov chains we will use P = [p;;] to denote an arbitrary N-state
chain. referring to it generally using normal (not bold} notation.

2 Finite Markov Chains

General definitions of Markov chains can be found in Feller [6], but we will review
some concepts briefly. A chain P = [p;;] is ergodic 1if it is finite, aperiodic and
irreducible. A sufficient condition for aperiodicity of an N-statc chain P is that
pii > 0 for some i, 1 <7 < N, while P is irreducible if for all ¢, j there exists
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an r such that 11§;‘} > 0,1 <4, j<N.If Pisergodic then there exists a unique
distribution /f = (my, wa, ..., 7x) such that

7= lim p( ) (1

r—0oo

"The distribution 1! 1s sald to be the lmafing distribution for P and is known to
be the uniform distribution for P that are doubly stochastic.

Let F : Z} — Z¥, a bijective mapping, be the round function of an r-round
iterated cipher E, such that at round #, the round mappingis C;11 = F(Ci + Ky)
where (7; 1s the ciphertext at round ¢ and I is the subkey at round ¢, 1 < ¢ < 7.
It can be verified that E is a Markov cipher when ‘+” denotes XOR and the K;
are assumed to be independent. The differential transition matrix P = [Py] is
obtained from the XOR table of F as follows. For each input difference AX =1
and output difference AY = 7. 1 <4, <27 — 1, F;; is defined as

Py=27"" > [F(X)+F(QX')= AY] (2)
X X'ezy
AX=N4X

where [ ] 1s a boolean predicale evaluating to 0 or 1. Then P = [P;]isan N x N
matrix where N = 2" — 1 since the degenerate cases where i = 0 or j = 0 are
excluded. The transition matrix P is doubly stochastic as F is bijective [9].

Since P is clearly finite, to prove ergodicity we must demonstrate that the
chain is aperiodic and irreducible. Note that P would be ergodic if all N? entries
were nonzero since £5; > 0 implies that P is aperiodic, and irreducibility follows
trivially as £;; > 0 for all 7, j. We will arguc that when the number of nonzero
entries in P exceeds some bound B < N2 then P is ergodic with high probability.
In particular, using results from random graph theory, we will show that B is
approximately N log V.

2.1 Differentially uniform mappings

A mapping F is differentially d-uniform [11] if cach entry in the XOR table for F
is at most 8. Since each entry in an XOR table is even, a differentially 2-uniform
wapping F has an XOR table thal consists entircly of zeros and twos, with
exactly 2°~! nonzero entries in each row of the table. Thus the XOR table for
differentially Z-uniforin mappings has the maximum number of nonzero entries
for a bijective mapping, as does the corresponding transition matrix P, which s
(20 — 1) 2 = N(N/2+ 1/2).

Example 1. Let p: GF(23 )—— GF(2Y) be a bijective mapping defined as p(z) =
r? mod fla) where fx) = 2% + & 4+ 1 is wrreducible over GF(2). The mapping
p then corresponds to O — U,l —1,2—33—-44—55—-606—77—2
and s known to be differentially 2-uniforme [11]. The XOR table for p and the
corresponding transttron matriz P are then
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XOR, = |022020020 5 1 Hgg02229]. (3)

00002222 5 1509000t
02022020 ©950099
00220022 o taaat
[02200220] ! ]

Note that P 1s obtained by deleting the first row and column of XOR, and di-
viding by 8. Observe that P is aperiodic since Py > 0. ]

2.2 Random Graph Theory

As has been observed by many authors, a transition matrix P can be consid-
ered as the adjacency matrix for a directed graph G = (V,E), where V =
{vi,va, ... un} and there is a directed edge from v; to v; if and only if p;; > 0.
We will call G the underlying graph of P. A directed graph (7 is strongly con-
nected if for all v, v;, there is a directed path from vertex v; to vertex v;. Also,
an edge In G is called a loop if it connects a vertex to itself.

Lemma 1. The matrix P is irreducible if and only if ' is strongly connected.
The matrix P is ergodic if G is strongly connected and has a loop.

Proof. If vertices v; and v; in & are connected by the path v;vjv} - v.v; then

by construction p&}"’ > 0. When G is strongly connected this is true for all vertex

pairs v;,v; which implies that pi}") > {) for some r, and P must be irreducible.
Further, if G has a loop then there must exist an ¢ for which p;; > 0, and hence
P is aperiodic. The lemma now follows. O

Example 2. The underlying graph G corresponding to the P matriz in (3) is
shown i Figure 1. [t can be verified that G is strongly connected, and since G
contains 4 loops, 11 follows that P is ergodic. ]

Clearly the probability of ¢ having a loop and being strongly connected
increases as the number of edges in G increases. We will say that almost all
graphs with N vertices and m edges possess a certain property if the fraction of
graphs with the property tends to one when N — oo. Using simple combinatorial
arguments, it can be shown that almost all directed graphs G with N vertices
and m edges have a loop when m = N - yx, v — oo. Further, Palasti [15] has
shown that almost all directed graphs G with m edges are strongly connected
when m = N{logN + yn), v~ — co. Here yn is any function that tends to
mfinity as N does such as loglog V.

Theorem 2. Let m = N(log N +vx) where v — oo. Then almost all directed
graphs (& have a loop and are strongly connected.
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Fig.1. The

underlying graph of p, 0 — 0,1 — 1,2 — 3,3 — 4,4 — 55 — 6,6 — 7,7 — 2,

)

Proof. For any two events a1, as, Pr(ay, as) > Pr(ay)+Pr(as)—1. If the events
of interest are "+ has a loop” and ‘G is strongly connected’, then the joint prob-
ability tends to one when m = N(log N + vn) and vy — oc. ]

Recall that the P matrix associated with a differentially 2-uniform mapping
F: 2} — Z% has (2" —1)-2" ! = N(N/2+1/2) > N?/2 nonzero entries. Theo-
rem 2 states that a transition matrix with at least Nlog N randomly distributed
nonzero edges is ergodic with high probability. Even though the nonzero entries
of P are nol randomly distributed, it is still highly likely that P is ergodic since
the number of edges in G exceeds the required Nlog N bound of Theorem 2.
We therefore make the following assumption

Proposition 2.1 Let ¥ : Z}' — ZI' be a bijective differentially 2-uniform round
function. 'T'hen the transition matrix P derived [rom F is assumed to be ergodic.

a

To support this assumption we have verified that from the 40,320 bijective map-
pings F : 28 — 73, 10,752 are differentially 2-uniform, and each has an ergodic
transition matrix P. There are only 7 distinct transition matrices P, with 1536
mappings F yielding the same P matrix. (We note that 3 is the smallest n for
which differentially 2-uniform bijective mappings exist).
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3 Convergence and Rapid Mixing

Let P =-[p;;] be ergodic with IT = (7, m2,...,7n) its limiting distribution. Also
let P{") be the distribution of the states after r steps when started in state i.
The variation [5] between P,-(r) and /7 is defined as

N
1P =5 le"’ =53 e (4)

i=1

A chain is rapidly mizing if the error terms e( ) in (4) converge to zero as a fast

function of r (see [16] for a survey). Initially the results related to rapid mixing
only applied to special chains, such as those that were time reversible. A chain
P is time reversible if m;p;; = w;p;i for all states ¢, j. If P is nonreversible then
define M(P) = P-P where P = [pi;] and p;; = mjpji/m;. It can be shown [7] that
M (P) is time reversible, is ergodic if P is ergodic, and has limiting distribution
[T if 11 is the limiting distribution of both P and P. The usefulness of M(P)is
that it is possible to bound || P('l IT |] by considering its eigenvalues.

For an ergodic chain P the Perron-Frobenius theorem [1] states that the
largest eigenvalue is 1 while all other eigenvalues are less than 1 in modulus.
In particular, the N eigenvalues of M(P) are real and nonnegative [7]. Conse-
quently, the convergence of the chain is determined by the magnitude of the
second largest eigenvalue. Let the N eigenvalues of M{(P) be 1 = 31 > 2 >

> iy > 0.

Theorem 3 Fill [7]. For any state i, 4m; - || P — [T ||2 < (Ba)". , 0

There are several methods to bound #s when M(P) is time reversible, and the
method we will use is based on the Poincaré inequality [5] and canonical paths
[16]. Oue result from the investigation of rapidly mixing Markov chains has
been to show that the convergence of the chain P depends on the geometric
properties of (s, the underlying graph of M(P) Let M(P) = [g;;], and from
the time reversible property define

dij € mgij = mgs. (5)
For Gay = (V) E), let é(v;,v;) be a (directed) path between vertices »; and v;
with no repeated edges. Let " be a collection of paths é(v;,v;) containing one
path for cach vertex pair v;,v; in Gpr. At least one such path set I' will exist
since P, and hence M(P), is irreducible. Now define the length of the path
é{v;. vj) to be

o o)l E S d(e)™! (6)
ee€b(v,,vj)

where the sum is over all edges ¢ in the path é(v;,v;) and d(e) = dj;. Finally
define ~ as

k= ("} = max Z ;- |6vi, vj)] (7N

Svivy)e€blv,,uj)
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wherc the maximum 1s taken over all directed edges in the graph and the sum
is over all paths that traverse the edge e. Note that « is essentially a measure
of *bottlenecks’. A bottleneck 5 in a graph G is a set of vertices for which there
are relatively few edges directed in or out of S as compared to |S|. Intuitively,
if the chain cnters a state corresponding to a vertex in S then the process gets
‘stuck” 1n .S and does not mix rapidly. Consequently, in any path set I", the edges
Joining S to the rest of the graph will be traversed frequently. We are now rcady
to state the Poincaré inequality.

Proposition 3.1 (Poincaré inequality) For an ergodic time reversible chain
1
Gy <1 ——.
K
d
Since in general the transitions matrices P deseribing differential distributions

are nol timme reversible, our goal is to show that the convergence of P can be
bound using T'heoreni 3 and the Poincaré inequality.

3.1 Bounding cigenvalues

We hegin by showing that the M (P) matrix derived from a differentially 2-
uniform mapping F has the complete graph (all vertex pairs connected by an
edge) as its underlying graph.

Lemina4. AM(P)=PP".
Proof. Recall that M{P) = PP is dervied from P = [P;;] by defining P = [Pij]

where RJ = m; Pyi/m;. But since m; = 7; for all states ¢, y 1t follows that p="PT,
the transpose of P. 0

Corollary 3.1 M(P) has no zero entries. Equivalently, the underlying graph
Gy of M(P) is complete.

Proof. Let M(P) = [¢;;] and observe that,

N N

[11]:ZR:K"PL:]' - ZF)U\"P]'I.:- (
k=1

k=1

o0
~——

But by construction, each row P, P, ..., Piy of P has 277! = N/2 4 1/2
nonzero entries. Since the majority of entries in each row are nonzero, there
must be at least one &k n (8) for which Py -PA-] > 0, implying ¢;; > 0. Since this
is true for all pairs of states ¢, 7, 1t follows that Af(P) has no nonzero entries. O

Now consider applying the Poincaré inequality to bound the variation in P,
requiring a path sct [7 for Gps. But since Gy is complete we simply take the
path between v; and v; to be the dirccted edge connecting these vertices so that
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d(vi,v;) = e;5. Obviously each edge is used only once in the path set which im-
plies that the summation on the RHS of (7), the equation defining &, will only
have one term. To determine x we need only determine the length |6(v;, v;)| of
each path (1.e. edge).

Recall that the length of an edge e = ¢;; is the inverse of dj; = m;qi; where
1/m; = N and g;; is given as in (8). Since P;; = 2/2” if P;; > 0 then g¢;; can be
written as

PR
% = 53n Z (Pir > 0} - [Py > (] (9)

k=1

where [] is a boolean predicate evaluating to either 1 or 0. When ¢ = j the
value of the summation in (9) is 27=1 = N 4 1/2. However when i # j, we will
model the summmnation as a random variable o, distributed binomially as b(p, N),
where p = [% + fﬁ)" is the probability that two rows from P are nonzero in the
same entry. There are N2 — N random variables o, to consider, corresponding
to ¢ij. 1 # J.
Giiven the restrictions on M(P), the criterion (7) for x reduces to
1 N.2™ (N +1)°

DT OR = ax —5 - = X UN oL 10
K= r(I") meax N Ao, mefi\ AN - a, ( )

So the maxinium is obtained when «, is minimized. Observe that 32 < 27" when

ot

& = zi—7, implying that there is some a. for which
21 (N+1)
21 AN

1t follows that a good bound on 35 is obtained if the smallest «r. is just slightly
less than the mean pN of its distribution b(p, N).

= (1-2%.pN. (11)

e =

Example 3. For the P matriz defined in (3), it can be verified that M(P) is a TxT
malriz with 1 on the main diagonal and 1/8 elsewhere. In this case pN = 16/49,
and oe = (1-273) - pN for all ¢;;, i # j, implying that || Pi(r) — I || s the same
value for all i. The Poincaré inequality stales that 8 < 273, and Table 1 shows
that (=) = 273" bounds 4/7 - || Pi(r) — IT'|| as predicted from Theorem 3.

0

For larger n we will not be able to compute M (P) explicitly as we did in the ex-
ample above, and some prohabilistic statement must be made. The next lemma
(adapted from [4]) gives a bound on the probability that |a, — pN| > 27¢ - pN.

Lemmab. If 0 < p < %, and (pN)'% < €< %, then
pN <
Pr(la, —pN|> epN) < ¢ 30-nT77 (12)

where ¢ 1s the base of the natural logarithm. O



21

1P - Ja/7 WP —m P 2
0.10714 0.45918 0.875
0.53571 0.11479 x10! 0.10937

0.13392 x107T| 071747 x10~" [0.13671 %1077
0.66964 x107%] 0.17936 x10—° [0.17089 x10~2
0.16741 x1072[ 0.11210 x10~* [0.21362 x10™°

[ e]w]eo]—]=

Table 1. Convergence bounds for P .

If 22 = o(N) and letting p = 1/4, the probability that all N2 — N «, deviate

. _n g a \N-N
from pN by less than a factor of (1 —27%) is ( 1 —e o cT 754 ) which
reduces to

1*6“‘N+l‘](N_l)_?’g’T+ﬁr-f-O(EQl“N‘%) (13)

Using (13) we are able to argue convergence results for ciphers with large given
parameters such as block size and number of rounds.

Ezample {. Consider a 16-round cipher of block size n = 64, or N = 2°% — 1,
Jor which we wish to show that fa < 3% In this case t = b and (13) bounds the

deviation probabilily as greater than 1 —e*28=2"" which for all practical purposes

is 1. Then if at least one o, is less than the mean, Theorem 3 states that
47 || pi(«lG) — I ”'3 < ([}2)16 < 984 9-5:18 _ 9~16 (14)

Since the wvariation has N terms, lhe average squared error per state is then
: 564 o 082 - 16
approrimately l‘ 2764 916 = 9-82 " giying the average error value ef;]- ) 1o be
2-4, o

4 Conclusion

The main aim of the paper was to show that bounds on the convergence of
Markov chains describing differential distributions can be obtained for differen-
tial 2-uniform mappings. The convergence is expected to be exponential since
there is a large separation between 31 and Ba, the two largest eigenvalues of the
M (P) matrix. This separation is due to the fact that M(P) contains no zero
entries for a differential 2-uniform mapping.

The analysis has shown that the density of zero entries in the XOR table
for the round function F will determine if it is ergodic and also the rate of
convergence, since M(P) will mostly be nonzero if P is mostly nonzero. 1t is
then possible to extend the analysis to mappings other than those that are
differentially 2-uniform, if the density of zeros can be approximated and a bound
15 known on the largest entry in the XOR table so that o, can be approximated.
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However, we conjecture that the rate of convergence in differential 2-uniform
mappings is optimal (fastest) given that M(P)1s totally nonzero and all nonzero
entries in P are bounded by the constant 2.

Strictly speaking, the convergence result states that the probability of a dif-
ferential can be made arbitrarily close to 1/N = ;zi=. However since each
nonzero XOR table entry is even, the lowest nonzero probability of a differen-
tial 1s % = 2,}—_1 The discrepancy is introduced by modeling differentials using
Markov chaius. In practice, if the probability of the most likely differential is
at most 3/2™ then all 2" plaintext-ciphertext pairs must be examined, which
renders key search redundant [9]. A rapidly converging Markov chain for differ-
ential cryptanalysis strongly suggests that all differentials will have a probability
approaching the practical minimum.
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