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Abstract. Differential cryptanalysis is a general attack based on the 
notion of differences. The success of the attack is derived from the proba- 
bility of a dzflerential. While it has been observed that the distribution of 
differentials can be modeled as a Markov chain,  there have been few anal- 
yses t,hat t,ake advantage of this observation because of the prohibitive 
comput.ations involved. In this paper we apply the Markov approach to 
t.he differeiit.ially .'-uniform mappings, and show that, they converge ex- 
ponentially fast, with high pro1)ability. 

1 Introduction 

Differentid cryptanalysis is a. geiieral attack based on  t,he dist,ribut,ioii of differ- 
ences in a cipher [3, 21. The notion of difference caii he defined a r h i t r d y ,  but 
in this paper we will assuiiie it to mean the XOR (exclusive-or) of two binary 
strings. The proba.hility of a.n 1%-round differential AP,  AC,. is t,he probability 
that a pair of plaintests of difference A P  Imve a ciphertext differelice of AC, 
after r.-rounds. A cipher is called i t era ted  if there is a function F, the round 
function, such that, the  cipher operates by applying F repea.tedly. Lai, Massey 
and  Murphy [lo] have observed tha t  it is possible in some ciphers t o  model the 
distribution of differentials in an  itera.ted cipher as a homogeneous Markov chain 
P when the subkeys are assumed to be independent. The  states of the chain cor- 
respond to t,he set of nonzero differences. Such ciphers are called Mark011 ciphers, 
examples of wliich include DES [14] arid IDEA [9]. If P(") = [P;'] is the r t h  
power of P.  then the proha.hility of the diff'erential A P  = z,  AC,. = j is given as 
F$"'. If it  ca.n be shown tha t  all entries of P(") are tending to some sinall value 
t as 7- becomes large, this is taken as strong evzdeiice tha t  product ciphers built 
from t,he round funct,ioii F will he resistant, to differeiit.ia.1 cryptanalysis. 

A typica.1 analysis of a Markov chain would then proceed to cla.ssify the 
states so as to determine the asymptotic hehaviour of P(r). State classification 
is usua.lly performed by iiispect,ioii but, this is not, possible when P is large, as  
is the case for DES a.nd IDEA with 2lZ8 entries each. However, some general 
properties of t,lie P ma suggest. an approach to a.p proxima t e its asyinp t.0 t ic 
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Ix!liaviour. It  is known [9] h a t ,  P is doubly st,ocliast,ic when F is bijective, and 
P‘”’ trends t.o t,lie uiiiform dist,ril,iition when P is ergodic (defined below). This 
iii(:aiis taliat i f  P could I F  shown to b e  ergodic, all eiitries of P‘’) would be tending 
towards the va lw 1/2” where n is the block size. We are theii confronted with 
t,he followiiig two problems: ( a )  demonstrate t.liat, P is ergodic, and ( b )  determine 
the rate at, which P approaches the unifrom distribution if it. is ergodic. Note 
t,lia.t ( . )  will determinr if t,he differences are distributed uniformly, while ( b )  will 
determine a n  a.ppropria.t,e iiuiiiber of rounds for t,he cipher. Hornauer, Stephan, 
a.iicl Werlisdorf [S] were a.l,le to provc that certaiti round functions F yield ergodic 
t,ransit,ioii iliatrices P by esamiiiing the group of mappings that. could he formed 
by it,era.t,iiig the roillid fuiict,ioii. ResuIt#s for iiiore general cliaiiis are report8ed by 
O’Connor a.nd Golid [13, 121 where a c,ombinatorial approach is used to show 

lect.ed uniformly then P is ergodic with proba.bilit,y tending t,o one. 
On t,lir ot.lier hand .  t,here arc no known resu1t.s relat.etl t,o t,he rat,e of coilvergelice 
of specific chaiiis. Ilowever, h i  [!I] has prrformecl experiiiieiit,s oii ‘inini’ verions 
of‘ I D E A  (&hit blocli Icngt.li) aiitl sl~own t.he colivergence t,o b t l  rapid. 

1.1 Rcsi i l t s  

Iii t I i i h  papvr  IW esani inr  roiintI funct,ions tmIiatm are  diKereiitiaIIy 2-uniform [I 11, 
meaning t,Ii;l.t the; S O R  t,a.l)le ent,ries for nonzero input, diffcreiices are eit,her zero 
o r  I \ W .  As wr will sliow.. thr R I ~ S W P ~  t,o ( I . )  depeiids oii t,lie densi ly  of I I O I I X ~ ~ O  

entries i l l  P .  wlii lc  ( 6 )  depeiicls on t,lie n i n y i i r t t t d e  of thc iioiiztxo rnt,ries in P ,  both 
of \vl i ic l i  a r ~  hio\vii whrii F is cliffc~rtnt,ially 2-uldorl11. O u r  ma. in  result is t.lieii t,o 
show t,liat. t,raiisit.ioii m a t r i c ~ s  P derived from diffi:rent,ially 2-uiiiform ma.ppiiigs 
F a r r  ergodic \vi t , l i  high 1)roIiahiliLy aiicl are  esljectrtl t,o converge expoimitially 
fast to  t,lir uiiiforiii cli ihiit,ioii. Tliis is proveii by 1)ouiidiiig t,lie second largest 
t ~ i g r i i v d u e  of P .  

1 Iic paper 1)roc.eeds a.s follows. I n  section 2 we review concepts related to fiiiite 
M Rrl iC) \ ’  chains, aiid sliow t,liat diff~rriitially ~ - U I I ~ ~ I I - I  mappings are highly likely 
t,o 1ia.ve ergodic t,raiisition matrices P .  I11 section 3 we introduce t,he concept of a. 
rapidly iiiisiiig Markov chain, a n d  iii section 3.1 show t h a t  P ra.pidly approa.ches 
thc  uiiiforiii tlist,ril,ut,ion wit,h high proha.bility. 

‘I‘lii~ougliout~ t8hc paper we will  use bold iiot,at,ion to refer t,o objects related to 
t,lir round friiic1,ioii F ,  such  as P and G.  As many defini1,ioiis aiid concept,s will 
appl). t o  all RIiirltvv cliaiiib \ye wil l  LISP P = [pij] t.o cIeiiot,c: a,ii arljit,ra.ry N-stat’? 
cliaiii. r e f r i i i ig  to it, gcinczra.lly crsiiig iiormal (not Imld) iiot.at,ioii. 

r 1  

2 Finite Markov Chaiiis 

Griic.ral defiiiil.ions of hlarltov chains can l i e  found in Feller [ G I ,  h u t  we will review 
s o i i i ~  concepts briefly. A chain P = [l,,j] is ei lycdic  if it is fiiiite, aperiodic aiid 
i r r educ ih l r .  11 sufficient, coiiclitioii for aperiodicit,y of a n  iV-sta.t,e chain P is t’1ia.t 
p j j  > I) for s o i i i ~  i ,  I 5 i 5 A T ,  wliilc P is irreducible if for all i. j there exists 
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an r such that p/} > (J, 1 < i,j < A'. If P is ergodic then there exists a unique
distribution II — (TT\ , TTT, .. ., 7rAT) such that

7T, = Mm PYJK (1)

The distribution 7/ is said to be the limiting distribution for P and is known to
be the uniform distribution for P that are doubly stochastic.

Let F : Z!] —»• Zi'\ a bijective mapping, be the round function of an r-round
iterated cipher E, such that at round i, the round mapping is C\+i — F(C,- + A*,-)
where C, is the ciphertext at round i and A"; is the subkey at round ?', 1 < i < »'.
It can be verified that E is a Markov cipher when ' + ' denotes XOR and the A',
are assumed to be independent. The differentia! transition matrix P — [Pij] is
obtained from the XOR table of F as follows. For each input difference AX = i
and output difference AY — j , 1 < i,j < 2" — 1, Pn is defined as

^ = • 2 - " - ]T [F(A-) + F(A") = ^V] (2)
.v.x'ez:;

A x = x + x'

where [•] is a boolean predicate evaluating to 0 or 1. Then P = [Pij] is an N x N
matrix where N = 2" — 1 since the degenerate cases where i — 0 or j — 0 are
excluded. The transition matrix P is doubly stochastic as F is bijective [9].

Since P is clearly finite, to prove ergodicity we must demonstrate that the
chain is aperiodic and irreducible. Note that P would be ergodic if all A"2 entries
were nonzero since /'',;, > 0 implies that P is aperiodic, and irreducibility follows
trivially as PtJ > 0 for all i,j. We will argue that, when the number of nonzero
entries in P exceeds some bound B < N2, then P is ergodic. with high probability.
In particular, using results from random graph theory, we will show that B is
approximately A* log N.

2.1 Differentially uniform mappings

A mapping F is differentially 6-uniform [11] if each entry in the XOR table for F
is at most b. Since each entry in an XOR table is even, a differentially 2-imiform
mapping F has an XOR table that consists entirely of zeros and twos, with
exactly 2 U - 1 nonzero entries in each row of the table. Thus the XOR table for
differentially 2-uniform mappings has the maximum number of nonzero entries
for a bijective mapping, as does the corresponding transition matrix P , which is
(2n - 1) - 2 " - 1 = A'(/V/2+ 1/2).

Example 1. Lei p : GF(23) — GF{2A) be a bijective mapping defined as p(x) =
x6 mod f(x) where f(x) — ,r3 + x + 1 is irreducible over GF(2). The mapping
p then corresponds toO-0,1 — 1 , 2 — 3, 3 — 4 , 4 — 5, 5 —>• 6, 6 — 7, 7 -^ 2,

and is known to be differentially 2-unifvrm [11]. The XOR table for p and the
corresponding transition matrix P are then
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- 2  0 2 0  2 0  2 
0 2 2 2 2 0 0  
2 2 0 2 0 0 2  
0 0 0 2 2 2 2  
2 0 2 2 0 2 0  
0 2 2 0 0 2 2  

- 

- 2 2 0 0 2 2 0 - 

XOK, = 

8 0 0 0 0 0 0 0 
0 2 0 2 0 2 0 2  
0 0 2 2 2 2 0 0  
0 2 2 0 2 0 0 2 
0 0 0 0 2 2 2 2  
0 2 0 2 2 0 2 0  
0 0 2 2 0 0 2 2  
0 2 2 0 0 2 2 0  

1 
8 

p x - .  (3)  

N o t e  t h a t  P is obtuzved b y  deletzitg t h e  jirsi roui a n d  coluni~i  of XOR, a n d  dz- 
ilidiiiy by 8 O b s e r u e  t h a t  P zs aperzodzc. ~ z i i c e  Pll > 0 0 

2.2 Raildoin Graph Theory 

As has Ixen observed by iiia,ny aut.hors, a t~ra.nsition matrix P can be consid- 
ered a.s the adjacency iiiat8rix for a directed graph C; = (L', E), where V = 
{ . u 1 ~  t ! ~ ,  . . . UN} a i d  there is a. direc,t,ed edge from V ,  tlo uj if and only if pij  > 0. 
\Ye mi l l  ca.11 G the uiiderlyi , t ig  g r a p h  of P .  A directed graph G is strongly con- 
iiect,ed if for a.ll 7 ~ ,  , 'o,, t<hrrr is a directed pa.th from vertex 7) i  to vertex vg . Also, 
an eclgc in G' is called a loop if it, connects a, vertex t80 itself. 

Leniina 1. The iiiat,rix P is irrcducible if and only if G is stroiigly connected. 
The iliataris P is ergodic if G is st,rongly connected arid has a loop. 

Proof. If vertices 11,  and 'v, in <," a.re connected by the path uauivi . . .v:.vj then 
b y  conslruction 14;' > 0.  When G is strongly coriiiected this is true for all vertex 

pairs ' I : ,  , ' t i j  which implies that. 1~:; )  > 0 for some r ,  and P must, be irreducible. 
Further, if G has a loop t,lieii there must exist, an  i for which yii > 0,  and hence 
P is aperiodic. Thc  lemnia. now follows. 0 

Example 2. Tlrc i r i i d r r l y ~ ~ i g  graph G C O I  poi idzng  to  the  P matrix rn (3) is 
s h o w n  Z I I .  Fzguw I .  I1  c o n  be iwri j ied thnf G zs slroicgly w i i i r e c l e d ,  a n d  sin,ce G 

0 

Clearly thc lirobability of G 1ia.viiig a loop and k i n g  st,rongly connected 
increases as  the niimber of' edges in G increases. We will say tha t  almost all 
graphs with N vert<ices a.nd ni edges possess a. cert,ain property if the fract,ion of 
graphs wit11 the propertmy tends to one when N - 00. lising simple combina.torial 
a.rgunient,s, it ca.n he shown tha t  almost all directed gra.phs G with N vertices 
and 172 edges have a. loop when 17% = N . Y N ,  - y ~  + 00. Further, Pa.16sti [15] has 
sliown t.hat. almost a.11 direct8crl g r a p h  G w i t h  1 1 1  edges are strongly connected 
wlirii 172 = !V(logN + "1~), -/N + (30. Here YN is any function tha t  tends to 
iiifinit,y 3.5 A7 does such a.s log log N .  

Theoreill 2. Let 171 = N(log N + 7 ~ )  where 71y + 00, Tlieii almost$ all directed 
graphs C; h a w  a. loop and a.re strongly connect,ed. 

conta l i is  4 loops. 11 fo l lows f h a t  P is ergodic. 
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I I 

Piuvf. For a n y  t,wo events cv17 w 2 ,  P r ( a l ,  0 2 )  2 P r ( c r l ) +  Pr(ru2) - 1. If the events 
of interest, a r r  ‘C; has a. loop’ a.iid ‘C; is st,rongly connect,ed’, then the joint prob- 

0 a.biiity teiicls t,o o i i ~  wheii rn = N(logN + -/,\,) a.nd -fnr - w. 

Recall that, the P matrix associat,ed wit>h a diff’ercntia.lly 2-uniform mapping: 
F : X; - Zy has (2’’ - 1 ) . 2 ” - ’  = AV((N/2+ 1 /2)  > hr2/2 nonzero entries. Theo- 
rem 2 states t,liat, a t,ransition mat,ris wit11 a.t lea.st N log N rai2.doinly dzslrlbvied 
iioiizero edges is ergodic wit,li high pi*ohahilit.y. Even though the iioiizero entries 
of‘P are ire/ rmcloiiily cIist~ribut8etl, it. is still highly likely t,Iiat, P is ergodic since 
the iiumlxr of rtlges in G escc-.eds the required A’ log N bound of Thcorcm 2. 
We therrforc make t,he following a s s u n i p h n  

Proposition 2.1 Let F : Zg - 2; l i e  a bijective differentia.lly 2-uniform round 
fuiict>ion. ’I’hen t,hc t8raiisit,ioii matrix P derived from F is assumed to he ergodic. 

To supporl’ tmliis assumpt ion MY have verified t,liat, from t8he 40,320 bijective map- 
pings F : - Zg,  10,752 are  tliffercnt,ially 2-uniforn1, and each has an  ergodic 
t8ransit,ioii ii.lati.is P .  Tliere are  only 7 tlist,inrt trailsition nia.t,rices P,  with 1536 
mappiugs F yielding t5he saiiie P matrix.  (We not,e tha t  3 is the  smallest 11 for 
which diffcreiit.ially 2-uniform bijective mappings exist). 
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3 Convergence and Rapid Mixing 

Let P = [ u z j ]  be ergodic with 17 = ( T I ,  7r2, . . . , K N )  its limiting distribution. Also 
let P,"' be the distribution of the states after r steps when started in state i .  
The i inrtntzoii [5] between P,"' and I7 is defined as 

A chain is rapidly  mixing if the error terms el;' in (4) converge to zero as a.fast 
function of r (see [IG] for a survey). Initially the results related to  ra.pid mixing 
only applied to special chains, such as those that were t i m e  reversible. A chain 
P is time reversible if nip;, = 7rjpj i  for all states i , j .  If P is nonreversible then 
define itl(P) = P . P  where P = [ I j i j ]  and f i j j  = r j p j i / r ; .  It can be shown [7] that 
!Id ( P )  is time reversible, is ergodic if P is ergodic, and has limiting distribution 
I7 if I1 is t,lie 1iniit.ing dist,ribution of both P a.nd P .  The usefulness of M ( P )  i s  

t.liat. it. is possible to bound 1 )  P;'' - 17 ) I  by considering it.s eigenvalues. 
For an ergodic chain P the Perron-Frobenius theorem [l] states that the 

largest eigenvalue is 1 while a.11 other eigenvalues are less than 1 in modulus. 
In particular, the N eigenvalues of M ( P )  are real and nonnegative 171. Conse- 
quently, the convergence of the cha.in is determined by t.he nmgnitude of the 
second la.rgest, eigenvalue. Let, the N eigenvalues of A4(P)  be 1 = /?I > 8 2  3 
. ' ' 2 ij!\ > 0. 

Tlieoreiii3 Fill [7]. For aay sta.te i ,  47ri . 11 P,"" - 17 11' 5 (P?)" .  0 

There are several methods to bound & when A4(P) is time reversible, and the 
method we will use is based on the Poincar6 inequality [5] and canonical paths 
[ l G ] .  Oiie result from the investigation of ra.pidly mixing hilarkov chains has 
been t,o show that. t,he convergence of the chain P depends on the geornet,ric 
propert,ies of G,\l. t,he underlying graph of M ( P ) .  Let, A4(P)  = [qi , ] ,  a.nd from 
the time reversible propert,y define . .  

(5) 
def d . . - l r .  . .  = x. 

' I  - zPzg I Q j i .  

For Gill = (I,,'., E ) ,  let &(it;, , v j )  be a. (directed) pa.th bet.weeii vertices vi a.nd v j  
wit.11 no repeated edges. Let f be a collection of paths 6(v,, r i j )  conta.ining one 
jmth for ca.ch vertex pair 7; ir  u j  in  Gnf. At least, one such pa.th set. r will exist 
since P .  and hence A.l(P),  is irreducible. Now define t.he length of the path 
6 (  P,. rJ ) to be 

where t.hc sum is over all edges e i n  t,he pa.th &( v i ,  vJ ) a.nd d ( e )  = d i j .  Finally 
define K a.s 
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where the maximum is taken over all directed edges in the graph and the sum
is over all paths that traverse the edge e. Note that K is essentially a measure
of 'bottlenecks'. A bottleneck S in a graph G is a set of vertices for which there
are relatively few edges directed in or out of S as compared to \S\. Intuitively,
if the chain enters a state corresponding to a vertex in S then the process gets
'stuck' in S and does not mix rapidly. Consequently, in any path set P, the edges
joining ,S' to the rest of the graph will be traversed frequently. We are now ready
to state the Foincare inequality.

Proposition 3.1 (Poincare inequality) For an ergodic time reversible chain

K

D

Since in general the transitions matrices P describing differential distributions
are not Lime reversible, our goal is to show that the convergence of P can be
bound using Theorem 3 and the Poincare inequality.

3.1 Bounding eigenvalues

We begin by showing that the ,'V/(P) matrix derived from a differentially 2-
uniform. mapping F has the complete graph (all vertex pairs connected by an
edge) as its underlying graph.

Lemma4. M{P) = P P 7

Proof. Recall that M(P) = P P is dcrvied from P = [Pt;] by defining P = [PtJ]
where P,j — ix} P,,; / TT, . But since TT; = TTJ for all states i,j it follows that P = P ,
the transpose of P . •

Corollary 3.1 A7(P) has no zero entries. Equivalently, the underlying graph
Gjy/ of M(P) is complete.

Proof. Let M(P) = [q,j] and observe that

N N

h=l k=l

But by construction, each row PlU Pl2, . . ., PiN of P has 2n~l - N/2+ 1/2
nonzero entries. Since the majority of entries in each row are nonzero, there
must be at least one k in (8) for which P,^ • Pkj > 0, implying q,,j > 0. Since this
is true for all pairs ofstat.es ?', j , it follows that Af(P) has no nonzero entries. D

Now consider applying the Poincare inequality to bound the variation in P ,
requiring a path set P for GM. But since Gjii is complete we simply take the
path between i;, and VJ to be the directed edge connecting these vertices so that
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6(v{,Vj) = tij. Obviously each edge is used only once in the path set which im-
plies that the summation on the RHS of (7), the equation defining K, will only
have one term. To determine K we need only determine the length |6(VJ,UJ)| of
each path (i.e. edge).

Recall that the length of an edge e — eij is the inverse of dij = ^qij where
1/TTJ = N and q>j is given as in (8). Since P^ = 2/2" if P^ > 0 then qtj can be
written as

4 A'
SO' = Wn • E ^ > °1 • ̂ * > °1 ^

where [•] is a boolean predicate evaluating to either 1 or 0. When i = j the
value of the summation in (9) is 2™"1 = N + 1/2. However when i ^ j , we will
model the summation as a random variable ae distributed binomially as b(p, TV),
where p = ( i + ^ ) 2 is the probability that two rows from P are nonzero in the
same entry. There are N2 — N random variables cvf to consider, corresponding
to g7J, / / j .

Given the restrictions on M(P), the criterion (7) for K reduces to

1 rV • 22" ( V + 1)"
K = K-.(.T) = max —^ = max ±-— '—. (10)

e N2 Aae t AN-ae

So the maximum is obtained when ue is minimized. Observe that (3-y < 2~* when
K — r,,"_1 , implying that there is some ae for which

It follows that a good bound on 02 is obtained if the smallest ae is just slightly
less than the mean pN of its distribution b(p, N).

Example 3. For the P matrix defined in (3), it can be verified that M ( P ) is a 7x7

matrix with 1 on the mam diagonal and 1/8 elsewhere. In this case pN = 16/49,

and fte = (1 ~ 2~3) -pN for all r/ZJ, i / j , implying that \\ P\' ^ — 77 || is the same

value for all i. The Pomcart inequality states that /?o < 2 " 3 , and Table 1 shows

that (ihY = 2"3 t ' bounds 4 /7 • || p / r J - 77 || as predicted from. Theorem 3.

a

For larger n we will not be able to compute M(P) explicitly as we did in the ex-
ample above, and some probabilistic statement must be made. The next lemma
(adapted from [4]) gives a bound on the probability that \ae — pN\ > 2""' • pN.

Lemma 5. If 0 < p < | , and {pN)'^ < t < | , then

Pr( |a , - pN | > epN) < c'^tr^h + T^ (12)

whei'e f: is the base of the natural logarithm. •
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r\ || P}r) - n || U /7 • l| ^ r ) - 77 |l2l 2~ 3 r ~~
1 0.10714 0.45918 0.875
2 0.53571 0.11479 xlO"1 0.10937
3 0.13392 xlO~y 0.71747 xlO"3""" 0.13671 xlO"1

4 0.66964 xlO~2 0.17936 xlO~3 0.17089x10^
5 0.16741 xlO~^ 0.11210 xlO~4 0.21362 xltT^

Table 1. Convergence bounds for P .

If 22t = o(N) and letting p = 1/4, the probability that all N2 - N ae deviate

from pTV by less than a, factor of (1 - 2~!) is f 1 - e 9-=2<+3-2Y J which

reduces to

Using (13) we are able to argue convergence results for ciphers with large given
parameters such as block size and number of rounds.

Example Jh Consider a 16-round cipher of block size n — 64, or N = 264 — 1,
for which we wish to show that 02 < 4^- In this case t — 5 and (IS) bounds the
deviation probability as greater than 1 — e128~2 which for all practical purposes
is 1. Then if at least one ae is less than the mean, Theorem 3 states that

4n, • || P / 1 6 ) - / / ||2 < (/?2)16 < 26 4 • 2~5"16 = 2 - 1 6 . (14)

Since the variation has N terms, the average squared error per state is then
approximately -f • 2~64 • 2~16 = 2~82, giving the average error value e,: • to be
2-4i D

4 Conclusion

The main aim of the paper was to show that bounds on the convergence of
Markov chains describing differential distributions can be obtained for differen-
tial 2-uniform mappings. The convergence is expected to be exponential since
there is a large separation between (5\ and 02, the two largest eigenvalues of the
M(P) matrix. This separation is due to the fact that M(P) contains no zero
entries for a differential 2-uniform mapping.

The analysis has shown that the density of zero entries in the XOR table
for the round function F will determine if it is ergodic and also the rate of
convergence, since M(P) will mostly be nonzero if P is mostly nonzero. It is
then possible to extend the analysis to mappings other than those that are
differentially 2-uniform, if the density of zeros can be approximated and a bound
is known on the largest entry in the XOR table so that ae can be approximated.
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However, we conjecture that the rate of convergence in differential 2-uniform
mappings is optimal (fastest) given that M(P) is totally nonzero and all nonzero
entries in P are bounded by the constant 2.

Strictly speaking, the convergence result states that the probability of a dif-
ferential can be made arbitrarily close to \/N — jr—j-. However since each
nonzero XOR table entry is even, the lowest nonzero probability of a differen-
tial is -^ — 2^=r- The discrepancy is introduced by modeling differentials using
Markov chains. In practice, if the probability of the most likely differential is
at most 3/2", then all 2" plaintext-ciphertext pairs must be, examined, which
renders key search redundant [9]. A rapidly converging Markov chain for differ-
ential cryptanalysis strongly suggests that all differentials will have a probability
approaching the practical minimum.
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