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Abstract. A voxel object (finite set of voxels) is considered in the cuber-
ille approach (more precisely, the 3D cell complex approach). Its bound-
ary is a set of surfels (faces of voxels). We assume, without loss of gener-
ality, that this set of surfels is a polyhedron whose faces are surfels. These
faces can be agglomerated in such a way that the boundary is a poly-
hedron whose faces are topological disks of standard arithmetic planes;
this new kind of polyhedron is called a discrete standard polyhedron.
Thus, these new faces are generally much bigger than one surfel, and a
discrete standard polyhedron has generally a less smaller space complex-
ity than the starting set of surfels. This process, called polyhedrization
or facetization, is the 3D extension of the known polygonalization of
2D discrete curves. The other main properties of this polyhedrization
are the non-uniqueness, and the reversibility, i.e. starting from the dis-
crete standard polyhedron, the boundary can be exactly computed back
again. A polyhedrization algorithm is presented in this paper. It uses a
recent algorithm for recognizing standard arithmetic planes. Examples
of polyhedrizations of synthetic and natural objects are given. Examples
of application to the visualization of the boundary of a voxel object are
also given.

1 Introduction

Let us consider a finite set of voxels, called a voxel object. A voxel is a unit cube,
or 3-cell in the 3D cell complex approach of Kovalevsky [10] [11], centered at a
point of integer coordinates. A face of a voxel is called a surfel (which is a unit
square), or 2-cell, an edge is called linel, or 1-cell, and a vertex is called pointel,
or 0-cell. For technical purposes in the present paper, a voxel is translated so
that it is centered at a point of half integer coordinates; thus, any pointel have
integer coordinates and any integer coordinates point is a pointel. The (surfel)
boundary of a voxel object is the set of surfels incident to a voxel of the object
and to a voxel of its complementary. This is the well known boundary concept
in the ”cuberille” approach of 3D discrete imaging, and of the cell complex ap-
proach. We assume, without loss of generality, this boundary is connected, and,
moreover, it is a polyhedron whose faces are surfels; that is, the boundary is

G. Bertrand, M. Couprie, L. Perroton (Eds.): DGCI’99, LNCS 1568, pp. 425–434, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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a connected combinatorial 2-manifold without boundary whose faces are unit
squares (each linel of the boundary is incident to exactly two surfels, and each
pointel of the boundary is incident to exactly one umbrella of surfels, see defi-
nitions in [6] [7] [8]). But we know from [7] [8] that a standard arithmetic plane
is an infinite orientable combinatorial 2-manifold without boundary whose faces
are unit squares. Thus, the boundary of a voxel object can be decomposed (or
encoded) into a set of topological disks of standard planes; that is, this boundary
can be decomposed into a new kind of polyhedron, here called discrete standard
polyhedron : A polyhedron whose vertices are pointels, and whose faces are not
always exactly Euclidean planar segments, but always topological disks of stan-
dard arithmetic planes.

This decomposition (or encoding) is called polyhedrization, or facetization. It
is obviously non unique. It is reversible, i.e. the boundary can be exactly back
computed by starting from the discrete standard polyhedron. This reversibility
property is not difficult to prove; but it is not addressed here. Note that it
is not the case for the various methods, e.g. the ”marching cube” algorithm,
that produce a Euclidean polyhedron approximation of the boundary. Another
important property of the discrete standard polyhedron is that it generally needs
less information than a set of surfels for representing the boundary.

The authors of [1] were the first to address themselves to the same problem.
Another polyhedrization (of a discrete sphere only) was done in [4] [5], with
naive arithmetic planes instead of standard planes. The solution of [1] was not
entirely satisfactory, partly because it was not completely discrete (it uses a
classical least square fit algorithm). The solution given in the present paper uses
the standard plane recognition algorithm presented in [9]; this algorithm makes
sure that a given set of pointels belongs to an arithmetic plane and computes
the parameters of the equation of that plane.

Note that the problem of polyhedrization of a set of surfels is a 3D extension
of the well studied problem of polygonalization of a 2D discrete curve; see [2],
[5], [15], [16], [11], and their references. The present paper has the same goals
for 3D images than [11] for 2D images; thus, it is a partial 3D extension of [11];
in [11], the study of the reversibility and of the complexity reduction was well
developed; it is not the case here, and left to another paper. In the present paper,
we restrict ourselves to the study of the feasibility of our polyhedrization.

In section 2 the definitions and the basic used properties are given. In sec-
tion 3 the problem is precisely stated, and the designed polyhedrization algo-
rithm is presented and discussed. Experimental results on synthetic as well as a
natural object are given in section 4. Application to the rendering of the bound-
ary of voxel objects is shown in section 5. A prospective conclusion ends the
paper.

2 Definitions and basic properties

The notion of surface used in the present paper is that of a two-dimensional com-
binatorial manifold in the classical combinatorial topology [6]. The basic notions
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are that of combinatorial 2-manifold without boundary (or closed), 2-manifold
with boundary (or open), whose elements are vertices, edges, faces, their inci-
dence relations, their adjacency relations, umbrella, loop or boundary of a face,
connectivity, orientability. We use here these notions, and the notion of a topolog-
ical disk which is an orientable combinatorial 2-manifold with a boundary of one
loop only (or equivalently, of Euler characteristics one). A face is a topological
disk.

An arithmetic plane is the set of points (x, y, z) of the discrete space ZZ3

satisfying the inequalities

µ ≤ ax + by + cz < µ + ω

where all parameters are integers and ω > 0. The parameter ω is called the
(arithmetic) width of the plane. The triple (a, b, c) is the normal to the plane;
a,b,c,µ are the coefficients of the plane. These planes are basic in the arithmetical
geometry introduced by Jean-Pierre Reveillès [14]. A standard arithmetic plane
is an arithmetic plane Π of width ω = |a| + |b| + |c|. Let us recall the result
of [7] [8]. Let G be the graph of the 6-connectivity relation in Π, let F be the
set of squares, i.e. cycles of 4 vertices, of G. The pair (G, F ) is an orientable
two-dimensional combinatorial 6-connected 2-manifold without boundary.

We call discrete standard polyhedron a combinatorial orientable 2-manifold
without boundary whose any face is a topological disk of a standard arithmetic
plane, called a standard face. The vertices of a discrete standard polyhedron
are integer points (here pointels), and called standard vertices; its edges are 6-
connected paths of points called standard edges, whose extremities are standard
vertices and not containing other standard vertices. The figure 1 shows a view
of the standard edges of a polyhedrization of a discrete hexahedron, which is a
two times chamfered cube; the linels of the boundary of the discrete standard
polyhedron are displayed like 3D unit segments.

Fig. 1. Hexahedron
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3 Polyhedrization: Problem and algorithm

Let V be a voxel object whose voxels are centered at half-integer coordinates
points, and let B its boundary (see definitions in section 1). Thus the pointels
of B have integer coordinates only. Assume B is connected (if not, we treat
separatively its connected components). Moreover, assume B is a polyhedron
whose faces are surfels, that is a combinatorial 2-manifold without boundary
whose faces are surfels and whose vertices are pointels (generally, a linel of B
can be incident to 4 surfels of B, instead of 2, and a pointel of B can be incident
to 2 umbrellas of surfels of B, instead of just one). This last assumption is made
in order to simplify this paper, and can easily be dropped by different methods
discussed in [12]. Because any surfel is a topological disk of a standard arithmetic
plane (an orthotropic plane), B is a discrete standard polyhedron whose standard
faces are surfels, standard vertices are pointels, and standard edges are linels.
The problem called polyhedrization is to agglomerate surfels of B in order to
make a discrete standard polyhedron with larger faces. The reduction of space
complexity is obvious, as well the non uniqueness of the solution.

A simple, nevertheless instructive, example is that of an object of one voxel
only, centered at (1

2 , 1
2 , 1

2 ). Its boundary has 6 surfels; the 3 ones incident to the
pointel (0, 0, 0) (resp. the pointel (1, 1, 1)) define an umbrella of the standard
plane

0 ≤ x + y + z < 3 (resp. 0 ≤ x + y + z − 1 < 3).

Thus, the boundary of the one voxel object can be decomposed into two
topological disks of standard planes (note that it is not possible for a Euclidean
polyhedron to be reduced to two faces only); moreover, these planes are different
and parallel (same normal), which is not possible for two adjacent faces of a
Euclidean polyhedron.

The design of a polyhedrization algorithm is rather straightforward. Here, B
is a connected set of surfels. The set of faces of the searched discrete standard
polyhedron is denoted by P. A face of P is represented by the quadruple of the
coefficients of its standard plane, and by its boundary which is a loop of integer
points (pointels). Any surfel of B must belong to one and only one face of P.
The problem is : Given B, compute P.

The (standard) faces of P have to be computed one by one, starting from a
seed of one surfel (but for heuristic reasons we prefer to start with a seed of one
umbrella, as long as possible). Thus some traversing through the surfels of B
has to be done. For each surfel of B we try to affect it to the current standard
face under construction f. If we can’t add any surfel of B to f, we start a new
current face with (arbitrarily) the next non affected surfel with respect to the
order of traversal of B. In order to assign the current surfel s to the current
standard face f we must check whether by adding s to f

1. we keep a topological disk;
2. the pointels of s and of f belong to a standard plane.

The answer to the first condition is obtained by checking whether the boundary
of the union of s and f is a loop; it is easy and purely topological. The answer
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to the second condition is obtained by the standard plane recognition algorithm
presented in [9], based on the known Fourier’s algorithm for solving a set of
inequalities. This algorithm provides not only a yes or no answer, but also the
cone of the solutions, which is a set of inequalities for the coefficients of the
standard plane solution, if it exists. Moreover, a numerical solution can be easily
computed, especially a numerical normal, which is practically needed.

Because of the first condition, the current surfel s is chosen in the set q(f)
of non assigned surfels that are not in f and are adjacent to a surfel of f (thus
a linel of s belongs to the boundary of f). If s is affected to f defining a new
current face f ’, the update of q(f) to compute q(f’) is by deletion of s from
q(f) and by adjonction of a set t, maybe empty, of surfels. The set t is the set
of all surfels adjacent to s that are not in f, and non assigned. To each surfel of
t is associated an integer, called its depth, which is one more the maximal depth
in q(f) (the surfels of q(g), where g is the seed, are initialized to 1). We have
decided to constraint the choice of the current s in q(f) to be restricted to those
surfels of minimal depth, a kind of breadth first search; in this way, the growing
of the current face looks like the propagation of a circular wave.

The output of the algorithm is a set of standard faces; each standard face is
defined by its standard plane and by a circular permutation of the linels (or the
pointels) of its boundary. These linels (resp. pointels) can be considered as the
standard edges (resp. vertices) of the computed polyhedron. Another possible
way is to call standard vertices only those previous vertices that are incident to
at least three standard faces; then, a standard edge is a path of linels bounding
two adjacent standard faces, ending with two standard vertices, and not incident
to other standard vertices.

It is clear that the computed P heavily depends on several arbitrary choices :
The ordering of the traversing through B, the chosen seed for starting a new
current face, the chosen surfel s in q, for enlarging the current face. Several
questions occur naturally: How is it possible to control the number of faces of
P, or the sizes of the faces, or to eliminate the smaller faces, ..., by acting on
these choices. We do not know any answer.

For some practical use in medical imaging (Philippe Borianne, private com-
munication), the limitation of the size of the standard faces could be required;
another interesting limitation is that of the depth of the surfels in q. This can
be easily done. All details of the algorithm are given in [12]. More constrainted
variants are given in [12], and not detailed here; one variant is in the spirit of
[16], in order to get a better retrieval of voxel objects defined by a discretization
on a Euclidean polyhedron.

4 Results

The polyhedrization algorithm of section 3 was programmed and experimented.
Some results are now given and discussed. All the figures are obtained by the
classical methods of rendering of polygons (flat shading or Gouraud shading with
a one light illumination model); all the surfels of a standard face are displayed
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Fig. 2. Hexahedron Fig. 3. Sphere (R=15)

with the same color, more or less darkened by the used model; adjacent standard
faces have different colors.

The figure 2 shows the standard faces obtained for a discrete hexahedron
which is a twice chamfered cube (the voxel object is the intersection of six half-
spaces). In this example, the number of computed standard faces is not 6, but 11.
The number of surfels (size) of the boundary is 1962; thus, the average size of
the standard faces is 178.36; the maximum size is 475, the minimum is 13.

The same is performed in figure 3 for a discrete sphere of radius 15 (the voxel
object is a bowl), and in figure 4 for the boundary of a X-ray 3D scanner image
of a mushroom.

For the sphere, the 48 symmetries are lost. The number of computed standard
faces is 135. The number of surfels of the boundary is 4494; thus, the average
size of the standard faces is 33.29; the maximum size is 94, the minimum is one;
there are 48 standard faces of size 5 or less; the distribution of sizes is rather
scattered.

For the mushroom, the number of computed standard faces is 1019. The
number of surfels of the boundary is 26392; thus, the average size of the standard
faces is 25.90; the maximum size is 332, the minimum is one; there are 475
standard faces of size 5 or less; the distribution of the sizes is rather scattered.

A general observation is that the number of small standard faces is rather
large. Decreasing this number, if possible, is an open problem.

5 Application to visualization

The surfel boundary of a voxel object have been rendered, in section 4, like
a set of Euclidean polygons, by the classical methods of rendering of computer
graphics, because surfels are 3D Euclidean polygons. Methods for smoothing the
resulting visual staircase effects have been studied (see [13] for references and a
new method). The same is true for a discrete standard polyhedron, although the
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Fig. 4. Mushroom Fig. 5. Sphere (R=15) standard faces
with flat shading

vertices of a standard face do not necessary all belong to a Euclidean plane; this
is because some classical softwares of rendering begin by a triangulation of the
entered polygons, and then display each obtained triangle by using an entered
or a computed normal which can differ from the true normal of the triangle.
Thus, it is possible to use these softwares with a standard face represented by a
normal and a sequence of pointels of its boundary.

We present here a few results (obtained with the rendering library OpenGL),
and a short discussion. The practical interest of this new way of visualization of
discrete 3D data requires a much more developed study, which will be done in
another full paper.

Figure 5 (resp. 8, 11) shows a flat shading view of the radius 15 discrete sphere
(resp. the mushroom, the hexahedron). The linel length is large enough for show-
ing up the non Euclidean planarity of the standard faces. Obviously, the visual
defects disappear if the length of a linel is about that of a pixel of the screen.

In order to avoid some possible defects of the previous visualization method,
the following variant has been experimented. Instead of entering the rendering
software with the full standard edges of a standard face, we replace any standard
edge by the Euclidean 3D segment defined by the two extremities of the edge;
in other words, we enter the rendering software with, for each standard face, a
cyclic permutations of its standard vertices. The obtained polyhedron is called a
semi discrete polyhedron. Note that its faces are generally not Euclidean planar.

Figures 6 and 7 (resp. 9 and 10) show respectively a flat and a Gouraud
shading view of the semi discrete polyhedron of the radius 15 discrete sphere
(resp. the mushroom).

The more constrainted variant (see end of section 3) designed for polyhedra
provides better results than those of figure 2. Figure 1 shows a vectorial view
ofthe computed standard polyhedron, that have the same number of faces, edges,
and vertices as the starting Euclidean polyhedron. In this case the reduction of
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Fig. 6. Sphere (R=15) semi discrete
faces with flat shading

Fig. 7. Sphere (R=15) semi discrete
faces with Gouraud shading

Fig. 8. Mushroom standard faces with
flat shading

Fig. 9. Mushroom semi discrete faces
with flat shading

Fig. 10. Mushroom semi discrete faces with Gouraud shading
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Fig. 11. Hexahedron standard faces
with flat shading

Fig. 12. Hexahedron semi discrete
faces with flat shading

complexity of the polyhedrization is maximal. Figure 11 shows a flat shading
view of this standard polyhedron, and figure 12 shows a flat shading view of the
associated semi discrete polyhedron; this last result can be said very satisfactory.

6 Conclusion

We have defined a discrete standard polyhedron, a new kind of polyhedron, with
faces that are planar for standard arithmetic planes. We have designed and ex-
perimented a polyhedrization algorithm that produces a discrete standard poly-
hedron, starting from the surfel boundary of a voxel object. Two properties of
this process are very interesting: Reduction of space complexity, and reversibility.
Examples of application to the visualization of a voxel object have been given.
All these results are quite encouraging for further progress.

Now, a lot of future work has to be done:

– Theoretical and experimental study of the space complexity reduction;
– Design of reversion algorithms;
– Extension to the polyhedrization (encoding) of a discrete scene, and of all

the objects of a 3D image (as was done for 2D images in [11]);
– Exploration of the numerous variants of the algorithm (varying the arbi-

trary decisions, defining more or less supplementary constraints), and their
consequences on the statistics of the faces, and on their geometric properties;

– Full development of the visualization of discrete objects;
– Development of other applications, especially the use of discrete standard

polyhedra like the use of Euclidean polyhedra in the field of topology based
geometric modeling and in CAD, their use in discrete modelers, in medical
imaging ...

A part of this future work is in progress.
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6. Françon, J.: Discrete combinatorial surfaces. Graphical Models and Image Process-
ing, 57, pp. 20–26, 1995.
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