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Abstract. The problem of matching two images of the same objects
but after movements or slight deformations arises in medical imaging,
but also in the microscopic analysis of physical or biological structures.
We present a new matching strategy consisting of two steps. We consider
the grey level function (modulo a normalization) as a probability density
function. First, we apply a density based clustering method in order to
obtain a tree which classifies the points on which the grey level function
is defined. Secondly, we use the identification of the hierarchical repre-
sentations of the two images to guide the image matching or to define a
distance between the images for object recognition. The transformation
invariance properties of the representations allow to extract invariant im-
age points. Using the identification of the trees, they allow, in addition,
to find the correspondence between invariant points even if these have
moved locally. Then, we obtain the transformation function as the thin
plate interpolation of the corresponding point pairs. On the other hand,
if we use tree identification, this enables us to propose several criterias
to distinguish between real deformations and noise effects. In practice,
we treat, for instance, first coarse trees (with few leaves) and pass to
ever refining trees, after. The method’s results on real images will be
discussed.

1 Introduction

The use of structural information in images for recognition tasks has been real-
ized since the inception of machine vision ([22], [23], [1]). A graph structure allows
us to represent the extracted information. This structure is useful to represent
information about topology and shape of and between the extracted features
and therefore to compare two images, but also to guide the process of matching
corresponding features coming from two different images. In [10] for instance,
an algorithm for matching Delaunay graphs obtained from selected points of
segmented lines has been proposed for matching satellite images. If we want to
match images in which local movements appear (e.g., rigid transformations of
individual objects in the image or images of deformable objects) a structural
representation can also, as will be shown, be used to follow real deformations or
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movements of objects and to distinguish them from noise effects. For this, we
have to construct the graph (a tree in our case) in such a way that its structure
is kept even if deformations appear or features have moved.

A grey level function g : IRn → IR≥0, n = 2 or n = 3, with compact support
I, associates to each physical point in the image scene (represented by IRn) a
value (∈ IN in the technical realization) corresponding to its physical properties
and will be considered as being given by the acquisition device. g is eventually
smoothed and normalized, in order to have a continuous (or even derivable)
density function.

The presented approaches apply density based classification methods ([29],
[14], [15],[26]) to the grey level function in order to construct trees. These meth-
ods confine points in clusters at several levels if the points are in regions of
(respective to the level) high density. We will call the resulting tree (section 2)
a confinement (or density) tree representation of the image. If we choose the
classification method proposed in [29] and [15] the resulting tree corresponds to
the component tree defined in [13]. Under reasonable conditions, we will demon-
strate that the presented representation is invariant with respect to an arbitrary
topological transformation (section 2).

Matching is done now by identification of the two density trees corresponding
to the two images. The method given therefore tries to associate the leaves
of the trees and is based on the (intra-) tree distance (defined in section 4),
which is robust with respect to instabilities in the trees. The instabilities arise
as we transform a continuous function (the grey level function) into a discrete
structure. Little noise can result in different tree structures (section 3).

The idea behind this tree representation matching strategy is that the den-
sity tree will adapt itself to global and local movements in the image (Figure
1). This allows us to define characteristic points (candidates for landmarks [4])
and to find corresponding point (i.e., landmark) pairs, associated to nodes in the
tree, even if local movements appear. Moreover it allows us to detect if in one of
the images a cluster – intermediary node or leave in the tree – has been changed
by noise effects (section 4). All this has a series of applications as detailed in
section 5.

The main originality of our research work lies in two points:

– To apply hierarchical classification of the points on which the grey level
function is defined for image matching, to found this strategy on a topological
basis, and to define a distance between two images based on their density
tree representation for object recognition.

– To propose a tree identification algorithm which respects local instabilities
of the tree at all levels. The tree identification problem arises also in other
domains (Shasha et al. [25]).

In [21] we have already described these principles of the strategy, here we will
detail the algorithm and show how to obtain practical results. We will remark
that Leu and Huang [18] used a comparison of ordered trees to define a distance
between objects for object recognition. However, a tree identification method
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able to handle instabilities in the tree is not proposed and the algorithm’s suit-
ability to match images where non-affine deformations appear is not investigated.
Moreover, the tree construction approach does not use statistical methods, but is
of geometrical nature based on the closed1 contour in a segmented image. A tree
matching approach for signal processing has been investigated in [7]. Indepen-
dently from our work, Kok-Wiles et al. presented in [16] a multi-scale matching
approach integrating a hierarchical representation of the image.

A recent general overview of matching algorithms can be found in [20].

The remainder of the paper is organized as follows. In section 2, we detail the
construction of the confinement tree and the invariance theorem associated to
it. Using the confinement trees of two images we define a distance between them
in section 3. In section 4, we show how to apply the hierarchical representations
for image matching and present some results on real images in section 5 before
concluding in section 6.

2 Construction and Invariance Properties of a Density
Tree

Confronted with the classification task based on a density function we were led
to a mathematical entity denoted confiner, appearing in a natural way when
we look for stochastic equivalents of attractors in [8]. Given a density function
g : IRn → IR≥0, n ∈ IN, the confiners are defined as the maximal connected sub-
sets (or components, Gaal [11], p. 105) Cl of the level sets Ll = {x ∈ IRn|g(x) ≥
l}, l ∈ IR≥0. In the classification domain we found these components first in
a contribution by Wishart [29] and further investigations by Hartigan [14,15],
where they are called high density clusters. Considering them taken on several
levels lk, k = 1, ..., r (r from resolution) including the 0 level, they define obvi-
ously a tree (by “set inclusion”) as illustrated in Figure 1. The tree is finite if g
has a finite number of extremas. We call this tree confinement (or density) tree
and if g is a grey level function (n = 2, 3) of an Image Ig we use the term con-
finement tree representation of Ig. The confiners taken at level lk are the nodes
(intermediary nodes and leaves) of the tree at level k. We have chosen this clas-
sification method because of the invariance theorem and its consequences shown
below. Curiously, in the case of point distributions, a corresponding property
has already been mentioned in the contributions of Wishart [29] and Hartigan
[14,15] (without assuming the paradigm to hold and only in the case of an affine
transformation) even if they did not address a matching problem.

In practice, we take all grey levels of the image into account and we delete
confiners with a mass (which we calculate as the sum of all normalized grey
values associated to the pixels in the confiner) less than a factor λ of the mass of
all confiners at this level. We call λ the lop-parameter of the tree representation.
We choose the discrete d4−distance for defining the connectivity between pixels.

1 Simply edge detection [6] is not sufficient.
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Fig. 1. Illustration of the main advantage and the corresponding tree representation.

The time to calculate the tree is O(rn), where n is the number of pixels and r
is the number of levels.

The following hypothesis, which we formulate first in a strong version, is the
foundation of the transformation invariance property of our method. In a less
rigorous framework we can find similar hypotheses in Optical Flow research [3].

Medical Imaging Paradigm. Let φ : A → B be the transformation ex-
pressing movements and deformations of objects in the images A and B which
appear when passing from A to B, fA the density associated to image A, fB

that associated to image B, and X an image point of the image A. Then we can
assume fA(X) = fB(φ(X)) (apart from local noise effects).

Let us remark that: (1) for the paradigma to hold we should consider images
covering the whole space in which movements appear (thus, 3D images in gen-
eral) and that the paradigma is a realistic assumption in a larger context than in
medical imaging but not in general; (2) if for two images A and B the acquisition
device (or its location) has changed we have to assume fA(X) = αfB(φ(X))+β,
where α and β can be calculated a priori. The following theorem still holds under
this assuption.

Invariance Theorem. Let A, B, fA, fB, and φ be defined as in the Paradigma.
Then: if φ is a topological application, then, apart from noise effects, the density
trees (constructed as proposed above) of images A and B are identical, moreover,
the confiners of A are transformed into the confiners of B.
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According to the definition (Gaal [11], pp. 186, 187) a topological transfor-
mation is bijective and bicontinuous (i.e., φ and φ−1 are both continuous). As
the image of a maximal connex set under a topological application stays a max-
imal connex set, φ induces, using the paradigm, a bijection between the nodes
of the two trees; this proves the theorem (see [21]).

The importance of the property lies on the fact that the tree is invariant
referred to local movements. The effect of noise will be detailed below.

We will remark that an octree [24], for instance, would not have this invari-
ance property. However, in the next section we will be confronted with a problem
associated to this approach.

3 Image Distance and Noise Sensitivity

Algorithms used to compare trees have been developped according to their
domain of application. In hierarchical clustering and taxonomy Boorman and
Olivier [5] and Farris [9] compared the shapes of two taxonomic trees. These
trees have labeled leaves called OTUs which are the same in both trees. Boor-
man and Olivier decomposed the trees in terms of simpler structures for which
adequate metrics are available. These simpler metrics are then used to induce a
distance on trees. Farris referred to the number of nodes on the path between the
OTUs as the cladistic difference between the OTUs and compared the differences
corresponding to the same OTUs. Using the idea of language transformation Lu
[19] derived one tree from the other by a series of elementary transformations,
with applications in pattern recognition. The distance between the two ordered
trees is the minimum-cost sequence of transformations. Zhang et al. [30] ex-
tended this distance definition to unordered trees, this makes its calculation a
NP-complete problem (Zhang et al. [30]). Shasha et al. [25] proposed an enu-
merative algorithm and some heuristics for the distance calculation. Restricting
the allowed tree transformations Tanaka [27] achieved a polynomial matching
algorithm. Our inter-tree distance is an extension of Farris’s comparison of the
cladistic differences.

Let us denote the two trees to compare by A and B. Our distance defini-
tion is based on the (intra-) tree distance dT associated to a tree T (T = A or
T = B), which is defined for each couple of nodes (L1, L2) by the sum of the
weights (for the definition of the weights see section 5) associated to the edges in
the path which relates the nodes in the tree (Barthélemy and Guénoche [2]). Let
Nodes(A) (resp. Leaves(A)) denote the set of nodes (resp. leaves) of the tree A.
A mapping a from Leaves(A) into Nodes(B) is represented by a set of couples
a = {(AL

i , Bi)1≤i≤M , AL
i ∈ Leaves(A), Bi ∈ Nodes(B)},

(M denotes the number of leaves in A; Bi = Bj for i 6= j is allowed). The cost
C(a) of such a mapping is
C(a) =

∑
1≤i<j≤M |dB(Bi, Bj) − dA(AL

i , AL
j )|.

Let M(A, B) denote the set of all possible mappings from Leaves(A) into Nodes(B).
The inter-tree distance is defined by:
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d(A, B) = 1
M2−M

min
a∈M(A,B)

C(a) + 1
(M′)2−M′ min

b∈M(B,A)
C(b), (1)

where M (resp. M ′) denotes the number of leaves in A (resp. B).

A problem concerning the invariance of the trees occurs, if more than two
confiners merge together at the same level approximately (see Figure 2). If, due
to noise, the order of fusion changes, we will have an exchange between the
confiner subtrees. Our approach to deal with this is the use of the (intra) tree
distance in the definition of the inter-tree distance above. We call this problem
the problem of simultaneous fusion. Figure 3 illustrates the robustness of the
use of our inter-tree distance d(A, B).

Fig. 2. Illustration of the problem of simultaneous fusion.
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Fig. 3. Example for weighted trees A and B (each edge is weighted by a certain num-
ber of 1’s) with a subtree exchange and illustration of the robustness of the intra-tree
distance: for instance |dA(1, 5) − dB(a, h)| = |16 − 18| < |dA(1, 5) − dB(a, e)| = 4.
If AL

k = AL
k0 = 5 and Bk0 = r(B), we have Akr = A, AL

k1 = 2, AL
k2 = 9 and we get

bestfit(Bc2) = 3 for the leaves h, b, i and bestfit(Bc1) = 7 for the leaves d, f, b.
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4 Matching Algorithm

Here we present an algorithm that we have designed to identify the two resulting
trees. Its interest lies in its efficiency in computation time and in its robustness
with respect to small differences between the two trees due to noise. The central
theme behind our algorithm can be seen as the association of the leaves of A
to the nodes of B such that the minimum mina∈M(A,B) C(a) in (1) is achieved,
or reciprocally for minb∈M(B,A) C(b). In order to minimize the cost function we
could apply a nonlinear optimization method as graduated assignement [12].
This is currently under research. The here presented algorithm makes use of
the special characteristics of the problem such as the possibility to integrate
geometrical information. First, let us introduce some notations.

With subtree(N), where N is a node, we denote the subtree rooted in N .
We will also use the notations father(N), confiner(N), and r(T ) = root(T ) in
the evident sense, child(N) for the set of all children of node N , mass(N) as
the sum over all weights in subtree(N) , and gT (T = A or T = B) for the grey
level function associated to T .

In the following algorithm we try to associate each leaf (or a certain number
of selected leaves, see section 5) AL

k of A to a node Bk of B by moving the leaf
AL

k downwords in the tree B.
Initialization:

We initialize the leaves of A on the root of B.
Bifurcation:
If AL

k is associated to node Bk0 we are looking for the child of Bk0 which minimizes
the bestfit value which we are defining now:
Ak0 := root of the subtree containing AL

k and minimizing |mass(Bk0) − mass(Ai)|,
1 ≤ i ≤ M ;

AL
k0 := AL

k ;
AL

k1 := leaf in subtree(Ak0) with largest distance from AL
k ;

AL
k2 := leaf in subtree(Ak0) which maximizes the sum of its distances to AL

k and AL
k1 .

For each Bkc ∈ child(Bk0) do:
bestfit(Bkc) := minimum of the sum below while minimizing over all triplets

(BL
k0 , BL

k1 , BL
k2), with leaf BL

k0 in subtree(Bkc) and leaves BL
k1 , BL

k2 in B:

∑

0≤i<j≤2

|dA(AL
ki

, AL
kj

) − dB(BL
ki

, BL
kj

)| +
2∑

i=0

|dA(AL
ki

, r(A)) − dB(BL
ki

, r(B))|. (2)

Return the child Bkbest ∈ child(Bk0) realizing the min of the bestfit among all
those childs.
If the bifurcation corresponds to a subtree with just two leaves, we use a geometrical
criterion easy to define (based on the barycenters of the concerned confiners).

We will remark, as we are minimizing over all leaves BL
k1

, BL
k2

in the whole
tree B to define bestfit, that it does not care if subtree(Ak0) does not correspond
exactly to subtree(Bk0)
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If we fall short of a certain level of resolution the influence of noise can
become important. In our practical applications this was only the case at the
last bifurcations of some of the branches (section 5). Therefore we could use
the geometrical criterion based on the barycenters of the concerned confiners
for the decision at the last bifurcation (see Figure 5,6). For instance, we im-
pose a limit for the distortion of the transformation function (visualized by the
grid in Figure 6). Or we set bounds for the values relPos(N1, N2, φ) (eventu-
ally normalized by min(relPos(N1, N1, id), relPos(N2, N2, id))), where we define
relPos(N1, N2, φ), the relative position between N1 of A and N2 of B, as the
normalized sum

∑

P1∈C1,P2∈C2

(gA(P1) + gB(φ(P2)))d(P1, φ(P2))
mass(N1) + mass(N2)

,

where C1 = confiner(N1), C2 = confiner(N2), and where d(P1, P2) is the eu-
clidian distance between the points (pixels) P1 and P2. Another way to define
a stop criterion is to demand that, if Bibest2 is the second best choice after
Bibest

, that: bestfit(Bibest2) > 2bestfit. A third way consist in taking the leaves
BL

0 , BL
1 , BL

2 for which the minimum for bestfit (in equation (2)) is achieved and
search for them the leafs in subtree(Ak0) realizing the minimum in equation (2)
written for BL

0 , BL
1 , and BL

2 as initial leaves. If the leaf corresponding to BL
0 is

not in the same subtree of subtree(Ak0) as AL
k0

we stop and remove it if other
selected leaves AL

k′ are in subtree(Ak0). If not, we associate Ak0 and Bk0 .
Another way to identify the two trees is based on the lop parameter λ (section

2). We lop A and B with lop parameter λ1 such that just 5 leaves rest in A
and and we associate the leaves in A with the nodes in B minimizing the cost
function. We remove outliers from the mapping. After, we choose λ2 such that
6 leaves appear in A and associate the new leaf, minimizing the cost function,
where we fix the previous mapping, and so on (Figure 7).

5 Applications

Applications of our method include the study of the relative movement of grains
in microscopic metallurgical images or of cells in microscopic biological images.
On the other hand, we can also employ our method to detect asymetries in
breast or brain images, or to detect where in an image movements occur. In the
first case this serves to detect a tumor and its location. In the second case the
method helps us to apply watershed, optical flow or active contour techniques at
the found place . If we just want to rediscover the affine transformation between
two succesive 2D slides of a 3D image, we apply a least square minimization of
the euclidean distance between the corresponding invariant characteristic points
found by our identification algorithm. An alternative to this is to proceed as
Thirion [28] for matching extremal points and just to define the characteristic
points with the help of the trees.

A further interesting application of the proposed method is the comparison
of two brain images resulting from functional MRI. Here occur small local defor-



306 Julian Mattes, Mathieu Richard and Jacques Demongeot

mations as well as global shifts. The aim is to locate positions where the brain
activation (and therefore the intensity of the functional signal) changed.

The Figure 4 shows the tree representations of the images and the selected
nodes of the trees. The selected nodes are the nodes in the middle of the sub-
branches presenting the largest number of tree levels between two bifurcations
and having no subbranch with the same property as successor. Figure 5 shows
the new position in the lower tree of Figure 4 of the selected nodes of the upper
tree after the application of our matching algorithm which we simplified. We
get the best results (Figure 5) when we weight each edge of the tree just by
a constant such that both trees have the same total weight. This results from
the fact that the changes in grey intensity are larger than those concerning the
topological structure, especially in the upper right part of the brain, where a tu-
mor is located. However, for detecting the tumor or its location after matching,
weights constructed from the intensity values contain useful information.
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Fig. 4. Top left: Initial image of the upper slide of the brain image; middle: correspond-
ing density tree; top right: highlighted confiners as marked by the arrows in the tree;
bottom: the same as above for lower slide of the brain image.
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Fig. 5. Initial image of the lower slide of the brain image on the left, confiners found
after tree identification marked by arrows in the corresponding density tree in the mid-
dle, and highlighted confiners as marked by the arrows in the tree on the right. Outlier
2 can be removed with one of the stop criteria.

Fig. 6. Initial image of the upper slide of the brain image with initial grid on the left,
image of the lower slide and transformed grid after thin plate spline interpolation based
on the confiners in the figure before except confiner 2 in the middle, and transformed
grid based on the same confiners except confiner 2 and confiner 3 on the right.
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Fig. 7. From left to right: (1) Image of the lower slide of the brain image and highlighted
confiners as marked by the arrows in the tree next to it, (2) tree A loped such that just
5 leaves occur, image of the upper slide with highlighted confiners as marked by the
arrows in the tree on its right, (4) tree B loped with the same lop parameter as tree A.
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6 Conclusion

We showed the usefulness of a tree representation of a density or grey level
function known in statistics (density or confinement tree) and in image analysis
(component tree). We based this on a topological invariance theorem we could
establish under reasonable (in practice) hypothesis, which justifies the use of
this tree for image matching and object recognition. In order to get practical
results we have presented a tree identification algorithm and several criteria for
detecting automatically the level at which the resolution becomes noise sensitive.

References

1. Barrow, H.G., Poppelestone, R.J.: Relational Descriptions in Picture Processing.
Machine Intelligence 6 (1971) 377–396
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