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Abstract. The Topological Graph of Frontiers is in our opinion a good
graph structure representing the topology of segmented images. In this
paper we deal with topological operators which achieve directly on the
graph current operations performed on segmented images.
Well known graph structures such as the Region Adjacency Graph [Pav77]
[Ros74] do not (and cannot) keep track of the topology and so cannot
maintain it. We claim that the structures and operators described here,
on the contrary, allow and do this maintenance. One of the most impor-
tant informations in such images is the inclusion of nested regions and
one of the most important operators is the union of regions. We deal
essentially with these in this paper. They are described in detail herein
and we show how the topological coherence is maintained. This is why we
entitle them topological operators. Other operators that we have already
developed are briefly described.
Keywords: topological operator, enclosed region, topological graph of
frontiers, topological representation, segmented image manipulation.

1 Introduction

In image analysis we need tools to structure and manipulate images and their
regions. In previous works [Fio95,AAF95] we developed a topology (called star-
topology) aiming at a good representation of images and a graph structure called
topological graph of frontiers (TGF for short) [Fio96]. They lead to represent
regions and their topological relations in 2D images. This was necessary because
there were no representations well adapted neither to the very close study of the
adjacency relations, nor to the inclusion of regions.

Now we aim at topological operations and manipulations on images through
the graph structure of the TGF . We entitle them topological because obviously
such operations should maintain the topological coherence of the resulting image
and of course of the associated data structures.

Here we present essential operations on regions: we focus on the topological
union, then we show how operations like image or region(s) cutting or subgraph
manipulations can be achieved. In order to do such operations, we have to add to
the TGF some attributes like the depth level of regions. We also have to classify
and mark edges according to this depth level. So we have to study thoroughly
the inclusion of regions. Indeed, we are led to define the enclosing of regions,
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which is at a first glance the inclusion of a region not only in another region,
but in a set of regions.

This paper is structured as follows: first we make a short review of the TGF .
Then the depth-weighting of the TGF and the darts (sort of half-edges, de-
scribed in the previous part) marking are detailed in section 3. They lead to the
topological union operation described in the next section.

The cutting and the subgraph operations are rather too long to be detailed
here. We only give their main features, the complete technical details are avail-
able in [Gla98].

All the main topics come with algorithms for each step and we study the
complexity when necessary.

2 Outlines of the TGF

The Topological Graph of Frontiers is a topological consistent representation of
images. It is based on the star-topology [AAF95,KKM90,Kov89] and is derivated
from combinatorial maps [Lie89,Edm60]. We give hereafter the outlines of this
structure.

Firstly, we have to recall that the RAG (Region Adjacency Graph) does not
preserve or maintain all the topological information about the regions in the
image [KM95,Kov89,Fio95]. So, if we still want to process an image through
a graph representation, we need a more complete structure. This is why we
developed the TGF .

2.1 The TGF structure

The reader not accustomed to graph structures, may follow figures 1, 2 and 3
along with this paragraph.

The TGF is a planar multi-graph where:

– each vertex represents one region,
– each edge represents one frontier between two regions and not only the ad-

jacency (e.g. two adjacent regions having n common frontiers will yield n
edges between the corresponding vertices.),

– each edge is composed of two “half-edges” called hereafter darts, so that
each dart represents the frontier as a part of the contour of one of the two
adjacent regions,

– the inclusion of regions is represented too.

Note: We can see that each dart represents a part of the boundary as seen
by the interior of the region. Thence, two adjacent regions have as many edges
as they have different (not connected) boundaries between them, and each edge
is split into two darts, each representing the boundary as seen from the corre-
sponding region. This is important if we want to maintain topological coherence
[Lie89].
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Fig. 1. Depth weighted regions
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Fig. 2. TGF of segmented image of Figure 1

σ: (a, a′) (b, b′) (c, c′) (d, d′)
(e, e′) (f, f ′) (g, g′)

α: R1: (a′, c, e, d)
R2: (e′, f) ; (g)
R3: (d′, f ′, c′, b)
R4: (g′)
∞: () ; (a, b′)

Fig. 3. TGF algebraic representa-
tion

We recall that [Fio96] presented a linear algorithm scanning the image with
a 2× 2 window and constructing the TGF along the scan.

Let G(V, D, α, σ) be a TGF , V is the set of vertices, D the set of darts, α a
permutation on D and σ an involution on D. The set of edges will be denoted
E (see hereafter). The features of such a graph are:

1. Each region is represented by one and only one vertex.
2. Each dart e is always incident to a vertex R in V . We say that e is incident

to region R and denote eR the vertex incident to e.
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3. Each edge is an unordered couple (e, σ(e)) where e ∈ D. Let E be the set of
edges; then (eR

1 , eR′
2 ) ∈ E iff there exists a frontier between R and R′.

4. α is a permutation on D whose cycles are circular permutations on a set
of darts incident to the same vertex. Each cycle represents one contour of a
region and follows exactly the order induced by the set of frontiers composing
the contour. Thus following the darts linked in one α cycle, consists also in
following one entire closed contour of the region.

5. R∞ ∈ V is a particular vertex which represents the exterior of the image.
It is somewhat a region containing all the other regions of the image and
having no exterior contour.

6. We associate to each vertex the list of α cycles corresponding to the region
represented. The outer contour (exterior) will be the list head except for R∞
(no exterior contour).

Figure 2 and 3 show the graphic and algebraic versions for the TGF associ-
ated to the segmented image of Figure 1. Note the list of α cycles and the void
cycle in R∞ which has no exterior contour.

2.2 A first point

Advantages of the TGF lie essentially on the multi-graph modelizing the frontiers
and the inclusion of regions. However, it lacks the structure of enclosed regions
(deeper than the only one level of inclusion). In the next section we show how
we added this feature.

Now, we can define the inclusion of regions by the following:

– A region A is said to be strictly included in a region B iff there exists an
edge between A and B such that the incident dart (of its edge) to A is in an
interior contour of B. We note A  B.

– A region A is said to be included in a region B iff there exist a sequence
(R1, . . . , Rn) of regions such that A  R1  . . .  Rn  B. We note A ⊂ B.
Note that this last inclusion relation defines a complete order relation.

The TGF structure is quite sufficient to check the inclusion of regions. However,
if we want to manipulate set of regions, or if we need to know wether a region
is enclosed (strictly defined later) in a set of regions, we have to complete the
information joined to the TGF .

The next section deals with that problem and labels regions with a depth
information and darts with an inclusion mark.

3 Depth-weighting in a TGF

In order to distinguish exterior and interior regions in a TGF , we associate to
each vertex a depth parameter relative to region R∞. We denote d(R) the depth
of region R, and N(R) the set of the neighbouring regions of R. A neighbouring
region is a region having a common frontier with R.
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The depth parameter can be defined by d(R) = minRi∈N(R)(d(Ri)) + 1
A TGF is said to be depth weighted if every region owes a depth parameter.

In order to depth weight the TGF , we apply simple breadth search algorithm to
the TGF starting with R∞. This is rather easier than trying to weight during the
construction of the graph. Figure 1 gives an example of regions depth weighed.

3.1 Dart marking

The dart marking operation will allow us to make a classification of the darts
relatively to a set of regions. Then the classification will lead to determine regions
enclosed in a set of regions. As this notion is important for operations like the
topological union or subgraph extraction, let us first give a definition for the
union of regions.

Simple union definition: The first type of union is called simple union. It is
valid on any set of linked regions, that is to say that for any two regions A and
B of the set, there exists a path from a dart incident to A to a dart incident
to B. The path may be any combination of the α and σ involutions (orbite in
combinatorial maps).

Let V ′ denote the set of vertices of the linked regions R1, . . . , Rn. Then the
simple union

⋃
R of R1, . . . , Rn is G(V ′, D′, α′, σ′) where D′ is the union of all

incident darts to the vertices in V ′ and α′ and σ′ the restrictions to D′ of α and
σ.

Note that this is only a mean to denote a set of regions in a TGF . It may
not denote a region, as it may contain a dart d such that σ(d) ∈ D′, or even
have two darts towards a same region for only one frontier.

The classification of darts studied in the next section will lead us from the
above simple union to the topological union of regions which in turn results in
a valid region and maintains the coherence of the graph representation.

Classification of darts The classification that we make separates the darts
into three classes: exiting, enclosed or entering1:

– exiting darts are defined and marked by Algorithm 1. Intuitively such darts
lead to regions of lower depth than the depth of the regions simply united,
that is to the outside.
The principle of the algorithm is to find a dart of depth n − 1, n being
the minimal depth of the simply united regions, then to examine the darts
without going into the set of simply united regions.
Darts are examined in the order induced by α as long as no enclosed dart is
found (see Algorithm 1). In this case we proceed to the next region according
to σ. Exiting darts always exist except if R∞ is in the simple union. In this
case, exiting darts make no sense.

1 Important remark: Note that this classification is made relatively to a given set
of simply united regions. If this set is changed, then the classification changes too.
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Algorithm 1: Marking of exiting darts

Data: a weighted TGF G(V, D, α, σ), the set U of vertices of the simply united
regions,

Pre-condition: R∞ /∈ U

Result: a weighted and marked TGF G(V, D′, α, σ) where the elements of D′

are those of D with a mark on the exiting darts relatively to U .
punion ← minU p(R);
/* find the first exiting dart */
b← a dart such that p(σ(b)R) ≥ punion and σ(b)R /∈ S;
binit ← b;
marque(b)← “exiting”;
repeat

b← α(b);
if σ(b) ∈ S then

/* move to next region */
b← σ(b) ;

else
marque(b)← “exiting”;

until b == binit;

– enclosed darts: a dart b is enclosed if σ(b) ∈ ⋃
R. Such darts exist if the set⋃

R of simply united regions contains at leat two regions. Intuitively, they
belong to edges joining two vertices of the simple union.
Such darts should not exist in a TGF . So an algorithm making a topological
union (see Section 4 for the definition) should discard them.
A simple algorithm can look for non yet marked darts and mark as enclosed
those that verify the condition. It is also possible to include this marking
in the exiting darts algorithm (see Algorithm 1): when moving to the next
region (b← σ(b)), mark b and σ(b) as enclosed.

– entering darts can be defined as the incident darts to
⋃

R (incident to any of
the simply united regions) that are neither exiting nor enclosed. Intuitively,
they lead to a deeper region (depth parameter higher) than the set of simply
united regions.
If such darts exist, it means that there are regions “included” in the set⋃

R. This will be a good way to define and recognize “enclosed” regions (see
below).

Marking algorithm for a TGF : As seen before, all the incident darts to a
set of simply united regions can be marked according to one of the three classes.
What about the unmarked darts ? They are not adjacent to any region concerned
by the union, so that we mark them “unconcerned”.

Note that the algorithm does not modify neither te vertices nor the involu-
tions. It merely adds a marking information to all the darts.
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Marking example: Figure 2 represents the TGF for the segmented image of
Figure 1. Suppose that R1 and R3 are simply united. The depth of the union⋃{R1, R3} is 1 as d(R1) = d(R3) = 1. The initial dart is then a′ or b′ as
σ(a′)R = R∞ and d(R∞) = 0 (lower depth level) and likewise for σ(b′)R.

Let a′ be the initial dart. Then a′ is marked exiting and we proceed to
α(a′) = c. As σ(c) = c′ and c′R ∈ ⋃{R1, R3}, c and c′ are enclosed. Then as
α(c′) = b′, b′ is exiting; α(b′) = d′ and σ(d′)R ∈ ⋃{R1, R3}. Hence d and d′ are
enclosed. Finally, α(d) = d′; the exiting darts are all marked; there are no more
enclosed darts, therefore e and f ′ are marked entering and all the other darts
are unconcerned.

We are very close now to be able to define the topological union and the
enclosure of regions. Thus, in the previous example, it will lead us to claim that
R2 is enclosed in the topological union of R1 and R3.

4 Topological union of regions

The topological union of regions consists in replacing a set of linked regions by
one region, while keeping coherent the TGF structure.

When the classification (marking) process of the darts relative to a given
simple union ends, we can easily deduce the region achieving the topological
union. It is sufficient to:

– delete all the enclosed darts;
– keep only one edge per frontier so that:
• for a frontier with an exterior region the edge is relative to an exiting

dart,
• for a frontier with an interior region the edge is relative to an entering

dart;
– change all remaining entering darts to interior contours.

Note that during all this process, we have to maintain the α and σ coherence.
Figure (4) shows the result of the topological union of regions R1 and R3 in

figure 2, where:

– enclosed darts c, c′, d and d′ are discarded,
– exiting darts a and a′ (or b and b′) are deleted in order to keep one edge to

R∞,
– entering darts e and e′ (or f and f ′) are deleted in order to keep one edge

to R2,
– f and f ′ (or e and e′) are changed to an interior contour.

Before the review of the topological union algorithm (Algorithm 2), we can
define an enclosed region.

A region A is said to be strictly enclosed in a set S of regions iff there exists
an edge between A and the topological union of S such that the corresponding
incident dart to A is in an interior contour of the topological union. We denote
it by A JS.
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Fig. 4. left: before topological union; right: after

A region A is said to be enclosed in a set S of regions iff there exists a sequence
(S1, S2, ..., Sn) of sets of regions such that A JS1 and ∀S1i

∈ S1, S1i
JS2 ...

∀Sn−1i
∈ Sn−1, Sn−1i

JSn ... ∀Sni
∈ Sn, Sni

JS. We denote it by A C S.
The algorithm making the topological union lies heavily on the darts marking

one. It does not modify directly the darts of the TGF as it needs the TGF
structure during the whole marking process. Hence, for example, we do not
discard enclosed darts as soon as they are found.

Algorithm 2 summerizes the topological union process. A complete descrip-
tion can be found in [Gla98]. Note that at the end of the process, a new depth-
weighting of the TGF is necessary. Indeed, after a topological union, the depth
level is no longer true:

Let R1, R2, R3 be three regions such that d(R1) = d(R2)− 1 = n, R1 and R2
being neighbours, but R3 being a neighbour of R2 only. Thus, n ≤ d(R3) ≤ n+2.
The depth of RU , the topological union is n. Then R2 and RU will have a
discrepency of 2 in their depths, which is wrong.

In order to avoid a complete computation of the depth, we have to check
the depth level coherence between the exterior and all interior contours of the
topological union RU . If a region Rf with a common frontier with RU has a
wrong depth level, then the depth of all the linked regions to Rf should be
recomputed (RU being excluded from this action).

4.1 Complexity

The algorithm scans all the darts of the simple union. Each dart is checked once,
except the first one for each processing of algorithm 1. Hence, the complexity is
O(n.φ)), n being the number of darts in the simple union and φ the complexity
to access one element in the dart list.
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Algorithm 2: Topological union of regions

Data: a weighted TGF G(V1, D1, α1, σ1), a set of vertices U (R∞ 6∈ U).
Result: a weighted TGF G(V2, D2, α2, σ2) in which the regions in U are topo-

logically united into one region.
Initialization (building RU );
Select the first (exiting) dart;
repeat

check next exiting dart;
if dart is redundant then

mark redundant
else

if dart is enclosed then
mark enclosed

else
mark exiting;
add to RU ;

until current dart == starting dart ;
while there exists a non marked dart do

select this dart;
if dart is enclosed then

mark enclosed
else

/* entering */
check all associated entering darts;
add them to RU ;

/* All concerned darts are checked */
discard the simply united regions;
update α and σ;
recheck depth level;

5 Other operators

We defined also a cutting operator as well as extracting parts of images along
with their subgraph structure.

For example the cutting operator allows to cut a region into two different
disctinct regions (see Figures 5 and 6). The problem is that we cannot cut a
region according to any given path (see Figure 7).

[Gla98] contains a detailed study of valid interpixel paths (see Figure 8) for
the cutting operator. The algorithm principles are rather long. Figures 5 to 8
give a slight idea of how the algorithm works and how it checks the validity of a
cutting path.
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6 Conclusion

We have defined new topological operators on the TGF . They enlarges the use of
such a graph structure in image analysis. We can now merge regions or cut them,
extract parts of images or include such elements, while the topological coherence
is maintained. This last fact is very important and makes the difference with
many classical operators that do not take it into account.

Essentially, we showed in this paper that the TGF is a well-suited struc-
ture for topological operations. The depth-weighting and the dart marking are
basic processes that lead to a deep view of the inclusion of regions and allow
sophisticated search paths in an image.
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We can decide to go into a set of regions by an entering dart, scan it com-
pletely or partially by α or σ, then skip to another region or set of regions. In
fact, we can repeat such operations as needed, due to the topological coherence.

We have to acknowledge that we have not yet thought about similar 3D
operations since defining such a structure for 3D image is still under research.
We focus currently on new operators, for example the minimal set of regions
containing a region or linking non adjacent regions.
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