DYANA: An Environment for Embedded
System Design and Analysis *

A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

Moscow State University Dept. of Computational Mathematics and Cybernetics,
Vorobyevy Hills, Moscow 119899, Russia
{bahmurov,alla,smel}@cs.msu.su

Abstract. The results presented here are based on the experience of de-
velopment and application of DYANA — an environment for analysis of
multiprocessor computer systems operation. The architecture and basic
features of such an environments are discussed. Main problems of such
the environment design are highlighted and possible solutions are shown.
The key features of the DYANA environment are: the possibility of both
quantitative and algorithmic analysis of system to be modeled; the time
complexity estimation subsystem which helps to avoid the instruction-
level simulation of target computer system; support of program develop-
ment through simulation.

1 Introduction

Usually, simulation is a significant stage of a product’s life cycle. More complex
the product is, more substantial the simulation stage is in the life cycle.

The suitability of simulation modelling from the viewpoint of software devel-
opment manufacturability depends on answers on two questions:

— to which extent the transition from the model to the product itself is simple
and efficient?

— how manufacturable the process of simulation model creation and investiga-
tion is?

In other words, how the process of model creation and investigation ’fits’ into
the process of product development?

From the viewpoint of model-to-product transition, it’s perfect when we ob-
tain the product as a result of simulation, or the transition is automated com-
pletely.

In this article we’ll investigate the model-to-product transition with respect
to such an objects as embedded multiprocessor systems. The state-of-the-art
technology of developing such a systems is characterized by the following. In the
area of hardware, there exist mature technologies for automated transition from
hardware description to its implementation. As a rule, this hardware description

* This work is partially supported by the Russian Fund of Basic research, Grant No.
98-01-00151 and by the EEC INCO-Copernicus Grant No 977020

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 390-E04] 1999.
© Springer-Verlag Berlin Heidelberg 1999

DYANA: An Environment for Embedded System Design and Analysis 391

is a result of simulation. But, the transition mentioned above is developed for
the chip level only and implemented in the CAD systems based on the VHDL
and Verilog languages.

Now the support for such a transition starting from the systems level is
"hottest’. There are many reasons for this, the main one is: the speed of hardware
development now is far beyong the one of software development [7]. Authors
do not know any design environment enabling the model-to-product transition
starting from the systems level.

In the area of software development, simulation is not used in practice. Var-
ious specification methods does not give the opportunity to estimate the prop-
erties of program under development with respect to the particular hardware
environment,.

The manufacturability of simulation model development and investigation
strongly depends on the concepts of simulation environment being used, on how
this environment covers all development stages. Such an environment should
include at least the following: a simulation modelling language, a programming
language (if we wish to obtain a program as a product) or a hardware description
language (if the product is a hardware component), a system behaviour spec-
ification language. Aproppriate graphical facilities, editors, compilers etc. are
required as for model as for program development. For the last 30 years, more
than 200 languages and environments were proposed [§], with various concepts
and capabilities. But, none of them was directed to investigation and develop-
ment of multiprocessor distributed computer systems.

These environments use different languages on different steps (e.g. for model
description, for specification etc.). So the problem of syntactical and semantical
consistency arizes immediately.

All these environments has different architecture. The absence of stable and
unified architecture (which is clear and convenient for user and provides integra-
tion of all necessary tools) complicates the problem of portability and working
with this environments in theclient-server network architecture.

We'll try to answer the questions mentioned above and show possible solu-
tions on the case of the DYANA system applied to problems of development and
analysis of operation of distributed multiprocessor computer systems.

2 Project goals

The DYANA system (DYnamic ANAlyzer) is the software system which is pro-
posed to help analyze distributed computer environment operation. The design
and development of the system were aimed at the following:

— to develop the tool for describing as software behaviour as hardware be-
haviour of distributed systems on the systems level;

— to develop the tool for systems performance estimation under the different
tradeoffs between hardware and software on the project system level stage;

— to enable the application of algorithmic and quantitative methods of analysis
to the same model description [I];

392 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

— to have a possibility to vary the detail level of behaviour analysis depending
on the detail devel of description; (this goal has a ’side effect’: to investigate
the methodology of program development through simulation and stepwise
refinement);

— to experiment with a simulation models of software and hardware indepen-
dently.

The goals mentioned above imply the solution of the following problems:

— how to describe such particularities of modeled object as indeterminism of
program behavior, independence of program behavior from time, absence of
unique time in a distributed system, shared resourses, existence of two types
of parallelism - interleaving and real concurrency?

— how to measure the ”computational work” of the program being analyzed
and how to map the measure onto time for given hardware environment?

— how to provide the technology for the development of a model to support
the "top-down” approach, to enable re-usage of model components?

— how to integrate all tools involved in product development?

In other words, the main goal of the project is to develop an instrumental
environment which enables the user to describe the target software and hard-
ware on the systems level and analyze the behaviour of the target system as a
whole. Also, such an environment will allow for software development through
simulation.

Let we can describe the software with variable degree of detail and analyze
its behaviour. Essentially, this description is a model since we make it for the
purpose of investigation and analysis. Gradually refining this description, we
yield a program — that is, an algorithm description created for application, not
analysis. This program has to have all properties checked during analysis with
assurance.

Generally, the idea of software design through simulation is not a new one.
Examples are: an industry-level systems for design in the SDL language (SDT
from Telelogic, [10]), systems supporting the OMT and ROOM methodologies
[6], the Ptolemy simulation environment [I1]. An interesting environment SimOS
[0] permits to emulate the hardware and estimate its performance on the real-
istic’ workload — up to industrial operating systems and applications.

The main differences and advantages of our approach are as follows.

At first, the developer is able to analyze namely dynamics (behaviour) of
both the hardware and software. He is able to analyze the software behaviour
with respect to the given target hardware environment.

At second, it is possible to determine the program’s resource usage, e.g.
execution time of a given code block for the target CPU architecture. Certain
powerful environments such as ObjecTime [I3] focus on software development
and code generation for target real-time OS.

At third, within our approach it is possible to estimate and to verify both
quantitative approach of program behaviour (e.g. performance indices) and log-
ical (algorithic) properties without any rewriting of model description.

DYANA: An Environment for Embedded System Design and Analysis 393

At fourth, the approach proposed enables the user to connect the statical
program description (i.e. text) and its dynamics. Namely, DYANA lets to link
the event of interest with correspondent code block.

The theoretical issues of our approach along with description of first version
of tools were given in [3].

The rest of this paper is organized in the following way. The next section
briefly presents the computational model used in DYANA. The capabilities of
software description and model detail up to executable program are shown in
Sect. [by example. Sect. [§ describes the DYANA architecture.

3 The Computational Model. Language Features
Overview

The DYANA model decription language named M?2-SIM is based on the follow-
ing model of computations.

Processes and distributed programs. A program is a set of sequential pro-
cesses communicating by means of the message passing. Every process has the
set of input and output buffers. An attempt to read a message from an empty in-
put buffer blocks the process until a message arrives. Messages are distinguished
by types. In general, a message type is an equivalence class on the set of message
data, but it can be detailed to a data value (as a single as a structured one).

Research [4] has shown that this model of computations has certain noticeable
properties, from the viewpoint of the algorithmic analysis.

To capture the needs of the interprocess communication, two more features
are added: the receive with timeout and the wait for a message arrival statements.

To support modularity and stepwise refinement, a notion of distributed pro-
gram (DP) is introduced. To form a DP, you need to declare the instances of
processes and establish links between their input and output buffers. Since a DP
may also have inputs and outputs, it’s possible to replace a process with a DP
during the model refinement.

As processes as DPs may be parameterized. During a DP construction, it’s
possible to declare arrays of its subcomponents and to use C code blocks to
manage the linking of buffers. (Note: the construction process is done prior to
the model run, and the entire model structure remains unchanged during the
run, leaving the possibility for algorithmic analysis, see Sect. B.H).

The machanism of the DP construction shown above enables to create reusable
submodels.

Executors. An important distinctive feature of the M?2-SIM is the notion of an
executor. An executor represents a hardware component of a system to be mod-
eled and it maps the complexity of process’ internal actions onto modelling time.
Please refer to Sect. for details of mapping the computational complexity to
time. The examples of executors application could be found in Sect. B2

394 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

Binding. The process-to-executor binding description allows to describe dif-
ferent kinds of parallelism. Processes bound to the same executor run in the
interleaved mode, and those ones bound to different executors run really in par-
allel. See examples in Sect.

4 An Example of Model Construction in DYANA

The capabilities of model descriprion will be shown on en example of robotic
control system for the manipulator (i.e. robot’s arm).

The aim of manipulator’s work is to catch a moving oblect (a target). The
manipulator consists of two chains and it has two degrees of freedom. To de-
tect the target and to determine the target’s coordinates, a wvision subsystem is
provided, its particular principle of operation does not influence on this article’s
subject and will not be considered.

The idea of control algorithm is as follows. Having the target’s and manipula-
tor’s coordinates a catch point is determined. Then, a trajectory of manipulator
moving up to the catch point is computed. The next step is to move the ma-
nipulator along the trajectory. If the trajectory is passed and the target is not
caught, new catch point is computed, and so on. To follow the trajectory, the
feedback-by-error algorithm is used, which is implemented on the control com-
puter.

4.1 Model Construction

The following components operating in parallel could be distinguished in our
system to be modeled: the vision subsystem, the control sybsystem and the
manipulator itself. The general model structure is shown on Fig. [T}

Vision subsystem Vision

4

Control -
. HiControl ’—-‘ LoControl
subsystem

Fig. 1. Model structure

Vision Subsystem. Let’s suppose that the target detection algorithm should
take not more T'd time to execute, and it runs periodically with pause time
Tp. If a target is detected, the vision subsystem sends a message with target

DYANA: An Environment for Embedded System Design and Analysis 395

coordinates (and velocity) to the control subsystem. Here is the model text for
the vision subsystem:

1 message Target {}; /*message to control subsystem */

2 process Vision() <

3 output TargetData; /* output buffer to send a message */
4 >

5 {

6 msg TargetMark; /* message variable */

7 /* model parameters */

8 float Td = 1000; /*time for detection */

9 float Tp = 200; /* pause length */

10 while(1){

11 delay(Td); /* simulate target detection */

12 if (TargetDetected()) { /* target is detected */

13 TargetMark = message Target;

14 send(TargetMark, TargetData); /* send message to control subsystem */
15 }

16 delay(PauseTime); /* do pause */

17 }

18 } /* Vision */

Note that on the current level of detail the vision subsystem is treated just like
the source of messages on targets (see the message type description in line 1, the
message is sent in line 14). The target detection algorithm itself is presented by
the delay in line 11, which specifies the execution time for this algorithm. There
is no computations there. The possibilities of model detail will be considered
later, in Sect. E£3]

Control Subsystem. Let’s partition the control algorithm on high level and
low level of control. Each level is presented by a separate process. The algo-
rithm operates by the following way. When the high control level process receives
thetarget coordinates, it requests the coordinates of manipulator and checks the
possibility to catch the target. If catching is possible, the manipulator’s trajec-
tory is computed and sent to the low control level process. These actions are
repeated for the next position of target. Model text is as follows:

process HiControl() <
input TargetData(queue), Feedback(queue);
output Control, ManipAcq;

msg in, out, X;

int CatchPossible;

float ComputeCP = 100;/* time to compute catch point */
float ComputeTraj 100; /* time to compute trajectory */

1
2
3
4
5 A
6
7
8
9

396 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

10

11 while(1) {

12 receive(in, TargetData); /*get target parameters */

13 out = message CoordReq;

14 send(out, ManipAcq); /*request for manipulator’s coordinates */
15 receive(x, Feedback); /* get manipulator’s coordinates */

16 /* test for possibility of catching and catch point computation */
17 delay(ComputeCP);

18 if (!CatchPossible) continue; /* impossible to catch */

19 delay(ComputeTraj); /#* compute trajectory parameters */

20 out = message Traj; /* send trajectory to low control level */

21 send(out, Control);

22 } /* while */
23 } /* HiControl */

The low control level is responsible for following by computed trajectory, in
presence of external physical infuences on the manipulator. Its implementation
is omitted for brevity.

Manipulator. In our model, the manipulator can perform two operations: to
determine and send its coordinates; to do an (elementary) move by the control
system’s command. The Manip process may receive messages of two types: move
command (Move) and request for coordinates (CoordReq). Having received the
former message, Manip makes a move and sends its coordinates to the low control
level. Upon receiving the latter one, it replies with coordinates to the high control
level.

Note that the Manip process, essentially, isn’t a part of the computer system,
it’s a component of an computer system’s outer environment. Under this term
we mean the set of sensors, servomechanisms etc. interfacing a computer control
system with controlled object.

So, building a software model in the DYANA environment opens an opportu-
nity to investigate the program behaviour together with its outer environment,
which is crucial for the real-time programs development.

4.2 Taking Hardware Into Account

Besides the program description considered above, the complete model contains:

— hardware description (a set of executors);
— process to executor binding description.

The sequential executor is an abstraction of a device performing only one action
at a time.

Let’s suppose that we use a dedicated signal processor for the vision subsys-
tem and general-purpose Intel 80386-based computer — for the control subsys-
tem. Then, the hardware description in M?2-SIM may look like:

DYANA: An Environment for Embedded System Design and Analysis 397

sequex DSP() {} /*for vision subsystem */

sequex CPU() { /% for control subsystem */
architec Intel386;

}

sequex Manip() {} /*for manipulator */

Leaving some syntactical details, one of possible binding descriptions may look
like:

bind Vision => DSP;
bind HiControl => CPU;
bind LowControl => CPU;
bind Manip => Manip;

The HiControl and LowControl processes are bound to the same execu-
tor. They will run in thr interleaved fashion. The actions of vision and Manip
(these processes are bound to distinct executors) could be executed in parallel
(if waiting for message does not instruct otherwise).

Please note that the notion of executor could represent not only a CPU, but
any other hardware component (e.g., a bus, a memory module, a switch etc).
In this case, the sequential executor should be accomplished by the appropriate
process containing the operation algorithm of the device to be modeled.

4.3 Model Detail. Model-to-Program Transition

In order to move from a model to a program, you should refine the data structure
in messages and actions in processes.

For example the structure of message Target from process Vision below and
the delay statement in line 17 of process HiControl (catch point calculation)
could be detailed by the following way:

message Target {float Xt, Yt, Zt, Vx, Vy, Vz };
complex {

Cl = cos(thetal); S1 sin(thetal);

C2 = cos(theta2); S2 sin(theta?2);

Xm (11+412*C2)*C1; Ym = (11+12*C2)*S1; Zm = 12*S2;

The complete text of the catch point calculation is omitted due to the lack
of space.

Note the complex block above. If the architecture description of the
target CPU is given in the model, the execution time of this block for given target
CPU will be estimated during the model run. For details on time estimation, see
Sect.

When the detail of M?2-SIM program is finished, it may be converted into
a C++ program for the target computer. For example, let’s see the part of the
conversion result for HiControl process below.

398 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

#include "__mm.h"
void __mm_process_HiControl::__mm_process_body() {

__mm_message *in = new __mm_message;
int CatchPossible;

while(1){
__mm_receive(__mm_bf_TargetData,in,1,"HiControl.mm:12");
(&__mm_sample_message_CoordReq)->__mm_copy_message (out) ;

__mm_send(__mm_bf_ManipAcq,out,2,HiControl.mm:14");

__mm_delay(ComputeCP,3,"HiControl.mm:17") ;

}

Of course, the details of the target operating system interface should be taken
into account. But it’s not a subject of this paper. Here we want only to show
the possibility of such a conversion.

An important note: the DYANA environment is capable to reproduce the
parallel program behaviour with respect to computer system architecture of in-
terest and particular outer environment on any stage of model detail. So, meeting
the specified deadlines in a real-time control systems could be checked on any
stage of detail.

5 The DYANA Architecture

The architecture of the DYANA system is shown on the Fig. Rl The most inter-
esting components of the DYANA system are described below.

5.1 The Runtime Subsystem
The runtime subsystem is responsible for the following:

— reproduction of the system’s behaviour on the base of process-oriented discrete-
event simulation methodology (before execution, the program description in
M?2-SIM is translated to the text in the C++ language, compiled and linked
with the DYANA runtime library);

— collection of the event trace for subsequent analysis. Also, the dynamic stage
of the time estimation (see (.2) is done by the runtime subsystem.

Now, the design and development of distributed discrete-event simulation
kernel for DYANA is in progress. Our approach to analysis and choozing the
distributed model time synchronization algorithm is presented in [12].

DYANA: An Environment for Embedded System Design and Analysis 399

Model
description
language

compiler
(program behavior & binding)

Architecture

description \
subsystem
(hardware description)

Database

Time
complexity
estimation

subsystem

Version
control

Y

Runtime Visualization Performance Specification
subsystem subsystem analisys subsystem

~50530m—~<5M ~503T0—0<00 0O6-B-0G0 -5 —

Fig. 2. Architecture of the DYANA system

5.2 The Subsystem for Time Complexity Estimation

The aim of this subsystem is to to estimate an execution time of a text block in
the C language in the complex statements for given target CPU architecture.
The underlying theory and architecture of this subsystem were described in [2/4].
Briefly, the main idea is as follows. The combined static-and-dynamic approach
is used for the time estimation purposes. During a compilation, the static anal-
ysis of the C code is being performed. For every linear code block in complex
statement a prediction of execution time is being made. During a model run,
when exact sequence of executed linear code blocks is known, the time estimate
is being given on the base of static predictions.

The mapping of computations to the target CPU architecture is implemented
by the following way. A model of CPU architecture is being constructed which
captures the essential features of a certain archtecture class, influencing on the
execution time. For example, models of an von-Newmann sequential register-
stack CPU and of a RISC CPU are supported now.

For the register-stack CPU model. the algorithms of optimal code generation
are implemented. The execution time estimate is based on the length of code
generated [2]. During testing, the relative error of execution time prediction was
in range of four to ten percents which is acceptable for practical use.

The RISC CPU model enables you to determine statically the pipeline la-
tencies due to data dependencies in instructions. Also, the instruction cache
behaviour analysys could be done in the static phase.

The architecture type of sequential executor can be specified by writing an
identifier of the architecture, as follows:

architec Intel286;

400 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

The architecture description itself (it can be rather awkward) is placed sep-
arately and specifies the clock rate, register structure and instruction set of an
executor. For RISC processors this description contains also the pipelines struc-
ture, instruction processing scheme and cache configuration.

Our time complexity estimation methodology was applied to the Motorola
DSP96002 CPU. On the set of digital signal processing algorithms, a zero time
prediction error was achieved, while the prediction time was 3 orders of magni-
tude less than emulation time (see [I4]).

5.3 The Visualization Subsystem

This subsystem is intended to view the event trace collected during model run.
Events are associated with interprocess communication and with the beginning
and finishing of process internal actions. The collected trace could be viewed
in the form of timing diagram (See Fig. [3). User is able to scroll and scale the
diagram, to select the model components of interest for visualization, to get
an additional information about event and state attributes by clicking on event
(state). Also, an important feature is the capability to observe the logical links
between events and to locate the corresponding piece of process’s text while
browsing events.

5.4 The Performance Analysis Subsystem

This subsystem is useful when you need certain integrated performance indices
(such as working time, idle time, processor utilization, message queue length etc).
These indices can be computed and displayed as tables, graphs and histograms.
The output data representation could be easily imported into third-party tools
for advanced processing and report generation.

5.5 The Algorithmic Analysis Subsystem

This subsystem allows the user to specify the behaviour of software under devel-
opment and to verify the software behaviour against specification. Under term
"behaviour’ we mean the partially ordered set of events (See [] for details).

For specification of properties of system being modeled, a special language
was developed. The approach to specification and verification (with the previous
version of this language) was described in [I]. This language named M2-SPEC
permits:

— to specify the actions of a process as relations between process states before
and after an action;

— to specify possible chains of actions using behavior expressions;

— to specify the properties of a process and a whole system behavior as predi-
cates on behavior expressions;

DYANA: An Environment for Embedded System Design and Analysis 401

An important feature of M2-SPEC is: its syntax is close to one of M?2-SIM ,
but the semantics of M?2-SPEC is equivalent to one of the branching time logic.

For the following two problems algorithms are developed and prototyped
now: checking the consistency of specification itself; verifying the specification
against the model description on the M2-SIM . More detailed description of the
M?2-SPEC could be found in [5].

5.6 The Integrated Development Environment

Notes on Technology of Model Development. As we have noted above,
one of the goals of M?2-SIM development is to support the top-down design. That
is, to let the user to start from the large-grain model picking up only general
structure of system to be simulated and ignoring small-grain details.
Gradually, step-by-step small details are refined, more and more detailed
models are developed.
Such an stepwise detail should be performed in three directions.

1. Structure detail implies the detail of component’s internal structure. Such
a feature is provided by independence of the distributed programs and the
executors description on internal structure of subcomponents. Because of
modularity, changes in any part of the model does not require changing
(and even recompiling) of other parts.

2. Action detail (i.e. move from simple prototyping of a process interface to
real data processing). This kind of detail is provided by two ways to time
complexity specification — the delay statement (it sets the model time
delay explicitly but specify no computations) and the complex statement
(it specifies computations, and model time delay is estimated by the special
subsystem).

3. Message type and structure detail (i.e., for example, going from checking
message type only to analysis of message contents). To support such a detail,
there exist two families of operators on msg-variables — the former use
message type only, the latter group provide an access to message fields.

Integrated Development Environment Features. For increasing of effi-
ciency of model building a special object-oriented instrumental environment was
developed.

This object-oriented IDE relieves the user from necessity of working with files.
All objects are stored in the repository (database). Every object has a visual
representation on screen. All objects are arranged into the hierarchy. Models
are at the top level of this hierarchy. By means of the Model List window, the
user can operate on the model as a single object (e.g. compile, run it). Objects
forming a model fall to one of the following groups: source descriptions, internal
representations, results of model run.

For every type of model component (process, executor, message etc.), the
IDE handles (and gives the user to operate on) the components lists, see Fig. Hl

402 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

a = Prodconsum Trace Viewer

Exit Wiew Select

=| [ClEIH| == A=l x|

sumeri

sumerz

life.produs

life.h1

life.h2 I

life.h3

| Time: 8,920000

Fig. 3. The Timing Diagram window

JALI Components (Prodconsum)

Yiew Edit Tools

Mame I consumerl

Component List _ Comment for SEIEEE
produs A First
conzsumerl _] CONELMEr
CONSUMErs
CONSUMEr3
consumer-4

i ¥

Fig. 4. IDE: the Model Components window

DYANA: An Environment for Embedded System Design and Analysis 403

A model component could be viewed and edited in different forms by user
wish. Now textual and structural (schematic) presentations are supported.
The main advantages of environment described above are as follows:

1. The usage of database provides the correspondence of external representation
(e.g. screen images) of the set of descriptions with their internal organization.

2. the semantical and time dependencies between source text components could
be watched more accurately, which reduce the overheads during assembling
compiled model.

We should highlight an important feature of developed environment — the in-
terface description of a component can be combined with more than one version
of component implementation, the implementations may be either sequential or
parallel.

This feature lets:

1. to perform the stepwise detail, with possibility to get back to earlier stages
of development at any time;

2. to experiment with different configurations of developed and debugged model
(e.g. with different versions of components implementations), what is the
final goal of the user of simulation system.

6 Conclusion

The DYANA environment described in this paper is directed to the following:

— description of software and hardware (on the systems level) with variable
degree of detail,

— analysis of various aspects of computer system’s behaviour without hardware
prototyping.

The DYANA environment enables the user as to develop programs through
simulation as to choose the proper hardware configuration.

For our point of view, the most interesting features of the project are as
follows:

— the duality of analysis methods;

— the time complexity estimation which helps to avoid the target architecture
emulation.

Now the prototype system is implemented in the Sun Solaris environment. The
DYANA system was tested in the following areas:

— performance analysis of local area networks;
— software design and development for embedded systems.

404 A.G. Bakhmurov, A.P. Kapitonova, R.L. Smeliansky

The DYANA system is being used now in the EEC INCO-Copernicus Project
DRTESY [which is aimed at evaluation (and mutual enhancement) of tools
provided by project partners on a common realistic case study from the field
of embedded avionics system design. Much attention will be paid to the time
complexity reduction of our algorithmic analysis methods.

The nearest goals of the future work are also:

— to spread the database approach to trace storage and processing;

— to develop the library of CPU models for those RISC processors which are
used in embedded computer systems;

— to build a library of reusable "basic blocks’ suitable for modelling of networks
and embedded hardware and software components.

References

1. R.L. Smeliansky, Yu.P. Kazakov, Yu.V. Bakalov, The combined approach to the
distributed computer system simulation, in Proc Conference on Parallel Computing
Technologies, Novosibirsk, Scientific Centre, Sept. 1991.

2. A.P. Kapitonova, I.A. Terehov, R.L. Smeliansky, The instrumental system for es-
timation of computational complexity in programs, MSU Press, Moscow 1991 (in
Russian).

3. R.L. Smeliansky, Program behavior invariant as the basis for system performance
estimation, in Proc Conference on Parallel Computing Technologies, Obninsk, Rus-
sia, Sept. 1993.

4. R.L. Smeliansky, Distributed computer system operation model, Moscow Univer-
sity Computational Mathematics and Cybernetics, 3(1990), p. 4-16.

5. Yu. Bakalov, R. Smeliansky, M>2-SPEC : A Language for Distributed Program
Behaviour Specification. Proc. of PARCELLA-96 Berlin, 1996.

6. B. Selic, G. Gullelson, J. McGee, and I. Engelberg, ’ROOM: An Object-Oriented

Methodology for Developing Real-Time Systems”, in Proc. 5th International Work-

shop on CASE, Montreal, Canada, 1992.

T.Lewis, The next 10,0002 years. Computer, April, 1996, pp.64-71

8. O.Tanir, S.Sevinc, Defining Reguirements for a Standart Simulation Environment.
Computer, February, 1994, pp.28-34.

9. M. Rosenblum et. al., Using the SimOS Machine Simulator to Study Complex
Computer Systems. ACM Trans. on Modelling and Computer Simulation, V. 7,
No. 1, January 1997, P.78-103

10. Telelogic home page http://www.telelogic.se/

11. Ptolemy project home page http://ptolemy.eecs.berkeley.edu

12. Y. Kazakov, R. Smeliansky, Organization of synchronization algorithms in dis-
tributed simulation, in Proc. of 2nd Russian-Turkish seminar 'New High Informa-

tion Technologies’, May 9-12, 1994, Gebre, Turkey.

13. ObjecTime Limited home page, http://www.objectime.com

14. V.V. Balashov, A.P. Kapitonova, V.A. Kostenko, R.L. Smeliansky,

N.V. Youshchenko, Modelling of digital signal processors based on the static-
dynamic approach, in Proc. of the 1st International Conference ”Digital Signal
Processing and its Applications”, June, 30th — July, 3rd, 1998, Moscow.

IR
I |
l B36-825-T3

! http://www.first.gmd.de/ drtesy/

~

10.1007/b107031130027

	Introduction
	Project goals
	The Computational Model. Language Features Overview
	An Example of Model Construction in DYANA
	Model Construction
	Taking Hardware Into Account
	Model Detail. Model-to-Program Transition

	The DYANA Architecture
	The Runtime Subsystem
	The Subsystem for Time Complexity Estimation
	The Visualization Subsystem
	The Performance Analysis Subsystem
	The Algorithmic Analysis Subsystem
	The Integrated Development Environment

	Conclusion

