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Abstract. We investigate techniques for verifying hierarchical systems,
i.e., finite state systems with a nesting capability. The straightforward
way of analysing a hierarchical system is to first flatten it into an equiv-
alent non-hierarchical system and then apply existing finite state sys-
tem verification techniques. Though conceptually simple, flattening is
severely punished by the hierarchical depth of a system. To alleviate this
problem, we develop a technique that exploits the hierarchical structure
to reuse earlier reachability checks of superstates to conclude reacha-
bility of substates. We combine the reusability technique with the suc-
cessful compositional technique of [13] and investigate the combination
experimentally on industrial systems and hierarchical systems generated
according to our expectations to real systems. The experimental results
are very encouraging: whereas a flattening approach degrades in perfor-
mance with an increase in the hierarchical depth (even when applying
the technique of [13]), the new approach proves not only insensitive to
the hierarchical depth, but even leads to improved performance as the
depth increases.

1 Introduction

Finite state machines provide a convenient model for describing the control-part
(in contrast to the data-part) of embedded reactive systems including smaller
systems such as cellular phones, hi-fi equipment, cruise controls for cars, and
large systems as train simulators, flight control systems, telephone and communi-
cation protocols. We consider a version of finite state machines called state/event
machines (SEMs). The SEM model offers the designer a number of advantages
including automatic generation of efficient and compact code and a platform for
formal analysis such as model-checking. In this paper we focus and contribute
to the latter.

In practice, to describe complex systems using SEMs, a number of exten-
sions are often useful. In particular, rather than modeling a complex control
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Fig. 1. (a) A hierarchical model of a toy train. The system is composed of a
number of serial, parallel and primitive states. (b) The model after it has been
flattened.

as a single SEM, it is often more convenient to use a concurrent composition
of several component SEMs each typically dealing with a specific aspect of the
control. Here we focus on an additional hierarchical extension of SEMs, in which
states of component SEMs are either primitive or superstates which are them-
selves (compositions of) SEMs. Figure 1(a) illustrates a hierarchical description
of a system with two components, a Train and a Crossing. Inside the Train the
state Move is a superstate with the two (primitive) states Left and Right. Transi-
tions within one component may be guarded with conditions on the substates of
other components. E.g., the ‘Go’-transition may only be fired when the machine
Crossing is in the substate Closed.

The Statechart notation is the pioneer in hierarchical descriptions. Intro-
duced in 1987 by David Harel [10] it has quickly been accepted as a compact
and practical notation for reactive systems, as witnessed by a number of hierar-
chical specification formalisms such as Modecharts [11] and Rsml [12]. Also,
hierarchical descriptions play a central role in recent object-oriented software
methodologies (e.g., Omt [15] and Room [16]) most clearly demonstrated by
the emerging Uml-standard [8]. Finally, hierarchical notations are supported by
a number of CASE tools, such as Statemate [2], ObjecTime [3], Rational-
Rose [4], and in the forthcoming visualSTATEversion 4.0 [1].

Our work has been performed in a context focusing on the commercial prod-
uct visualSTATE and its hierarchical extension. This tool assists in developing
embedded reactive software by allowing the designer to construct and manipulate
SEM models. The tool is used to simulate the model, checking the consistency
of the model, and from the model automatically generate code for the hardware
of the embedded system. The consistency checker of visualSTATE is in fact a
verification tool performing a number of generic checks, which when violated in-
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dicate likely design errors. The checks include checking for absence of deadlocks,
checking that all transitions may fire in some execution, and similarly checking
that all states can be entered.

In the presence of concurrency, SEM models may describe extremely large
statespaces1 and, unlike in traditional model checking, the number of checks to
be performed by visualSTATE is at least linear in the size of the model. In
this setting, our previous work [13] offers impressive results: a number of large
SEM models from industrial applications have been verified. Even a model with
1421 concurrent SEMs (and 10476 states) has been verified with modest resources
(less than 20 minutes on a standard PC). The technique underlying these results
utilises the ROBDD data structure [9] in a compositional analysis which initially
considers only a few component-machines in determining satisfaction of the ver-
ification task and, if necessary, gradually includes more component-machines.

Now facing hierarchical SEMs, one can obtain an equivalent concurrent com-
position of ordinary SEMs by flattening it, that is, by recursively introducing
for each superstate its associated SEM as a concurrent component. Figure 1(b)
shows the flattening of the hierarchical SEM in Fig. 1(a) where the superstate
Move has given rise to a new component mMove. Thus, verification of hierarchical
systems may be carried out using a flattening preprocessing. E.g., demonstrating
that the primitive state Left is reachable in the hierarchical version (Figure 1(a)),
amounts to showing that the flattened version (Figure 1(b)) may be brought into
a system-state, where the mMove-component and the mTrain-component are si-
multaneously in the states Left and Move.

Though conceptually simple, verification of hierarchical systems via flatten-
ing is, as we will argue below (Section 2) and later experimentally demonstrate,
severely punished by the hierarchical depth of a system; even when combined
with our successful compositional technique of [13] for ordinary SEMs.

To alleviate this problem, we introduce in this paper a new verification tech-
nique that uses the hierarchical structure to reuse earlier reachability checks
of superstates to conclude reachability of substates. We develop the reusability
technique for a hierarchical SEM model inspired by Statechart and combine
it with the compositionality technique of [13]. We investigate the combination
experimentally on hierarchical systems generated according to our expectations
from real systems.2 The experimental results are very encouraging: whereas the
flattening approach degrades in performance with an increase in the hierarchical
depth, it is clearly demonstrated that our new approach is not only insensitive
to the hierarchical depth, but even leads to improved performance as the depth
increases. In addition, for non-hierarchical (flat) systems the new method is an
instantiation of, and performs as well as, the compositional technique of [13].

1 The so-called state-explosion problem.
2 In short, we expect that transitions and dependencies between parts of a well-

designed hierarchical system are more likely to occur between parts close to each
other rather than far from each other in the hierarchy.
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Related Work

R. Alur and M. Yannakakis’ work on hierarchical Kripke structures offers im-
portant worst case complexity results for both LTL and CTL model checking [5].
However, their results are restricted to sequential hierarchical machines and use
the fact that abstract superstates may appear in several instantiations. In con-
trast we provide verification results for general hierarchical systems with both
sequential and parallel superstates without depending on multiple instantiations
of abstract superstates.

Park, Skakkebæk and Dill [14] have found an algorithm for automatic gen-
eration of invariants for states in Rsml specifications. Using these invariants it
is possible to perform some of the same checks that we provide for hierarchical
SEMs. Their algorithm works on an approximation of the specification, and uses
the fact that Rsml does allow internal events sent from one state to another.

2 Flattening and Reusability

To see why the simple flattening approach is vulnerable to the hierarchical depth,
consider the (schematic) hierarchical system of Fig. 2(a). The flattened version
of this system will contain (at least) a concurrent component mSi for each of
the superstates Si for 0 ≤ i ≤ 100. Assume, that we want to check that the state
u is reachable. As reachability of a state in a hierarchical system automatically
implies reachability of all its superstates, we must demonstrate that the flattened
system can reach a state satisfying the following condition:3

mS100@u ∧ mS99@S100 ∧ mS98@S99 ∧ . . . ∧ mS0@S1 .

Consequently, we are faced with a reachability question immediately involving a
large number of component SEMs, which in turn means that poor performance
of our compositional technique [13] is to be expected. Even worse, realizing all
the checks of visualSTATE means that we must in similarly costly manners
demonstrate reachability of the states x, y, z and v. All these checks contain
mS99@S100 ∧mS98@S99 ∧ . . .∧mS0@S1 as common part. Hence, we are in fact
repeatedly establishing reachability of S100 as part of checking reachability of
x, y, z, u and v. As this situation may occur at all (100) levels, the consequence
may be an exponential explosion of our verification effort.

Let us instead try to involve the hierarchical structure more actively and
assume that we have already in some previous check demonstrated that S100 is
reachable (maybe from an analysis of a more abstract version of the model in
which S100 was in fact a primitive state).

How can we reuse this fact to simplify reachability-checking of, say, u? As-
sume first a simple setting (Figure 2(a)), where S100 is only activated by transi-
tions to S100 itself (and not to substates within S100) and transitions in S100 are
only dependent (indicated by the guard g) on substates within S100 itself. In this

3 Here mS@T denotes that the component mS is in state T .
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Fig. 2. Simple and complex substates.

case we may settle the reachability question by simply analysing S100 as a system
of its own. In more complex situations (Figure 2(b)), S100 may possibly be acti-
vated in several ways, including via transitions into some of its substates. Also,
the transitions within S100 may refer to states outside S100 (indicated by the
guard g∗). In such cases—in analogy with our previous compositional technique
[13]—we compute the set of states which regardless of behaviour outside S100

may reach u. If this set contains all potential initial states of S100 (in Fig. 2(b)
the states x, y, u) we may infer from the known reachability of S100 that also
u is reachable. Otherwise, we will simply extend the collection of superstates
considered depending on the guards within S100 and the transitions to S100.

In the obvious way, transitions between (super)states and their guards de-
termine the pattern of dependencies between states in a hierarchical system. We
believe that in good hierarchical designs, dependencies are more likely to exist
between states close to each other in the hierarchy rather than states hierarchi-
cally far from each other. Thus, the simple scenario depicted in Fig. 2(a) should
in many cases be encountered with only small extensions of the considered su-
perstates.

3 The Hierarchical State/Event Model

A hierarchical state/event machine (HSEM) is a hierarchical automaton consist-
ing of a number of nested primitive, serial, and parallel states. Transitions can
be performed between any two states regardless of their type and level, and are
labeled with an event, a guard, and a multiset of outputs. Formally an HSEM
is a 7-tuple

M = 〈S, E, O, T, Sub, type, def 〉 (1)

of states S, events E, outputs O, transitions T , a function Sub : S → P(S) asso-
ciating states with their substates, a function type : S → {pr, se,pa} mapping
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states to their type (indicating whether a state is primitive, serial, or parallel),
and a partial function def : S ↪→ S mapping serial states to their default sub-
state. The set of serial states in S is referred to as R.

The set of transitions T ⊆ S × E × G ×M(O) × S where M(O) is the set
of all multisets of outputs, and G is the set of guards derived from the grammar
g ::= g1 ∧ g2 | ¬g1 | tt | s. The atomic predicate s is a state synchronisation on the
state s, having the intuitive interpretation that s is true whenever s is active (we
will return to the formal semantics in a moment). We use t = (st, et, gt, ot, s

′
t) to

range over syntactic transitions (with source, event, guard, outputs and target
respectively).

For notational convenience we write s ↘ s′ whenever s′ ∈ Sub(s). Further-
more we define ↘+ to be the transitive closure, and ↘∗ to be the transitive and
reflexive closure of ↘. If s ↘+ s′ we say that s is above s′, and s′ is below s.
The graph (S,↘) is required to be a tree, where the leaves and only the leaves
are primitive states, i.e., ∀s : type(s) = pr ⇔ Sub(s) = ∅.

For a set of states I, lca(I) denotes the least common ancestor of I with
respect to ↘. For a state s, lsa(s) denotes the least serial ancestor of s. The
scope of a transition t is denoted χ(t) and represents the least common serial
ancestor of the states st and s′t. For those transitions in which such a state does
not exist, we say that χ(t) = $, where $ is a dummy state above all other states,
i.e., ∀s ∈ S : $ ↘+ s.

A configuration of an HSEM is an |R|-tuple of states indexed by the serial
states. The configuration space Σ of an HSEM is the product of the set of
substates of each serial state,

Σ =
∏
s∈R

Sub(s) . (2)

The projection πs : Σ → Sub(s) of a configuration σ onto a serial state s yields
the value of s in σ. The projection of a configuration onto a parallel or primitive
state is undefined. A state s is active in σ if either s is the root state, the parent
of s is an active parallel state, or the parent is an active serial state and s is
the projection of σ onto the parent. In order to formalise this we define the infix
operator in as

s in σ ⇔ ∀s′ ↘+ s : s′ ∈ R ⇒ πs′ (σ) ↘∗ s . (3)

We denote by Σs = {σ | s inσ} the set of configurations in which s is active.
Let σ |= g whenever σ satisfies g. The interpretation of a guard is defined as:

σ |= tt (any configuration satisfies the true guard), σ |= s iff s inσ, σ |= g1 ∧ g2

iff σ |= g1 and σ |= g2, and σ |= ¬g iff σ 6|= g. A pair (e, σ) is said to enable a
transition t, written (e, σ) |= t, iff e = et, st inσ, and σ |= gt.

Before introducing the formal semantics, we summarise the intuitive idea
behind a computation step in HSEM. An HSEM is event driven, i.e., it only
reacts when an event is received from the environment. When this happens, a
maximal set of non-conflicting and enabled transitions is executed, where non-
conflicting means no transitions in the set have nested scope. This conforms
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to the idea that the scope defines the area affected by the transition. When
a transition is executed, it forces a state change to the target. All implicitly
activated serial states enter their default state. In fact, a transition is understood
to leave the scope and immediately reactivate it.

Formally, a set ∆ ⊆ T is enabled on (e, σ) if ∀t ∈ ∆ : (e, σ) |= t, ∆ is
compatible if ∀t, t′ ∈ ∆ : (t 6= t′ ⇒ χ(t) 6↘∗ χ(t′)), and ∆ is maximal if
∀∆′ ⊆ T : ∆ ⊂ ∆′ ⇒ ∆′ is incompatible or disabled on (e, σ). The semantics of
an HSEM is defined in terms of a transition relation →⊆ Σ × E ×M(O) × Σ.
We have σ

e/o→σ′ if and only if there exists a set ∆ ∈ T , such that:4

1. ∆ is compatible, enabled on (e, σ), and maximal,
2. o = ]t∈∆ot,
3. ∀t ∈ ∆ : s′t in σ′,
4. ∀t ∈ ∆, s ∈ S : s in σ′ ∧ type(s) = se ∧ χ(t) ↘+ s 6↘+ s′t ⇒ πs(σ′) = def (s),

and
5. ∀s ∈ R : (∀t ∈ ∆ : χ(t) 6↘∗ s) ⇒ πs(σ) = πs(σ′).

The second constraint defines the output of the transition, the third that all
targets are active after the transition, the fourth that all implicitly activated
serial states (those not on the path between the scope and the target of any
transition) are recursively set to their default state, and the last that all states
not under the scope of any transition remain unchanged.

4 Reusable Reachability Checking

The consistency checker of visualSTATE performs seven predefined types of
checks, each of which can be reduced to verifying one of two types of properties.
The first property type is reachability. For instance, visualSTATE checks for
absence of dead code in the sense that all transitions must be possibly enabled
and all states must be possibly entered. E.g., checking whether a transition t will
ever become executable is equivalent to checking whether its guard is satisfiable,
i.e., whether we can reach a configuration σ such that ∃e : (e, σ) |= t. Similarly,
checking whether a state s may be entered amounts to checking whether the
system can reach a configuration within Σs.

The remaining two types of consistency checks reduce to a check for absence
of local deadlocks. A local deadlock occurs if the system can reach a configuration
in which one of the superstates will never change value nor be deactivated no
matter what sequence of events is offered.

In the following two sections we present our novel technique exploiting reus-
ability and compositionality through its application to reachability analysis only.
In the full version of this paper [7] and in [6] the applicability of the technique
to local deadlock detection is given in detail.

In general, a reachability question involves a set of goal configurations X ⊆ Σ.
The question posed is whether X is reachable in the sense that there exists a

4 The symbol ] denotes multiset union



170 Gerd Behrmann et al.

Σ

Σi

X

Init(i)

σ0

(a) Reusing reachability of i.

X := {σ | σ is a goal conf.}
while Init(i) * X and σ0 6∈ X do
begin

X ′ := Bi(X) ∪ X
if X 6= X ′ then

X := X ′

else if Init(i) ∩ X 6= ∅ then
i := lsa(i)

else
return false

end
return true

(b) Algorithm 1.

Fig. 3. Reusable reachability check.

sequence of events such that the system starting at the initial configuration σ0

enters a configuration in X . To explain the idea of reusability, let i be a state such
that X ⊂ Σi, i.e., reachability of any configuration within X implies reachability
of the state i (see Fig. 3(a)). Notice that such a state always exists, e.g., the root
will satisfy this condition for any X 6= Σ. Also, if X = Σs any superstate of s will
suffice. The question we ask is how existing information about reachability of i
may be reused to simplify reachability-checking of X . The simple case is clearly
when i is not reachable. In this case there is no way that X can be reachable
either, since X only contains configurations where i is active. Since we expect
(or hope) most of the reachability questions issued by visualSTATE to be true
this only superficially reduces the number of computations. However, although
more challenging, we can also make use of the information that i is reachable,
as explained below.

Knowing i is reachable, still leaves open which of the configurations in Σi

are in fact reachable (and in particular if any configuration in X is). However,
any reachable configuration σ in Σi must necessarily be reachable through a
sequence of the following form:5

σ0 ; σ1 ; · · · σn︸︷︷︸
6∈Σi

; σn+1 ; σn+2 ; · · ·σn+k ; σ︸ ︷︷ ︸
∈Σi

. (4)

Let the initial configurations for i, Init(i), be the configurations for which i is
active and which are reachable in one step from a configuration in which i is
inactive (e.g., the configuration σn+1 in (4); see also Fig. 3(a)). Algorithmically,
(an over approximation of) Init(i) may be obtained effectively in a straightfor-
ward manner directly from the syntactic transitions. Consider then the following

5 Here σ ; σ′ abbreviates ∃e, o : σ
e/o−→ σ′.
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backwards step computation:

Bi(Y ) = {σ ∈ Σi | ∃σ′ : σ ; σ′ ∧ σ′ ∈ Y } (5)

that is, Bi(Y ) is the set of configurations with i active, which in one step may
reach Y . To settle reachability of X , we iteratively apply Bi according to Algo-
rithm 1 in Fig. 3(b). Reachability of X may now be confirmed if either the initial
configuration of the system is encountered (σ0 ∈ X) or the backwards iteration
reaches a stage with all initial states for i included (Init(i) ⊆ X). Dually, if
the backwards iteration reaches a fixed point (X∗ = Bi(X∗)), reachability of
X can be rejected if no initial configuration for i has been encountered (i.e.,
X∗ ∩ Init(i) = ∅.). If some but not all of the initial configurations for i have
been encountered, the analysis does not allow us to conclude on the reachability
of X based on reachability of i. Instead, the backwards iteration is continued
with i substituted with its directly enclosing, serial superstate.

The reusability approach depends on a previous reachability check of the
non-primitive states in the system. Since this is itself a series of reachability
checks the above approach can be applied immediately if we perform a preorder
traversal of the state tree determining reachability of each state as we encounter
them, reusing the previous checks. If a state turns out to be unreachable we can
immediately conclude that all substates are unreachable.

5 Compositional Reachability Checking

The reusable reachability analysis offered by the algorithm of Fig. 3(b) is based
on the backward step function Bi. An obvious drawback is that computation of
Bi requires access to the global transition relation →. In this section we show
how to incorporate the compositional technique of [13] by replacing the use of
Bi with a backwards step function, CBI , which only requires partial knowledge
about the transition relation corresponding to a selected and minimal subsys-
tem. The selection is determined by a sort I identifying the set of superstates
currently considered. Initially, the sort I only includes superstates directly rel-
evant for the reachability question. Later, also superstates on which the initial
sort behaviourally depend will be included.

A subset I of R (the set of serial states) is called a sort if it is non-empty, and
is convex in the sense that u ∈ I whenever lca(I) ↘∗ u ↘∗ y for some y ∈ I.6

For any nonempty set A ⊆ R the set Convex(A) denotes the minimal superset
of A satisfying the properties for a sort. The state lca(I) of a sort will turn out
to be an ideal choice for the state i used in the reusable reachability algorithm
in the previous section.

Two configurations σ and σ′ are said to be I-equivalent, written σ =I σ′,
whenever they agree on all states in I. More formally

σ =I σ′ ⇐⇒ ∀s ∈ I : πs(σ) = πs(σ′) . (6)

6 Only if lca(I) is a serial state does this imply that lca(I) ∈ I .
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For notational convenience we write ΣI = Σlca(I). A set P ⊆ ΣI of configurations
is said to be I-sorted in case

∀σ, σ′ ∈ ΣI : σ =I σ′ ⇒ (σ ∈ P ⇔ σ′ ∈ P ) . (7)

Notice that we require that P ⊆ ΣI for P to be I-sorted. This follows from the
idea that the reusable reachability check restricts the analysis to the subsystem
with root lca(I). P being I-sorted intuitively means that it only depends on
states within I. Using ROBDDs allows for very compact representations of I-
sorted sets as the parts of the configuration set outside the sort may be ignored.

From an I-sorted set X we perform within ΣI a compositional backwards
computation step by including all configurations with lca(I) active which, irre-
spective of the behaviour of the superstates outside I, can reach X . One back-
ward step is given by the function CBI defined by:

CBI(X) = {σ ∈ ΣI | ∀σ′ ∈ ΣI : σ =I σ′ ⇒ ∃σ′′ ∈ X : σ′
; σ′′} . (8)

Observe that CBI is monotonic in both X and I. By iterating the application
of CBI , we can compute the set of configurations that are able to reach a con-
figuration within X independently of behaviours outside the considered sort I.
This is the minimum fixed-point µY.X ∪CBI(Y ) which we refer to as CB∗

I (X).
In an ROBDD based implementation, the global transition relation may be par-
titioned into conjunctive parts with contributions from each superstate. Crucial
for our approach is the fact that CBI may be computed without involving the
global transition relation directly, but only the parts of the partitioning relevant
for the considered sort I. We refer to [13] for a similar observation for flat SEMs.

If computing CB∗
I (X) does not resolve the reachability question, we extend

the sort I with the states Dep(I) (see Fig. 4) that the behaviour of I depends
on. Now, extending Dep to sets in the obvious pointwise manner, we say that a
sort I is dependency closed provided Dep(I) ⊆ I. The basic properties of CB∗

I

are captured by the following lemma:

Lemma 1. Let X be an I-sorted subset of Σ. For all sorts I, J with I ⊆ J the
following holds:

1. CB∗
I (X) ⊆ CB∗

J (X),
2. CB∗

J (X) = CB∗
J (CB∗

I (X)),
3. I dependency closed ∧ Init(I) ∩ CB∗

I (X) = ∅ ⇒ CB∗
I (X) = CB∗

J (X).

The first property guarantees that we may conclude X reachable as soon as
all initial configurations of some known reachable state is encountered (say the
global initial state). The second property allows us to reuse backwards compu-
tations performed with one sort as the starting point for a larger sort. The last
property allows reachability of X to be rejected in case I is dependency closed
and no initial configuration of I has been encountered (as no new configurations
will be encountered by extending the sort).

Algorithm 2 in Fig. 5 is the result of using the compositional backward step
CBI instead of Bi, with Minsort(X) offering a minimal sort for the set of
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configurations X . When the algorithm returns false, none of the configurations in
X are reachable. If true is returned, it means that at least one goal configuration
is reachable under the assumption that lca(I) is known to be reachable.

vy

b

e d[y]
[v]

x u
c

a

Fig. 4. State c depends on u, due to the transition from e to u and since u is the
parent of v upon which the transition is guarded. Likewise does the transition
from e to b create dependencies from state a (the scope of the transition) to
state c (the parent of the source) and x (the parent of the state upon which the
transition is guarded).

I := Minsort(X)
while Init(I) * X and σ0 6∈ X do
begin

X ′ := CBI(X) ∪ X
if X 6= X ′ then

X := X ′

else if Dep(I) * I then
I := Convex(I ∪ Dep(I))

else if Init(I) ∩ X 6= ∅ then
I := I ∪ {lsa(lca(I))}

else
return false

end
return true

Fig. 5. Algorithm 2, reusable and compositional reachability.

6 Experimental Results

To evaluate our approach, the runtime and memory usage of an experimental
implementation using our method is compared to an implementation for flat
systems. We will refer to the first as the hierarchical checker and the second as
the flat checker. Both checkers utilise the compositional backwards analysis and
use ROBDDs to represent sets of states and transition relations, but only the
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hierarchical checker uses the reusable reachability check. Only satisfiability of
transitions is verified, i.e., whether the system for each transition can reach a
configuration such that the transition is enabled. The hierarchical checker addi-
tionally checks whether non-primitive states are reachable since this is necessary
in order to apply the reusable reachability check.

The two implementations where first compared on flat test cases previously
used in [13]. Without going into details, adding the reusable reachability checking
did not degrade performance.

The lack of adequate examples has forced us to develop a method to generate
scalable hierarchical systems. It is possible to scale both the maximum nesting
depth, the number of substates of parallel and serial states, and the total number
of serial states (which is equivalent to the number of automata in the flat system).
Serial and parallel states alternate on the path from the root to the leaves starting
with a parallel state. The number of states are adjusted by pruning the state
tree, i.e., just because a system has a nesting depth of 12 does not mean, that
all leaves are placed at level 12 (the size of such a system would be extreme). If
the generated system is not deep enough to accommodate the number of wanted
states with the chosen width of parallel and serial states, the width is expanded.
E.g., a system with 100 serial states and depth 1 will have a parallel root with
100 substates.

As stated in the introduction, we believe that in good designs, dependencies
are more likely to be local. The generated test cases reflect this by only including
transitions between nearby states. The guards are created at random, but the
probability that a guard synchronises with a given state is inverse exponential
to the distance between the scope of the transition and the state. The number of
transitions is proportional to the number of serial states. Transitions are arranged
so that any state is potentially reachable, i.e., if the transitions were unguarded
all states would be reachable. Events are distributed such that the system is
guaranteed to be deterministic.

Figure 6 shows the runtime of both the hierarchical and the flat checker for
a fixed number of substates in parallel and serial states (4 in parallel and 3 in
serial), but with varying depth and number of serial states (which corresponds to
the number of automata in the equivalent flat system). It is interesting to notice
that the runtime of the hierarchical checker is much more consistent than that of
the flat checker, i.e., the runtime of the flat checker does vary greatly for different
systems generated with the same parameters, as the depth is increased. Although
each grid point of the figures shows the mean time of 20 measurements,7 it is
still hard to achieve a smooth mesh for the flat checker.

While the flat checker suffers under the introduction of a hierarchy, the hier-
archical checker actually benefits from it. How can it be that the addition of a
hierarchy decreases the runtime of the hierarchical checker? As stated earlier, we

7 It took about two days to run the 1920 cases providing the basis of the 96 depicted
grid points. The test was performed on a Sun UltraSparc 2 with two 300 MHz
processors and 1 GB of RAM (although the enforced limit of 106 nodes assured a
maximal memory consumption below 20 MB).
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Fig. 6. Comparison of the runtime of the flat and hierarchical checker. (a) The
runtime of both checkers is plotted as a function of the nesting depth and number
of automata/serial states. (b) A slice of the mesh where the number of automata
is 300. As can be seen, the runtime of the flat checker explodes as the depth
increases, whereas the runtime of the hierarchical checker decreases slightly.

believe that a good hierarchical design is modular in its nature. If a particular
system cannot be easily described using a hierarchy, this is probably due to too
many interdependencies in the system. Our test cases incorporate this idea: In
a system with depth one, the distance between any two states in two different
superstates will be constant. Hence the probability with which a guard refers to
a state in another superstate is constant, i.e., it is likely that many superstates
depend on each other.

It is worth noticing, that our method allows us to drop reachability questions
which result in an unreachable initial lca state (in this case the answer will be
no). The number of questions dropped because of this is proportional to the
number of unreachable states in the test case. This number varies, but is most
of the time below 5-10% of the total number of checked states (primitive states
are not checked), although 50% unreachable states have been observed. Testing
whether the non-primitive states are reachable is very fast compared to the time
it takes to check the transitions. It is noteworthy that some test cases, even
without any unreachable states, showed a difference in runtime with a factor of
over 180 in favor of the hierarchical checker compared to the flat one.

Table 1 provides further information on the performance of the hierarchical
checker on a single case with depth 12, 399 serial states, 3 substates in each
parallel state, and 4 substates in each serial state.8 This results in a total of 1596
transitions, although optimisations did allow the checker to verify 331 transitions
without performing a reachability analysis, leaving 1265 checks (not counting
reachability checking of non-primitive states). The table shows the number of
questions distributed over the initial and final depth of the lca state of the
questions. For instance we can see that 59 of the questions starting at depth

8 This corresponds to a state space of 10240 configurations
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5 are verified without including additional states toward the root, but that 2
questions needed to expand the sort such that the final answer was found at
depth 3. It is apparent that a large number of questions is verified in terms
of a small subsystem. This illustrates why our method does scale as well as it
does. This particular system is verified within 26 seconds using the hierarchical
checker, whereas the flat checker uses 497 seconds.

Table 1. Distribution of reachability questions. The vertical axis shows the ini-
tial distance between the root and the subsystem analysed, and the horizontal
axis shows the final distance. From the diagonal it can be seen that most ques-
tions are answered without including additional states toward the root.

Final distance
1 2 3 4 5 6 7 8 9 10 11 12 Sum

In
it

ia
l
d
is

ta
n
c
e

1 114 114
2 30 65 95
3 20 5 83 108
4 25 5 10 70 110
5 12 0 2 8 59 81
6 0 0 6 8 10 77 101
7 0 0 6 7 12 16 70 111
8 8 0 0 7 1 1 12 66 95
9 0 0 0 0 0 11 10 3 89 113

10 0 0 0 10 0 1 5 7 5 75 103
11 0 0 0 0 0 0 2 1 8 9 91 111
12 0 0 0 6 0 0 0 2 2 9 14 90 123

Sum 209 75 107 116 82 106 99 79 104 93 105 90 1265

7 Conclusion

In this paper we have presented a verification technique for hierarchical systems.
The technique combines a new idea of reusability of reachability checks with
a previously demonstrated successful compositional verification technique. The
experimental results are encouraging: in contrast to a straightforward flatten-
ing approach the new technique proves not only insensitive to the hierarchical
depth, but even leads to improved performance as the depth increases (given a
fixed number of serial states). A topic for further research is how to extend the
techniques to model-checking of more general temporal properties and how to
combine it with utilisation of multiple instantiations of abstract superstates.
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