
String Languages Generated by Total

Deterministic Macro Tree Transducers?

Sebastian Maneth

Department of Computer Science, Leiden University, PO Box 9512,
2300 RA Leiden, The Netherlands, E-mail: maneth@wi.leidenuniv.nl

Abstract. The class of string languages obtained by taking the yields
of output tree languages of total deterministic macro tree transducers
(MTTs) is investigated. The �rst main result is that MTTs which are
linear and nondeleting in the parameters generate the same class of string
languages as total deterministic top-down tree transducers. The second
main result is a so called \bridge theorem"; it can be used to show that
there is a string language generated by a nondeterministic top-down tree
transducer with monadic input, i.e., an ET0L language, which cannot
be generated by an MTT. In fact, it is shown that this language cannot
even be generated by the composition closure of MTTs; hence it is also
not in the IO-hierarchy.

1 Introduction

Macro tree transducers [Eng80, CF82, EV85, EM98] are a well-known model of
syntax-directed semantics (for a recent survey, see [FV98]). They are obtained
by combining top-down tree transducers with macro grammars. In contrast to
top-down tree transducers they have the ability to handle context information.
This is done by parameters.

A total deterministic macro tree transducer (for short, MTT) M realizes a
translation �M which is a function from trees to trees. The input trees may,
for instance, be derivation trees of a context-free grammar which describes the
syntax of some programming language (the source language). To every input tree
s (viz. the derivation tree of a source program P) M associates the tree �M (s).
This tree may then be interpreted in an appropriate semantic domain, e.g.,
yielding a program in another programming language (the target language): the
semantics of P . One speci�c, quite popular, such domain is the one of strings with
concatenation as only operation. More precisely, every symbol of rank greater
than zero is interpreted as concatenation and constant symbols are interpreted
as letters. The interpretation of a tree t in this domain is simply its yield (or
frontier, i.e., the string obtained from t by reading its leaves from left to right).
Thus, an MTT M can be seen as a translation device from trees to strings.
Taking a tree language as input it generates a formal language as output. It

? This work was supported by the EC TMR Network GETGRATS.

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 258-272, 1999.
c Springer-Verlag Berlin Heidelberg 1999

is this class of formal languages (viz. the sets of target programs that can be
generated) which we investigate in this paper.

An MTT M such that each right-hand side of a rule is linear and nondelet-
ing in the parameters, that is, every parameter occurs exactly once, will be
called simple in the parameters. This means that M cannot copy by means of
its parameters. We prove that the class of string languages generated by such
MTTs equals the class of string languages generated by top-down tree transduc-
ers. Hence the parameters can be eliminated. It is known that for unrestricted
MTTs this is not the case; also if we consider output tree languages, MTTs that
are simple in the parameters can do more than top-down tree transducers: they
can generate tree languages that have non-regular path languages, which cannot
be done by top-down tree transducers. For a more severe restriction, namely, the
�nite copying restriction, MTTs generate the same class of string languages as
�nite copying top-down tree transducers (Corollary 7.10 of [EM98]).

Now consider the case that we want to prove that a certain tree language R
cannot be generated (as output tree language) by any MTT. In general this is
di�cult for there are very few appropriate tools: there exists a pumping lemma
[K�uh98] for a restricted case of MTTs. If we know that the string language
obtained by taking the yields of the trees in R cannot be generated by any
MTT, then we immediately know that R cannot be generated by an MTT.
Since there are many tree languages with the same yield language, it is much
stronger to know that a string language cannot be generated by an MTT than
to know this for a tree language. We present a tool which is capable of proving
that certain string languages L cannot be generated by an MTT. More precisely
we will show that if L is of the form f(L0) for some �xed operation f , then L0

can be generated by an MTT which is simple in the parameters; by our �rst
result this means that L0 can be generated by a top-down tree transducer. The
proof is a direct generalization of Fischer's result on IO macro grammars: in
the proof of Theorem 3.4.3 in [Fis68] it is proved that if f(L) is an IO macro
language then L can be generated by an IO macro grammar which is simple
in the parameters. The result shows that the structure of L forces it from a
bigger into a smaller class; it gives a \bridge" from the bigger (viz. unrestricted
MTTs) into the smaller class (viz. MTTs which are simple in the parameters).
For this smaller class, i.e., the class of string languages generated by top-down
tree transducers, there exists another bridge theorem into yet another smaller
class (using the same operation f), namely the class of string languages generated
by �nite copying top-down tree transducers [ERS80]. Due to the limited copying
power of this class, it only contains languages that are of linear growth (they
have the \Parikh property"); thus, languages like Lexp = fa2

n

j a � 0g are not
in this class. Altogether we get that f(f(L0)), where L0 is a non-Parikh language
(e.g., Lexp) cannot be generated by an MTT; in fact, we prove that it cannot be
generated by any composition of MTTs.

This paper is structured as follows. In Section 2 we �x some notions used
throughout the paper. Section 3 recalls macro tree transducers. In Section 4 we
establish our two main results. Section 5 concludes with some open problems.

2

259String Languages Generated by Total Deterministic Macro Tree Transducers

2 Preliminaries

The set f0; 1; : : :g of natural numbers is denoted by N. The empty set is de-
noted by ?. For k 2 N, [k] denotes the set f1; : : : ; kg; thus [0] = ?. For a
set A, A� is the set of all strings over A. The empty string is denoted by "
and the length of a string w is denoted jwj. For strings v; w1; : : : ; wn 2 A�

and distinct a1; : : : ; an 2 A, we denote by v[a1 w1; : : : ; an wn] the result
of (simultaneously) substituting wi for every occurrence of ai in v. Note that
[a1 w1; : : : ; an wn] is a homomorphism on strings. For a condition P on a
and w we use, similar to set notation, [a w j P] to denote the substitution
[L], where L is the list of all a w for which condition P holds.

For functions f :A ! B and g:B ! C their composition is (f � g)(x) =
g(f(x)); note that the order of f and g is nonstandard. For sets of functions F
and G their composition is F �G = ff � g j f 2 F; g 2 Gg.

2.1 Trees

A set � together with a mapping rank�:� ! N is called a ranked set. For
k 2 N, �(k) denotes the set f� 2 � j rank�(�) = kg. We will often write �(k) to
indicate that rank�(�) = k.

The set of trees over �, denoted by T�, is the smallest set of strings T � (�[
f(;); ; g)� such that if � 2 �(k), k � 0, and t1; : : : ; tk 2 T , then �(t1; : : : ; tk) 2 T .
For � 2 �(0) we denote the tree �() also by �. For a set A, T�(A) denotes the
set T�[A, where every symbol of A has rank 0 and h�;Ai denotes the ranked
set fh�; ai(k) j � 2 �(k); a 2 Ag (if � is unranked, then every symbol in h�;Ai
is of rank zero). We �x the set of variables X as fx1; x2; : : : g and the set of
parameters Y as fy1; y2; : : : g. For k 2 N, Xk and Yk denote the sets fx1; : : : ; xkg
and fy1; : : : ; ykg, respectively.

For a tree t, the string obtained by reading the labels of its leaves from left
to right, called the yield of t, is denoted by yt. The special symbol e of rank
zero will be used to denote the empty string " (e.g., y(�(a; e)) = a and ye = ").
For a string w = a1 � � �an and a binary symbol b let combb(w) denote the tree

b(a1; b(a2; : : : b(an; e) : : :)) over fb
(2); a

(0)
1 ; : : : ; a

(0)
n g; note that ycombb(w) = w.

A subset L of T� is called a tree language. The class of all regular (or,
recognizable) tree languages is denoted by REGT (cf., e.g., [GS97]). For a tree
language L we denote by yL the string language fyt j t 2 Lg and for a class of
tree languages L we denote by yL the class of string languages fyL j L 2 Lg.
A relation � � T� � T� is called a tree translation or simply translation; by y�
we denote f(s; yt) j (s; t) 2 �g. For a tree language L � T� , �(L) denotes the
set ft 2 T� j (s; t) 2 � for some s 2 Lg. For a class T of tree translations and a
class L of tree languages, T (L) denotes the class of tree languages f�(L) j � 2
T ; L 2 Lg and yT denotes fy� j � 2 T g.

2.2 Tree Substitution and Relabelings

Note that trees are particular strings and that string substitution as de�ned in
the beginning of this section is applicable to a tree to replace symbols of rank

3

260 Sebastian Maneth

zero; we refer to this type of substitution as \�rst order tree substitution".
Let � be a ranked set and let �1; : : : ; �n be distinct elements of �, n � 1, and

for each i 2 [n] let si be a tree in T�(Yk), where k = rank�(�i). For t 2 T�, the
second order substitution of si for �i in t, denoted by t[[�1 s1; : : : ; �n sn]]
is inductively de�ned as follows (abbreviating [[�1 s1; : : : ; �n sn]] by [[: : :]]).
For t = �(t1; : : : ; tk) with � 2 �(k), k � 0, and t1; : : : ; tk 2 T� , (i) if � = �i
for an i 2 [n], then t[[: : :]] = si[yj tj [[: : :]] j j 2 [k]] and (ii) otherwise t[[: : :]] =
�(t1[[: : :]]; : : : ; tk[[: : :]]). For a condition P on � and s, we use [[� s j P]] to
denote the substitution [[L]], where L is the list of all � s for which condition
P holds.

A (deterministic) �nite state relabeling M is a tuple (Q;�;�; F;R), where
Q is a �nite set of states, � and � are ranked alphabets of input and output

symbols, respectively, F � Q is a set of �nal states, and R is a �nite set of rules
such that for every � 2 �(k), k � 0, and q1; : : : ; qk 2 Q, there is exactly one rule
of the form �(hq1; x1i; : : : ; hqk; xki) ! hq; �(x1; : : : ; xk)i in R, where q 2 Q and
� 2 �(k). The rules ofM are used as term rewriting rules, and the rewrite relation
induced by M (on ThQ;T�i[�) is denoted by)M . The translation realized by
M is �M = f(s; t) 2 T� � T� j s)

�
M hq; ti; q 2 Fg. The class of all translations

that can be realized by �nite state relabelings is denoted by DQRELAB.

3 Macro Tree Transducers

A macro tree transducer is a syntax-directed translation device in which the
translation of an input subtree may depend on its context. The context infor-
mation is processed by parameters. We will consider total deterministic macro
tree transducers only.

De�nition 1. A macro tree transducer (for short, MTT) is a tuple M = (Q;�;
�; q0; R), where Q is a ranked alphabet of states, � and � are ranked alphabets
of input and output symbols, respectively, q0 2 Q(0) is the initial state, and R
is a �nite set of rules ; for every q 2 Q(m) and � 2 �(k) with m; k � 0 there
is exactly one rule of the form hq; �(x1; : : : ; xk)i(y1; : : : ; ym) ! � in R, where
� 2 ThQ;Xki[�(Ym).

A rule of the form hq; �(x1; : : : ; xk)i(y1; : : : ; ym)! � is called the (q; �)-rule and
its right-hand side � is denoted by rhsM (q; �); it is also called a q-rule.

The rules of M are used as term rewriting rules and by)M we denote the
derivation relation induced by M (on ThQ;T�i[�(Y)). The translation realized

by M , denoted by �M is the total function f(s; t) 2 T� � T� j hq0; si)
�
M tg.

The class of all translations that can be realized by MTTs is denoted by MTT.
If for every � 2 �, q 2 Q(m), m � 0, and j 2 [m], yj occurs exactly once in
rhsM (q; �) (i.e., the rules of M are linear and nondeleting in Ym), then M is
simple in the parameters (for short sp; we say, M is an MTTsp). The class of all
translations that can be realized by MTTsps is denoted byMTT sp. If all states of
an MTT are of rank zero, thenM is called top-down tree transducer. The class of
translations realized by top-down tree transducers is denoted by T . For top-down

4

261String Languages Generated by Total Deterministic Macro Tree Transducers

tree transducers we also consider the case that for a state q and an input symbol
� there may be more than one rule of the form hq; �(x1; : : : ; xk)i ! � in R. Such a
top-down tree transducer is called nondeterministic and the corresponding class
of translations is denoted by N-T (note that this is a class of relations rather
than total functions). The class of translations realized by nondeterministic top-
down tree transducer with monadic input (i.e., each input symbol is of rank 0
or 1) is denoted by N-Tmon.

Let us now consider an example of an MTT.

Example 1. Let M = (Q;�;�; q0; R) be the MTTsp with Q = fq(2); q
(0)
0 g, � =

f�(2); a(0); b(0)g, and R consisting of the following rules.

hq0; �(x1; x2)i ! hq; x2i(hq0; x1i; hq0; x1i)
hq; �(x1; x2)i(y1; y2)! hq; x2i(�(y1; hq0; x1i); �(hq0; x1i; y2))
hq0; ai ! a
hq; ai(y1; y2) ! �(y1; y2)
hq0; bi ! b
hq; bi(y1; y2) ! �(y2; y1)

Consider the input tree t = �(a; �(b; �(b; b))). Then a derivation by M looks as
follows.

hq0; ti)M hq; �(b; �(b; b))i(hq0 ; ai; hq0; ai)
)�

M hq; �(b; �(b; b))i(a; a)
)M hq; �(b; b)i(�(a; hq0 ; bi); �(hq0; bi; a))
)�

M hq; �(b; b)i(�(a; b); �(b; a))
)�

M hq; bi(�(�(a; b); b); �(b; �(b; a)))
)M �(�(b; �(b; a)); �(�(a; b); b))

an�1

�

�

�

a2 a1

an

an�1

an�

�

a2a1

�

an�1

an�

�

a2a1

�

an�1

�

�

�

a2 a1

an

��

�

M(s)�

M

x = b j x = a

Fig. 1. Translations of M with input s for x = b and x = a

In Fig. 1 it is shown how the translations for trees of the form

s = �(a1; �(a2; : : : �(an; x) : : :))

with a1; : : : ; an 2 �
(0) and n � 1 look like. If x = a then y�M (s) = wwr and if

x = b then y�M (s) = wrw, where w = a1 � � � an and wr denotes the reverse of w
(i.e., the string anan�1 � � � a1). Note that M is sp because both y1 and y2 appear
exactly once in the right-hand side of each q-rule of M . 2

5

262 Sebastian Maneth

The next lemma will be used in proofs by induction on the structure of the input
tree. Let M = (Q;�;�; q0; R) be an MTT. For every q 2 Q(m) and s 2 T� let
the q-translation of s, denoted by Mq(s), be the unique tree t 2 T�(Ym) such
that hq; si(y1; : : : ; ym))

�
M t. Note that, for s 2 T�, �M (s) = Mq0(s). The

q-translations of trees in T� can be characterized inductively as follows.

Lemma2. (cf. De�nition 3.18 of [EV85]) Let M = (Q;�;�; q0; R) be an MTT.
For every q 2 Q, � 2 �(k), k � 0, and s1; : : : ; sk 2 T�, Mq(�(s1; : : : ; sk)) =
rhsM (q; �)[[hq0; xii Mq0(si) j hq

0; xii 2 hQ;Xki]].

4 String Languages Generated by MTT

To prove our �rst main result we need the following small lemma about second
order tree substitution. It says that if we are considering the yield of a tree to
which a second order tree substitution is applied, then inside the substitution
merely the yields of the trees that are substituted are relevant.

Lemma3. Let � be a ranked alphabet, 1; : : : ; n 2 �, and t; s1; s
0
1; : : : ; sn; s

0
n 2

T�(Y). If ysi = ys0i for every i 2 [n], then

y(t[[1 s1; : : : ; n sn]]) = y(t[[1 s01; : : : ; n s0n]]):

Lemma 3 can be proved by straightforward induction on t. We now show how
to generate by a top-down tree transducer the string language generated by an
MTTsp.

Lemma4. yMTT sp � y(DQRELAB � T).

Proof. Let M = (Q;�;�; q0; R) be an MTTsp. We will construct a �nite state
relabeling N and a top-down tree transducer M 0 such that for every s 2 T� ,
y(�M 0(�N (s))) = y�M (s). The idea is as follows. Let q 2 Q(m) and s 2 T�. Then,
since M is sp, yMq(s) is of the form

w = w0yj1w1yj2w2 � � � yjmwm;

where j1; : : : ; jm 2 [m] are pairwise di�erent and w0; : : : ; wm 2 (�(0))�. For
a string of the form w (where the wi are arbitrary strings not containing pa-
rameters) and for 0 � � � m we denote by part�(w) the string w� . For every
w� the top-down tree transducer M 0 has a state (q; �) which computes w� . The
information on the order of the parameters, i.e., the indices j1; : : : ; jm, will be de-
termined by the �nite state relabelingN in such a way that � 2 �(k) is relabeled
by (�; (pos1; : : : ; posk)), where for each i 2 [k], posi is a mapping associating with
every q 2 Q(m) a bijection from [m] to [m]. For instance, if si equals the tree s
from above, then the � in �(s1; : : : ; si; : : : ; sk) is relabeled by (�; (pos1; : : : ; posk))
and posi(q)(�) = j� for � 2 [m]. Formally, N = (QN ; �; �;QN ; RN), where

{ QN is the set of all mappings pos which associate with every q 2 Q(m) a
bijection pos(q) from [m] to [m]. For convenience we identify pos(q) with the
string j1 � � � jm over [m], where pos(q)(i) = ji for i 2 [m].

6

263String Languages Generated by Total Deterministic Macro Tree Transducers

{ � = f(�; (pos1; : : : ; posk))
(k) j � 2 �(k); k � 0; pos1; : : : ; posk 2 QNg.

{ For every � 2 �(k), k � 0, and pos1; : : : ; posk 2 QN let

�(hpos1; x1i; : : : ; hposk; xki)! hpos; (�; (pos1; : : : ; posk))(x1; : : : ; xk)i

be in RN , where for every q 2 Q(m), pos(q) = order(rhsM (q; �)) and for
t 2 ThQ;Xki[�(Ym), order(t) is the string over [m] de�ned recursively as

follows: if t = yj 2 Ym, then order(t) = j, if t = �(t1; : : : ; tl) with � 2 �(l),
l � 0, and t1; : : : ; tl 2 ThQ;Xki[�(Ym), then order(t) = order(t1) � � � order(tl),

and if t = hq0; xii(t1; : : : ; tl) with hq
0; xii 2 hQ;Xki

(l), l � 0, and t1; : : : ; tl 2
ThQ;Xki[�(Ym), then order(t) = order(tposi(q0)(1)) � � � order(tposi(q0)(l)).

It is straightforward to show (by induction on the structure of s) thatN is de�ned
in such a way that if �N (�(s1; : : : ; sk)) = (�; (pos1; : : : ; posk))(~s1; : : : ; ~sk), then
for every i 2 [k] and q 2 Q(m),

yMq(si) = w0yposi(q)(1)w1yposi(q)(2)w2 � � � yposi(q)(m)wm;

for some w0; : : : ; wm 2 (�(0))�. In the induction step it can be shown that
for t 2 ThQ;Xki[�(Ym), order(t) = j1 � � � jm, where j1; : : : ; jm 2 [m], yt[[: : :]] =

w0yj1w1yj2w2 � � � yjmwm for some w0; : : : ; wm 2 (�(0))�, and [[: : :]] = [[hq0; xii
Mq0(si) j hq

0; xii 2 hQ;Xki]].
We now de�ne the top-down tree transducer M 0 = (Q0; �;�0; (q0; 0); R

0),
where

{ Q0 = f(q; �)(0) j q 2 Q(m); 0 � � � mg,
{ �0 = �(0) [fb(2); e(0)g, where e 62 �, and
{ for every (q; �) 2 Q0, (�; (pos1; : : : ; posk)) 2 �

(k), and k � 0 let the rule

h(q; �); (�; (pos1; : : : ; posk))(x1; : : : ; xk)i ! �

be in R0, where � = combb(part�(y(�[[]]))), � = rhsM (q; �), and [[]] is the
substitution

[[hq0; xii combb(h(q
0; 0); xiiyposi(q0)(1)h(q

0; 1); xiiyposi(q0)(2) � � �

yposi(q0)(m)h(q
0;m); xii) j hq

0; xii 2 hQ;Xki
(m)]]:

We now prove the correctness ofM 0, i.e., that for every s 2 T�, y(�M 0(�N (s))) =
y�M (s). It follows from the next claim by taking (q; �) = (q0; 0).

Claim: For every (q; �) 2 Q0 and s 2 T�, y(M
0
(q;�)(�N (s))) = part�(yMq(s)).

The proof of this claim is done by induction on the structure of s. Let
s = �(s1; : : : ; sk), � 2 �

(k), k � 0, and s1; : : : ; sk 2 T� . Then y(M
0
(q;�)(�N (s))) =

y(M 0
(q;�)((�; (pos1; : : : ; posk))(~s1; : : : ; ~sk))), where ~si = �N (si) for all i 2 [k].

This equals y(�[: : :]), where � = rhsM 0 ((q; �); (�; (pos1; : : : ; posk))) and [: : :] =
[h(q0; �0); xii M 0

(q0;�0)(�N (si)) j h(q
0; �0); xii 2 hQ

0; Xki]. By the de�nition of

the rules of M 0, � = combb(part�(y(�[[]]))), where � = rhsM (q; �) and [[]] is as
above. By applying y (yield) and the induction hypothesis we get part�(y(�[[]]))	 ,

7

264 Sebastian Maneth

where 	 is the string substitution [h(q0; �0); xii part�0(yMq0(si)) j h(q
0; �0); xii2

hQ0; Xki]. Since 	 does not change parameters, we can move it inside the ap-
plication of part� to get part�(y(�[[]])). If we move 	 inside the application
of y (yield) we get part�(y(�[[]]	

0)), where 	 0 denotes the �rst order tree sub-
stitution of replacing h(q0; �0); xii of rank zero by a tree with part�0(yMq0(si))
as yield. Applying 	 0 inside of [[]] amounts to replacing hq0; xii by a tree with
yield w = part0(yMq0(si))yposi(q0)(1) � � � partm(yMq0(si)). By the correctness of
the �nite state relabeling N , w = yMq0(si). Since, by Lemma 3, we can put
any tree with yield w in the second order substitution, taking Mq0(si) we get
part�(y(�[[: : :]])) with [[: : :]] = [[hq0; xii Mq0(si) j hq

0; xii 2 hQ;Xki]]. By Lemma
2 this is equal to part�(yMq(s)) which ends the proof of the claim. 2

Let us look at an example of an application of the construction in the proof of
Lemma 4.

Example 2. Let M be the MTTsp of Example 1. We construct the �nite state
relabeling N and the top-down tree transducer M 0 following the construction
in the proof of Lemma 4. Let N = (QN ; �; �;QN ; RN) be the �nite state re-
labeling with QN = fq12; q21g, q12 = f(q0; "); (q; 12)g, q21 = f(q0; "); (q; 21)g,
and � = f(�; (q12; q12))

(2); (�; (q12; q21))
(2), (�; (q21; q12))

(2), (�; (q21; q21))
(2),

(a; ())(0), (b; ())(0)g. The set RN of rules of N consists of the rules

a! hq12; (a; ())i
b! hq21; (b; ())i

�(hr; x1i; hr
0; x2i)! hr

0; (�; (r; r0))(x1; x2)i for all r; r0 2 QN :

Consider the tree t = �(a; �(b; �(b; b))) again. Then �N (t) equals

(�; (q12; q21))((a; ()); (�; (q21 ; q21))((b; ()); (�; (q21 ; q21))((b; ()); (b; ())))): (�)

We now construct the top-down tree transducerM 0. LetM 0 = (Q0; �;�0; (q0; 0);
R0) with Q0 = f(q0; 0)

(0); (q; 0)(0); (q; 1)(0); (q; 2)(0)g and �0 = �(0) [fb(2); e(0)g.
For simplicity we write down the rules of M 0 as tree-to-string rules, i.e., we
merely show the yield of the corresponding right-hand side. Let us consider in
detail how to obtain the right-hand sides of the ((q; �); (�; (r; q21)))-rules for
0 � � � 2 and r 2 QN . Since we are only interested in the yields, we have to
consider the string v = y(rhsM (q; �)[[]]), where [[]] is de�ned as in the proof of
Lemma 4. This string equals

h(q; 0); x2ih(q0; 0); x1i| {z }
part0(v)

y2 h(q; 1); x2i| {z }
part1(v)

y1 h(q0; 0); x1ih(q; 2); x2i| {z }
part2(v)

:

Hence, for every r 2 QN and 0 � � � 2, yrhsM 0((q; �); (�; (r; q21))) = part�(v);
similarly we get yrhsM 0((q; 0); (�; (r; q12))) = h(q; 0); x2i,

yrhsM 0((q; 1); (�; (r; q12))) = h(q0; 0); x1ih(q; 1); x2ih(q0; 0); x1i,
yrhsM 0((q; 2); (�; (r; q12))) = h(q; 2); x2i.

The remaining rules are, for 0 � � � 2 and r; r0 2 QN ,

8

265String Languages Generated by Total Deterministic Macro Tree Transducers

h(q0; 0); (�; (r; r
0))(x1; x2)i ! h(q; 0); x2ih(q0; 0); x1ih(q; 1); x2i

h(q0; 0); x1ih(q; 2); x2i
h(q0; 0); (a; ())i ! a
h(q0; 0); (b; ())i ! b
h(q; �); (a; ())i ! "
h(q; �); (b; ())i ! "

Finally, consider the derivation by M 0 with input tree t0 = �N (t) (shown in (�)).
Denote by t0=2 the tree �N (�(b; �(b; b))) and by t0=22 the tree �N (�(b; b)). Again
we merely show the corresponding yields.

h(q0; 0); t
0i

)M 0 h(q; 0); t0=2ih(q0; 0); (a; ())ih(q; 1); t
0=2ih(q0; 0); (a; ())ih(q; 2); t

0=2i
)�

M 0 h(q; 0); t0=22ih(q0; 0); (b; ())i a h(q; 1); t
0=22i a h(q0; 0); (b; ())ih(q; 2); t

0=22i
)�

M 0 h(q; 0); (b; ())i bba h(q; 1); (b; ())i abb h(q; 2); (b; ())i
)�

M 0 bbaabb: 2

From Lemma 4 we obtain our �rst main result: MTTsps and top-down tree
transducers generate the same class of string languages if they take as input a
class of tree languages that is closed under �nite state relabelings.

Theorem5. Let L be a class of tree languages that is closed under �nite state

relabelings. Then yMTT sp(L) = yT (L).

Proof. By Lemma 4, yMTT sp(L) � yT (L) and since every top-down tree trans-
ducer is an MTTsp, yT (L) � yMTT sp(L). 2

Since the class REGT of regular tree languages is closed under �nite state rela-
belings (cf. Proposition 20.2 of [GS97]), we get yMTT sp(REGT) = yT (REGT)
from Theorem 5. For top-down tree transducers it is known (Theorem 3.2.1 of
[ERS80] and Theorem 4.3 of [Man98b]) that T (REGT) is equal to the class
OUT (T) of output tree languages of top-down tree transducers (i.e., taking the
particular regular tree language T� as input). In fact, it is shown in [Man98b]
that for any class 	 of tree translations which is closed under left composi-
tion with \semi-relabelings", which are particular linear top-down tree transla-
tions, 	(REGT) = OUT (). Since it can be shown that MTT sp is closed under
left composition with top-down tree translations we get that yOUT (MTT sp) =
yOUT (T), i.e., MTTsps and top-down tree transducers generate the same class
of string languages. If we consider MTTsps with monadic output alphabet, then
the class of path languages generated by them taking regular tree languages as
input is also equal to yT (REGT) (cf. the proof of Lemma 7.6 of [EM98]). Thus,
the classes of path and string languages generated by MTTsps are equal.

We now move to our second main result. First we de�ne the operation
rubb1;:::;bn which inserts the symbols b1; : : : ; bn (\rubbish") anywhere in the
strings of the language to which it is applied. Let A be an alphabet, L � A� a
language, and b1; : : : ; bn new symbols not in A. Then rubb1;:::;bn(L) denotes the
language

fw1a1w2a2 � � �wkakwk+1 j a1 � � �ak 2 L; k � 1; w1; : : : ; wk+1 2 fb1; : : : ; bng
�g:

9

266 Sebastian Maneth

The following theorem shows that if an MTT M generates rub0(L) (where
rub0 = rubb1;:::;bn for n = 1 and b1 = 0) then, due to the nondeterminism
inherent in rub0, M cannot make use of its copying facility.

Theorem6. Let L be a class of tree languages which is closed under �nite state

relabelings and under intersection with regular tree languages, and let L � A�.

If rub0(L) 2 yMTT (L) then L 2 yMTT sp(L).

Proof. Let M = (Q;�;�; q0; R) be an MTT and K 2 L such that y�M (K) =
rub0(L) and �(0) = A [f0g. By Lemma 6.6 of [EM98] we may assume that M
is nondeleting, i.e., for every q 2 Q(m) and j 2 [m], yj appears at least once in
the right-hand side of each q-rule. Consider a string of the form

a10
n1a20

n2 � � �al0
nlal+1

with l � 0, a1; : : : ; al+1 2 A, and all n1; : : : ; nl � 0 pairwise di�erent. We call
such a string �-string. Clearly, it is su�cient to consider only �-strings in order to
generate a tree language R with yR = L (if we can construct an MTTsp which
generates as yield language at least all �-strings in rub0(L), then by deletion
of 0s we obtain an MTTsp which generates L as yield language). Consider the
right-hand side of a rule of M in which some parameter yj occurs more than
once. If, during the derivation of a tree which has as yield a �-string, this rule
was applied, then the tree which is substituted for yj in this derivation contains
at most one symbol in A. Because otherwise, due to copying, the resulting string
would not be a �-string. Hence, when deriving a �-string, a rule which contains
multiple occurrences of a parameter yj is only applicable if the yield of the tree
being substituted for yj contains at most one symbol in A. Based on this fact we
can construct the MTTsp M 0 which generates L. The information whether the
yield of the tree which will be substituted for a certain parameter contains none,
one, or more than one occurrences of a symbol in A is determined by relabeling
the input tree. Then this information is kept in the states of M 0. More precisely,
we will de�ne a �nite state relabeling N which relabels � 2 �(k) in the tree
�(s1; : : : ; sk) by (�; (�1; : : : ; �k)), where for every i 2 [k] and q 2 Q,

�i(q) =

8<
:
e if yMq(si) contains no symbol in A
a if yMq(si) = waw0 with w;w0 2 (Y [f0g)�

dd otherwise,

where a 2 A and d is an arbitrary symbol in A. Before we de�ne N , let us de�ne
an auxiliary notion. For w 2 (�(0) [Y)� let oc(w) be de�ned as follows. If w 2
(Y [f0g)�, then oc(w) = e; if w = w1aw2 with a 2 A and w1; w2 2 (Y [f0g)�,
then oc(w) = a; and otherwise oc(w) = dd.

Let N = (QN ; �; �;QN ; RN) be the �nite state relabeling with

{ QN = f� j � : Q! (fe; ddg [A)g,

{ � = f(�; (�1; : : : ; �k))
(k) j � 2 �(k); k � 0; �1; : : : ; �k 2 QNg, and

10

267String Languages Generated by Total Deterministic Macro Tree Transducers

{ RN containing for every �1; : : : ; �k 2 QN and � 2 �(k) with k � 0 the rule

�(h�1; x1i; : : : ; h�k ; xki)! h�; (�; (�1 ; : : : ; �k))(x1; : : : ; xk)i;

where for every q 2 Q, �(q) = oc(y(rhsM (q; �)�)) and � denotes the second
order substitution (where b is an arbitrary binary symbol)

[[hq0; xii combb(�i(q
0)y1 � � � ym) j hq

0; xii 2 hQ;Xki
(m);m � 0]]:

It should be clear that N realizes the relabeling as described above.
We now de�ne M 0 = (Q0; �;�0; q00; R

0) to be the MTT with

{ Q0 = f(q; ') j q 2 Q(m);m � 0; ' : [m] ! (fe; ddg [A)g, where the rank of
(q; ') with q 2 Q(m) is jfj 2 [m] j '(j) = ddgj,

{ �0 = (� � f0g) [fb(2); dummy(2); e(0)g, where b, dummy, and e are not in
�,

{ q00 = (q0;?), and

{ R0 consisting of the following rules. For every (q; ') 2 Q0(n) and (�; (�1; : : : ;
�k)) 2 �

(k) with n; k � 0 and q 2 Q(m) let

h(q; '); (�; (�1 ; : : : ; �k))(x1; : : : ; xk)i(y1; : : : ; yn)! �

be in R0, where � = combdummy(y1 � � � yn) if there is a j 2 [m] such that
'(j) = dd and yj occurs more than once in t = rhsM (q; �) and otherwise �
is obtained from t by the following replacements:

1. Replace each subtree hq0; xii(t1; : : : ; tl) with hq0; xii 2 hQ;Xki
(l), l �

0, and t1; : : : ; tl 2 ThQ;Xki[�(Ym), by the tree h(q0; '0); xii(tj1 ; : : : ; tjl0),

where fj1; : : : ; jl0g = '0
�1
(dd) with j1 < � � � < jl0 and for every j 2 [l],

'0(j) = oc(y(tj�)) with � de�ned as above, and

	 = [y� '(�) j � 2 [m]]:

2. For j 2 [m], replace yj by '(j) if '(j) 6= dd, and otherwise replace it by
y� with � = jf� j � < j and '(�) = ddgj+ 1.

3. Replace each occurrence of 0 by e.

Obviously M 0 is sp. If we now consider the yields of all trees in �M 0(�N (K))
which do not contain a dummy symbol, then we obtain L. By Theorem 7.4(1) of
[EV85] R = ��1

M 0 (T�0�fdummyg) is a regular tree language. HenceK
0 = �N (K)\R

is in L and L = �M 0 (K 0) is in yMTT sp(L). 2

Note that Theorems 5 and 6 can be applied to L = REGT . Due to the next
lemma they can also be applied to L =MTT n(REGT) for n � 1.

Lemma7. Let L be a class of tree languages. If L is closed under �nite state

relabelings, then so is MTT (L).

11

268 Sebastian Maneth

Proof. Let M = (Q;�;�; q0; R) be an MTT and let N = (QN ; �; �; F;RN) be
a �nite state relabeling. We now sketch how to construct a �nite state relabeling
N 0 and an MTT M 0 such that for every s 2 T� , �M 0(�N 0(s)) = �N (�M (s)).
The idea is similar to the proof of Theorem 6. The relabeling N 0 replaces the
symbol � in �(s1; : : : ; sk) 2 T� by (�; (�1; : : : ; �k)), where each �i associates with
every q 2 Q(m) a mapping of type Qm

N ! QN such that for p1; : : : ; pm 2 QN ,

�i(q)(p1; : : : ; pm) = p if Mq(si))
�
N̂
hp; ~si, where N̂ is the extension of N to

� [YM by rules yj ! hpj ; yji. Thus, if we know in which states p1; : : : ; pm the
relabeling N arrives after processing the trees which will be substituted for the
parameters y1; : : : ; ym, respectively, then �i(q)(p1; : : : ; pk) is the state in which
N arrives after processing the part of the output tree of M that corresponds to
Mq(si). The information on p1; : : : ; pk is encoded into the states ofM 0; i.e., each
state of M 0 is of the form (q; '), where q 2 Q(m), ' : [m]! QN , and '(j) is the
state in QN in which N arrives after processing the tree which is substituted for
yj in a derivation by M . Together we have su�cient information to \run" N on
the right-hand side of M to obtain the corresponding rules of M 0. 2

In the next lemma we will show that the n-fold application of rub0 can be
simulated by a single application of rub0;1; i.e., if we know that rub0;1(L) 2
yMTT (L), then this means that also rubn0 (L) for any n � 2 is in yMTT (L).
Note that rubn0 (L) = rubb1;:::;bn(L), where b1; : : : ; bn are new symbols not in L.

Lemma8. Let L be a class of tree languages which is closed under �nite state

relabelings. If rub0;1(L) 2 yMTT (L) then for every n � 2, rubb1;:::;bn(L) 2
yMTT (L).

Proof. It is straightforward to construct an MTT Myield which translates every
input tree into its yield, represented as a monadic tree (e.g., �(a; b) is translated

into a(b̂)). In fact in Example 1(6, yield) of [BE98] it is shown that this tree
translation can be de�ned in monadic second order logic (MSO). By Theorem
7.1 of [EM98] the MSO de�nable tree translations are precisely those realized
by �nite copying macro tree transducers. We will now de�ne a top-down tree
transducer Mn which translates a monadic tree over the ranked alphabet � =
f0(1); 1(1); 0̂(0); 1̂(0)g into a tree with yield in fb1; : : : ; bng

�. This is done as follows.
We use a Hu�man code to represent each bi by a string over f0; 1g; more precisely,
the string 0i1 represents bi+1 for every 0 � i � n � 1. Mn has states 1; : : : ; n
and, starting in state 1, it arrives in state i after processing i � 1 consecutive
0s. In state i, Mn outputs bi (in the yield) if it processes a 1 and moves back to
state 1.

Let n � 2 and de�ne Mn = ([n]; �; �; 1; R) to be the top-down tree trans-

ducer with � = f(2); b
(0)
1 ; : : : ; b

(0)
n g and R as follows.

h�; 1(x1)i ! (b� ; h1; x1i) for � 2 [n]
h�; 0(x1)i ! h� + 1; x1i for � 2 [n� 1]
hn; 0(x1)i ! (bn; h1; x1i)

h�; 1̂i ! e for � 2 [n]

h�; 0̂i ! e for � 2 [n]

12

269String Languages Generated by Total Deterministic Macro Tree Transducers

Clearly, y�Mn
(T�) = fb1; : : : ; bng

� and hence if yL = f0; 1g� then

y�Mn
(�Myield

(L)) = fb1; : : : ; bng
�:

Let � be a ranked alphabet. If we change Mn to have as input ranked al-
phabet �0 = � [f�(1) j � 2 �(0)g [f�̂(0) j � 2 �(0)g, as output alphabet
� 0 = � [�(0), and for every � 2 [n] the additional rules h�; �(x1)i ! (�; h1; x1i)

and h�; �̂i ! �, then for every tree language K over � with yK = rub0;1(L),
y�Mn

(�Myield
(K)) = rubb1;:::;bn(L).

We can now compose �Myield
with �Mn

to obtain again a �nite copying MTT
which realizes �Myield

��Mn
. This follows from the fact that MSO de�nable trans-

lations are closed under composition (cf. Proposition 2 of [BE98]) and that Mn

is �nite copying (it is even linear, i.e., 1-copying).
In Corollary 7.9 of [EM98] it is shown that �nite copying MTTs with regular

look-ahead have the same string generating power as �nite copying top-down tree
transducers with regular look-ahead. Hence, there is a �nite copying top-down
tree transducer with regular look-aheadM 00 such that y�M 00(K) = rubb1;:::;bn(L)
if yK = rub0;1(L). Since regular look-ahead can be simulated by a relabeling (see
Proposition 18.1 in [GS97]) we get that rubb1;:::;bn(L) 2 yT (DQRELAB(MTT (
L))) and, by Lemma 7 and the closure of MTT under right composition with T
(Theorem 4.12 of [EV85]), this means that rubb1;:::;bn(L) is in yMTT (L). 2

The proof of Lemma 8 in fact shows that yMTT (L) is closed under deterministic
generalized sequential machine (GSM) mappings. For the case of nondeterminis-
tic MTTs it is shown in Theorem 6.3 of [DE98] that the class of string languages
generated by them is closed under nondeterministic GSM mappings.

We are now ready to prove that there is a string language which can be
generated by a nondeterministic top-down tree transducer with monadic input
but not by the composition closure of MTTs.

Theorem9. yN-Tmon(REGT)�
S
n�0 yMTTn(REGT) 6= ?.

Proof. Let n � 1. Since MTT n(REGT) is closed (i) under intersection with
REGT (follows trivially from the fact that REGT is preserved by the inverse
of MTT n, cf. Theorem 7.4(1) in [EV85]) and (ii) under �nite state relabelings
(Lemma 7), we can apply Theorem 6 to L = MTT n(REGT). We obtain that
rubb1;:::;bn(L) 2 yMTTn(REGT) implies rubb1;:::;bn�1

(L) 2 yMTT sp(MTT n�1(
REGT)). By Theorem 5 the latter class equals yT (MTTn�1(REGT)) and since
MTT �T =MTT (Theorem 4.12 of [EV85]), it equals yMTTn�1(REGT). Hence,
by induction, L 2 yT (REGT).

Let us now consider the concrete language Lexp = fa2
n

j n � 0g. By the
above we know that if rubb1;:::;bn(L) 2 yMTTn(REGT), then L 2 yT (REGT).
Hence for L = rubb(Lexp) we get that rubb1;:::;bn(L) 2 yMTTn(REGT) implies
rubb(Lexp) 2 yT (REGT). But by Corollary 3.2.16 of [ERS80] it is known that
rubb(Lexp) is not in yT (REGT) (the proof uses a bridge theorem which would
imply that Lexp can be generated by a �nite copying top-down tree transducer;

13

270 Sebastian Maneth

but the languages generated by such transducers have the \Parikh property"
and hence cannot be of exponential growth).

Altogether we get that rubb1;:::;bn;b(Lexp) is not in yMTTn(REGT). By
Lemma 8 this means that rub0;1(Lexp) 62 yMTTn(REGT). It is easy to show
that rub0;1(Lexp) can be generated by a nondeterministic top-down tree trans-
ducer with monadic input; in fact, in Corollary 3.2.16 of [ERS80] it is shown
that this language can be generated by an ET0L system. The class of languages
generated by ET0L systems is precisely the class of string languages generated
by nondeterministic top-down tree transducers with monadic input [Eng76]. 2

Note that the last statement in the proof of Theorem 9 implies that ET0L �S
n�0 yMTTn(REGT) 6= ?, where ET0L is the class of languages generated

by ET0L systems. It is known that the IO-hierarchy
S
n�0 yYIELD

n(REGT) is
inside

S
n�0 yMTTn(REGT) (this follows, e.g., from Corollary 4.13 of [EV85]).

From Theorem 9 we obtain the following corollary.

Corollary 10. rub0;1(Lexp) is not in the IO-hierarchy.

5 Conclusions and Further Research Topics

In this paper we have proved that macro tree transducers which are simple in
the parameters generate the same class of string languages as top-down tree
transducers. Furthermore we have shown that there is a string language which
can be generated by a nondeterministic top-down tree transducer with a regular
monadic input language but not by the composition closure of MTT.

��

QQ
�� QQ

��
yOUT (T)

yOUT (N-T)

yOUT (ATT)

yOUT(MTT)

yOUT(ATT 2)

yOUT(MTT 2)
: : :

Fig. 2. Inclusion diagram for classes of string languages generated by tree transducers

Let us now consider another type of tree transducer: the attributed tree
transducer (ATT) [F�ul81]. Since the class ATT of translations realized by ATTs
is a proper subclass of MTT it follows that rub0;1(Lexp) is not in the class
yOUT (ATT) of string languages generated by ATTs. Since nondeterministic
top-down tree transducers with monadic input equal cooperating regular tree
grammars [FM98] and attributed tree transducers have the same term generat-
ing power as context-free hypergraph grammars, it follows that there is a tree
language which can be generated by a cooperating regular tree grammar but not
by a context-free hypergraph grammar. This remained open in [Man98a].

It is known that the class of string languages generated by top-down tree
transducers is properly contained in that generated by ATTs (see, e.g., [Eng86]).
Together with Theorem 9 this means that the two leftmost inclusions in Fig. 2
are proper (inclusions are edges going from left to right). However, it is open
whether the other inclusions in Fig. 2 are proper. For instance, we do not know

14

271String Languages Generated by Total Deterministic Macro Tree Transducers

whether there is a language which can be generated by an MTT but not by
an ATT. Note that for the corresponding classes of tree languages we know the
answer: the language f2

n

(�) j n � 0g of monadic trees of exponential height
can be generated by an MTT but not by an ATT (cf. Example 6.1 in [Man98b]).

Acknowledgement I wish to thank Joost Engelfriet for helpful discussions.

References

[BE98] R. Bloem and J. Engelfriet. A comparison of tree transductions de�ned by
monadic second order logic and by attribute grammars. Technical Report
98-02, Leiden University, 1998.

[CF82] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive
program schemes. Theoret. Comput. Sci., 17:163{191 and 235{257, 1982.

[DE98] Frank Drewes and Joost Engelfriet. Decidability of �niteness of ranges of
tree transductions. Inform. and Comput., 145:1{50, 1998.

[EM98] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars,
and MSO de�nable tree translations. Technical Report 98-09, Leiden Uni-
versity, 1998.

[Eng76] J. Engelfriet. Surface tree languages and parallel derivation trees. Theoret.

Comput. Sci., 2:9{27, 1976.
[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and

tree languages. In R.V. Book, editor, Formal language theory; perspectives

and open problems. New York, Academic Press, 1980.
[Eng86] J. Engelfriet. The complexity of languages generated by attribute grammars.

SIAM J. Comput., 15(1):70{86, 1986.
[ERS80] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems,

and two-way machines. J. of Comp. Syst. Sci., 20:150{202, 1980.
[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. of Comp. Syst. Sci.,

31:71{146, 1985.
[Fis68] M.J. Fischer. Grammars with macro-like productions. PhD thesis, Harvard

University, Massachusetts, 1968.
[FM98] Z. F�ul�op and S. Maneth. A characterization of ET0L tree languages by co-

operating regular tree grammars. (To appear in \Grammatical Models of
Multi-Agent Systems", Gordon and Breach, London), 1998.

[F�ul81] Z. F�ul�op. On attributed tree transducers. Acta Cybernetica, 5:261{279, 1981.
[FV98] Z. F�ul�op and H. Vogler. Syntax-Directed Semantics { Formal Models based

on Tree Transducers. EATCS Monographs on Theoretical Computer Science
(W. Brauer, G. Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

[GS97] F. G�ecseg and M. Steinby. Tree automata. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, Volume 3, chapter 1. Springer-
Verlag, 1997.

[K�uh98] A. K�uhnemann. A pumping lemma for output languages of macro tree trans-
ducers. Technical Report TUD/FI95/08, Technical University Dresden, 1998.
(also in Proc. CAAP'96, LNCS 1059, pages 44-58. Springer-Verlag, 1997.).

[Man98a] S. Maneth. Cooperating distributed hyperedge replacement grammars. In
A. Kelemenov�a, editor, Proc. MFCS'98 Satellite Workshop on Grammar Sys-

tems, pages 149{164. Silesian University, 1998. (To appear in Grammars).
[Man98b] S. Maneth. The generating power of total deterministic tree transducers.

Inform. and Comput., 147:111{144, 1998.

15

272 Sebastian Maneth

	Introduction
	Preliminaries
	Trees
	Tree Substitution and Relabelings

	Macro Tree Transducers
	String Languages Generated by MTT
	Conclusions and Further Research Topics

	dan:
	d:

