
A Complete Coinductive Logical System for

Bisimulation Equivalence on Circular Objects?

Marina Lenisa

Laboratory for the Foundations of Computer Science
University of Edinburgh, Scotland.

lenisa@dcs.ed.ac.uk

Abstract. We introduce a coinductive logical system �a la Gentzen for
establishing bisimulation equivalences on circular non-wellfounded regu-

lar objects, inspired by work of Coquand, and of Brandt and Henglein.
In order to describe circular objects, we utilize a typed language, whose
coinductive types involve disjoint sum, cartesian product, and �nite
powerset constructors. Our system is shown to be complete with respect
to a maximal �xed point semantics. It is shown to be complete also with
respect to an equivalent �nal semantics. In this latter semantics, terms
are viewed as points of a coalgebra for a suitable endofunctor on the
category Set

� of non-wellfounded sets. Our system subsumes an axio-
matization of regular processes, alternative to the classical one given by
Milner.

Introduction

In recent years, considerable energy has been devoted towards the development of
simple principles and techniques for understanding, de�ning and reasoning on in-
�nite and circular objects, such as streams, exact reals, processes, and other lazy
data types ([Mil83, MPC86, Tal90, Coq94, Gim95, BM96, Fio96]). Structural in-
duction trivially fails on in�nite and non-wellfounded objects. It can be applied
only in rather contrived ways, and always indirectly, often utilizing ine�cient
implementations of these objects, e.g. streams as inductively de�ned functions
on natural numbers. Elaborate mathematical theories, such as domain theory
([Plo85]) and metric semantics ([BV96]), can be used, of course, to support rigor-
ous treatment of such objects. But an ideal framework should allow to deal with
in�nite computational objects in a natural, operationally based, implementation-
independent way, without requiring any heavy mathematical overhead.

Systems based on coinductive de�nitions and coinduction proof principles
appear to be a good starting point for developing such a framework. See e.g.
[Coq94, HL95, BM96, Fio96, Len96, Pit96, Rut96, Tur96, Len98] for various
approaches to in�nite objects based on coinduction. Coinductive techniques
are natural, in that in�nite and circular objects and concepts often arise in

? Work supported by Esprit Working Group \Types", MURST'97 Co�n. \Sistemi
Formali..." grant, TMR Linear FMRX-CT98-0170.

W. Thomas (Ed.): FOSSACS’99, LNCS 1578, pp. 243-257, 1999.
c Springer-Verlag Berlin Heidelberg 1999

connection with a maximal �xed point construction of some kind. Moreover,
they can be justi�ed often simply by elementary set-theoretical means, see e.g.
[Acz88, Len98]. In many situations, simple categorical concepts, such as those
of Final Semantics ([Acz88, RT93, Len96, Rut96, Len98]), are enough to achieve
a substantial generality. In this context in�nite objects are described as terms
of F -coalgebras for suitable functors F 's.

In this paper, inspired by the seminal work of Coquand ([Coq94, Gim94]), we
make a �rst step towards the formulation of a simple coinductive logical system
for reasoning on in�nite circular objects, generalizing [BH97]. In particular, we
present a system �a la Gentzen Sco for capturing bisimulation equivalences on
non-wellfounded regular (rational) objects, i.e. objects which have only a �nite
number of non-isomorphic subobjects. In order to describe the objects, we make
use of an elementary typed language. Types are de�ned using the constructors
+ (disjoint sum), � (cartesian product), Pf (�nite powerset), and the higher
order binding constructor � (maximal �xed point). Objects are de�ned only
by constructors and recursive de�nitions. Di�erently from Coquand, we do not
consider functional types or term destructors. Many in�nite recursive objetcs
usually dealt with in lazy programming can be easily seen to have a formal
counterpart in our typed language.

The crucial ingredient in the formulation of our logical system are rules whose
conclusion can be used as auxiliary hypothesis in establishing the premises. In
a sense, our system can be viewed as a system for in�nitely regressive proofs.
As remarked earlier, it is inspired by the technique for dealing with coinductive
types in Intuitionistic Type Theories, introduced in [Coq94], where in�nitely
proofs are handled by means of the guarded induction principle. This technique,
originally developed for predicative systems, was later extended by Gim�enez to
impredicative systems, [Gim94, Gim95]. Our system can be seen as a partial
attempt to an elementary reconstruction of that approach, in such a way that it
can be reconciled with other, more classical, syntactical approaches to circular
objects ([Mil84, Acz88, BH97]). Our work seems to be related in particular with
[Gim94], where Coquand's principle of guarded induction is shown to be com-
plete with respect to the traditional principle of coinduction, in a type theoretic
setting.

This paper generalizes [BH97], where a coinductive axiomatization of the
type (in)equality for a simple �rst order language of regular recursive types is
provided. The types considered in [BH97] are terms for denoting regular binary
trees.

In order to give external independent justi�cations to our system, we consider
two di�erent, but equivalent, semantics. The �rst is a �xed point semantics, the
latter is based on the Final Semantics paradigm ([Acz88, RT93, Tur96, Len98]).

The �xed point semantics is de�ned by introducing, for each type �, a corres-
ponding bisimulation equivalence �� on the set T 0

� of closed terms typable with
�. This family of equivalences is de�ned as the greatest �xed point of a mono-
tone operator �, and it can be viewed as the \intended semantics". One of the
main technical results in this paper is the fact that the system Sco axiomatizes

244 Marina Lenisa

completely the bisimulation equivalences ��, for all type �. The correctness
of Sco is proved by coinduction, i.e. by showing that the family of relations
axiomatized by Sco on closed terms typable with � is a �-bisimulation. The
completeness proof exploits the fact that the terms that we consider are regular.

In order to give the categorical semantics, we de�ne a \universal" functor
F , involving constructors corresponding to each of the type constructors. Then
we show how to endow the family of closed typable terms fT 0

�g�2Type with a
structure of F -coalgebra, in such a way that the greatest F -bisimulation on
the coalgebra of terms coincides with the family of bisimulation equivalences
f��g�2Type. This yields a �nal semantics for our typed language. Another
technical result of this paper is the fact that the categorical semantics coincides
with the �xed point semantics. For simplicitly, we work in the category Set� of
non-wellfounded sets and set-theoretic functions. In this context �nal coalgebras
of many functors are maximal �xpoints. Non-wellfounded sets are elements of a
Universe �a la Zermelo-Fraenkel in which the Foundation Axiom is replaced by the
Antifoundation AxiomX1 of Forti and Honsell [FH83] (or by the Antifoundation
Axiom AFA of [Acz88]).

Our system, when restricted to the type of CCS-like processes, can be viewed
as a logical system for establishing strong equivalence of processes, alternative
to the classical axiomatic system of Milner, [Mil84].

The paper is organized as follows. In Section 1, we introduce the syntax
for types and terms, and the system for establishing correct typing judgements.
We introduce also the �xed point semantics as a family of bisimulation equival-
ences f��g�. In Section 2, we introduce the coinductive formal system Sco �a la
Gentzen, and we show that, for all closed type �, this system axiomatizes the
bisimulation equivalence �� on T 0

� . In Section 3, we de�ne a \universal" functor
F on the category Set�, and we endow the set of closed typable terms with a
coalgebra structure for the functor F . Moreover, we show that the system Sco
axiomatizes the largest F -bisimulation on the coalgebra of closed typable terms.
Final remarks and directions for future work appear in Section 4.

The author is grateful to Peter Aczel, Furio Honsell, and the anonymous
referees for useful comments.

1 Types and Terms

In this section we introduce a �nite language for in�nite objects.

De�nition 1.1 (Types). Let TV ar be a set of type variables. The set of types
Type is de�ned by

� ::= X j K1 j : : : j Kn j � + � j � � � j Pf (�) j �X:� ;

where X 2 TV ar, the symbols K1; : : : ;Kn denote constant types, +, �, Pf ()
are disjoint sum, cartesian product, and �nite powerset type constructors. The
coinductive type �X:� is considered always to be guarded, i.e. all the free
occurrences of the variable X in � are within the scope of a type constructor.

245A Complete Coinductive Logical System for Bisimulation Equivalence

In the type �X:�, the occurrences of the variable X in � are bound. An
occurrence of the variable X in � is free if it is not bound.

Remark 1.2. For simplicitly, in the de�nition of types we have considered only
binary product and binary disjoint sum, but we could have considered, more in
general, n-ary products and n-ary disjoint sums, for n � 0.

De�nition 1.3 (Terms). Let V ar be a set of variables. The set of terms Term
is de�ned by

t ::= x j cij j i1(t) j i2(t) j < t; t > j [t; : : : ; t] j rec x:t j in(t) ;

where x 2 V ar, fCj � fcij j i 2 Ijggj�n are sets of constants, [: : :] denotes
the multiset term constructor, i1(), i2() are the left and right injections in the
disjoint sum, < ; > is the pairing constructor, in() is the unfolding constructor,
and the term rec x:t is required to be guarded, i.e. all the free occurrences of the
variable x in t are within the scope of one of the following term constructors:
i1(), i2(), < ; >, [: : :].
Let Term0 denote the set of closed terms.

We take terms to be equal up to permutation of elements in multisets. The
constructor in() is introduced in order to obtain a typing system in which the
shape of the type determines the form of the terms typable with that type (see
De�nition 1.4 and Lemma 1.5 below).

In the syntax de�ned above, the non-deterministic process constructor + of
CCS-like concurrent languages ([Mil83]) is subsumed by the [: : :] constructor.

The terms which we are interested in are those typable as follows:

De�nition 1.4. Let Stype be the following formal typing system for deriving
judgements of the shape � ` t : �, where the environment� is a partial function
from V ar to Type.

�;x : � `type x : � (var)

� `type cij : Kj
(const)

� `type t : �1
� `type i1(t) : �1 + �2

(+1)

� `type t : �2
� `type i2(t) : �1 + �2

(+2)

� `type t1 : �1 � `type t2 : �2
� `type< t1; t2 >: �1 � �2

(�)

f� `type ti : �gi=1;:::;n

� `type [t1; : : : ; tn] : Pf (�)
([])

�;x : �X:� `type t : �X:� rec x:t guarded
� `type rec x:t : �X:�

(�)

246 Marina Lenisa

� `type t : �[�X:�=X]
� `type in(t) : �X:�

(fold)

Lemma 1.5. Let t 2 Term n V ar be such that � `type t : �. Then
� � Kj () t 2 Cj

� � �1 + �2 () 9j 2 f1; 2g: 9t0: (t � ij(t0) & � `type t0 : �j)
� � �1 � �2 () 9t1; t2: (t �< t1; t2 > & 8j = 1; 2: � `type tj : �j)
� � Pf (�1) () 9n � 0: 9t1; : : : ; tn: (t � [t1; : : : ; tn] &

8i = 1; : : : ; n: � `type ti : �1)
� � �X:�1 () 9n � 0: 9t0: (t � rec x1 : : : rec xn: in(t0) &

�;x1 : �X:�1; : : : ; xn : �X:�1 `type t0 : �1[�X:�1=X]).

The following Substitution Lemma can be easily proved by induction on
derivations.

Lemma 1.6 (Substitution).

�;x : � `type t : � & � `type t
0 : � =) � `type t[t

0=x] : � :

The following notation will be useful in the sequel:

Notation Let � 2 Type.

{ Let T� denote the set ft 2 Term j 9�: � `type t : �g.
{ Let T 0

� denote the set ft 2 Term0 j `type t : �g.

1.1 Bisimulation Equivalence on Closed Typable Terms

In this subsection we give the intended �xed point semantics of our typed lan-
guage. This takes the form of a family of bisimulation equivalences f��g�2Type,
where �� is a relation on the set of closed terms T 0

� . The family f��g� is char-
acterized as the greatest �xed point of the following monotone operator, whose
de�nition clearly reects the intended meaning of the constructors:

De�nition 1.7. Let � : ��2TypeP(T 0
� � T 0

�) ! ��2TypeP(T 0
� � T 0

�) be the
operator1 de�ned as follows

�(fR�g�2Type) = fR�
�g�2Type ;

where the the relation R�
�� T 0

� � T 0
� is de�ned by

t R�
Kj

t0 () t � t0

t R�
�1+�2 t

0 () 9j 2 f1; 2g:9t1; t01: (t � ij(t1) & t0 � ij(t01) & t1 R�j t
0
1)

t R�
�1��2

t0 () 9t1; t2; t01; t
0
2: (t �< t1; t2 > & t0 �< t01; t

0
2 > &

8j = 1; 2: tj R�j t
0
j)

t R�
Pf (�1)

t0 () 9m;n � 0:9t1; : : : ; tm; t01; : : : ; t
0
n: (t � [t1; : : : ; tm] &

t0 � [t01; : : : ; t
0
n] &

8ti 2 [t1; : : : ; tm] 9t
0
j 2 [t01; : : : ; t

0
n]: ti R�1 t

0
j &

8t0j 2 [t01; : : : ; t
0
n] 9ti 2 [t1; : : : ; tm]: ti R�1 t

0
j)

t R�
�X1:�1

t0 () 9m;n � 0:9t1; t01: (t � rec x1 : : : rec xm:in(t1) &
t0 � rec x1 : : : rec xn:in(t01) &
t1[t=x1; : : : ; t=xm] R�1[�X1:�1=X1] t

0
1[t

0=x1; : : : ; t
0=xn]).

1
�i2IAi denotes the in�nite cartesian product of the Ai's, for i 2 I.

247A Complete Coinductive Logical System for Bisimulation Equivalence

The de�nition above can be viewed as the set-theoretical counterpart of the
de�nition of relational structures on c.p.o.'s given by Pitts (see [Pit96]). Among
the various di�erences between our approach and his, we point out that we allow
for nested recursion directly at the outset in De�nition 1.7, while Pitts deals with
it separately.

Proposition 1.8. The operator � : ��2TypeP(T 0
� �T 0

�)! ��2TypeP(T 0
� �T 0

�)
is monotone over the complete lattice (��2TypeP(T 0

� �T 0
�);��2Type ��), where

8�: ����.

Let us denote by f��g�2Type the greatest �xed point of the operator �. This
will be the family of bisimulation equivalences giving the intended semantics of
our system.

The validity of the following coinduction principle follows immediately:

8� 2 Type: R��R�
�

8� 2 Type: R����

We call �-bisimulation a family fR�g�2Type such that 8� 2 Type: R��R�
� .

Notice that, using our language of types and the notion of bisimulation equi-
valences introduced above, we can recover the case of binary trees, and the case
of non-deterministic processes with strong bisimulation equivalence. In fact, bin-
ary trees can be described as the set of terms T 0

�X:(X�X)+�C
, for �C constant

type, while non-deterministic processes over a set of labels C of type �C can be
described as the set of terms T 0

�X:Pf (�C�X).

2 A Coinductive Logical System for Bisimulation
Equivalence

In this section, we introduce the formal system Sco, �a la Gentzen, for proving �-
equivalence between pairs of terms. We will show that Sco axiomatizes exactly,
for all type �, the bisimulation equivalence �� .

De�nition 2.1. Let Sco be the following formal system for deriving judgements
of the shape < �;� >`co t � t0 : �, where < �;� > is the environment and

{ � is a partial function from V ar to Type;
{ � is a multiset of the shape [t1 � t01 : �1; : : : ; tn � t0n : �n];
{ � is coherent with �, i.e.
ti � t0i : �i 2 �) (� `type ti : �i & � `type t0i : �i);

{ � `type t : � & � `type t0 : �.

The rules of Sco are the following:

� `type t : � � coherent with �
< �;� >`co t � t : � (re)

< �;� >`co t1 � t2 : �
< �;� >`co t2 � t1 : �

(symm)

248 Marina Lenisa

< �;� >`co t1 � t2 : � < �;� >`co t2 � t3 : �
< �;� >`co t1 � t3 : �

(trans)

� `type t : � � `type t0 : �
< �;�; t � t0 : � >`co t � t0 : �

(hyp)

� `type rec x:t : �X:� � coherent with �
< �;� >`co rec x:t � t[rec x:t=x] : �X:�

(rec)

f< �;� >`co ti � t0i : �igi=1;2

< �;� >`co< t1; t2 >�< t01; t
0
2 >: �1 � �2

(�cong)

< �;� >`co t � t0 : �1
< �;� >`co i1(t) � i1(t0) : �1 + �2

(+1cong)

< �;� >`co t � t0 : �2
< �;� >`co i2(t) � i2(t0) : �1 + �2

(+2cong)

f< �;� >`co ti � t0i : �gi=1;:::;n

< �;� >`co [t1; : : : ; tn] � [t01; : : : ; t
0
n] : Pf (�)

([]cong)

� `type [t1; : : : ; tn; t; t0] : Pf (�) < �;� >`co t � t0 : �
< �;� >`co [t1; : : : ; tn; t; t0] � [t1; : : : ; tn; t] : Pf (�)

(abs)

< �;�; in(t) � in(t0) : �X:� >`co t � t0 : �[�X:�=X]
< �;� >`co in(t) � in(t0) : �X:�

(in)

The names given to the rules above are suggestive. In particular, the rules (cong)
are the congruence rules, while rule (abs) is the absorption rule, which embodies
contraction for equal terms appearing in multisets.

One can easily check, by induction on derivations, using Lemma 1.6, that the
de�nition above is well posed, i.e.

< �;� >`co t � t0 : � =) (� coherent with �&� `type t : � &� `type t
0 : �) :

Notice the \coinductive" nature of the rule (in): in order to establish the
equivalence � between terms of the shape in(t) and in(t0), we can assume, in the
premise of the rule (in), the judgement that we want to prove, i.e. in(t) � in(t0).

Remark 2.2. i) In place of rule (in) in the system Sco above, one could use
equivalently the following two rules

< �;� >`co t � t0 : �
< �;� >`co in(t) � in(t0) : �X:�

< �;�; rec x:t� rec y:t0 : �X:� >`co t � t0 : �
< �;� >`co rec x:t � rec y:t0 : �X:�

This latter presentation would emphasize Coquand's correspondence between
guarded in�nite objects and guarded in�nite proofs, but the presentation of the
system of De�nition 2.1 slightly simpli�es the proof of Theorem 2.10 below.

249A Complete Coinductive Logical System for Bisimulation Equivalence

ii) When specialized to the type �X:Pf(�C � X) of CCS non-deterministic
processes, our logical system provides an alternative axiomatization of Milner's
strong bisimulation ([Mil84]). The crucial di�erence between our system and
the classical system of Milner is the absence, in Sco, of a counterpart to Milner's

rule for recursion, viz:
t � t0[t=x]
t � rec x:t0

(uniqueness) . This rule is recovered in

Sco by the coinductive rule (in), which amounts to the coinductive version of
the congruence rule for the rec operator in Milner's system. Milner's system
is a Hilbert system. Hence top-down proof search can be rather unpractical.
For instance, when confronted with two terms one of which is a rec term, one
has to guess whether to unfold the term or to use rule (uniqueness). On the
contrary, in Sco, one can capitalize on hypotheses, and hence the structure of
terms determine essentially, i.e. up-to absorption and unfolding, the top-down
search of a proof (see Example 2.4 below). This informal argument will be put to
use in order to show the completeness of Sco (Theorem 2.13) and its decidability.

It is immediate to see, by induction on derivations, that the following Weak-
ening Lemma holds:

Lemma 2.3 (Weakening). If < �;� >`co t � t0 : � is derivable in Sco and
� 0 is coherent with �, then also < �;�; � 0 >`co t � t0 : � is derivable in Sco.

We illustrate now the system Sco at work.

Example 2.4. Let t1 � rec x:in(< c; x >) and t2 � rec y:in(< c; in(< c; y >) >),
where c 2 Cj. Then one can easily check that `type ti : �X:Kj �X, for i = 1; 2.
Moreover, using the system Sco, one can show that the two terms t1 and t2 are
bisimilar. In fact, up to applications of the rules (rec), (symm), (trans), we can
build a derivation of `co t1 � t2 : �X:Kj �X as follows:

< �;� 0; � >`co c � c : Kj < �;� 0; � >`co t1 � t2 : �X:Kj �X
< �;� 0; � >`co< c; t1 >�< c; t2 >: Kj � �X:Kj �X

(�cong)

< �;� >`co in(< c; t1 >) � in(< c; t2 >) : �X:Kj �X
(in)

and

< �;� >`co c � c : Kj < �;� >`co t1 � in(< c; t2 >) : �X:Kj �X
< �;� >`co< c; t1 >�< c; in(< c; t2 >) >: Kj � �X:Kj �X

(�cong)

`co in(< c; t1 >) � in(< c; in(< c; t2 >)) : �X:Kj �X
(in)

where
� � ;
� � [in(< c; t1 >) � in(< c; in(< c; t2 >) >) : �X:Kj �X]
� 0 � [in(< c; t1 >) � in(< c; t2 >) : �X:Kj �X].

Example 2.5 (Conway Identity). A term with n > 0 rec's at the top is equivalent
to a term with just one rec, i.e., any term t � rec x1 : : : rec xn:in(t), n > 0,
typable with �X:�, for some �, is such that

9 < �;� > : < �;� >`co t � t0 : �X:� ;

250 Marina Lenisa

where t0 � rec x:in(t[x=x1; : : : ; x=xn]), and the variables x1; : : : ; xn are replaced
by the variable x, which is new in t.
By rules (rec), (symm), (trans), (in) (using also the Weakening Lemma), it is
su�cient to show that the two terms t[t=x1; : : : ; t=xn] and t[t0=x1; : : : ; t0=xn] are
�-equivalent. More in general, we show, by structural induction on t, that, for
all n > 0, for all t1; t01; : : : ; tn; t0n such that 9�9�: � `type t[t1=x1; : : : ; tn=xn] : �
and � `type t[t01=x1; : : : ; t0n=xn] : � ,

9�: < �;� >`co t[t1=x1; : : : ; tn=xn] � t[t01=x1; : : : ; t0n=xn] : � :

The only non trivial case is that of t � rec y1 : : : rec ym:in(et), for m � 0. But,
again by rules (rec), (symm), (trans), (in), it is su�cient to prove that

< �;� >`co ett1:::tnt:::tx1:::xny1:::ym
� ett01:::t0nt:::tx1:::xny1:::ym

: � 0, for a suitable � 0, where

ett1:::tnt:::tx1:::xny1:::ym � et[t1=x1; : : : ; tn=xn; t=y1; : : : ; t=ym] andett01:::t0nt:::tx1:::xny1:::ym � et[t01=x1; : : : ; t0n=xn; t=y1; : : : ; t=ym].
But this follows by induction hypothesis.

The rest of this section is devoted to the proof of the fact that the system
Sco axiomatizes exactly, for all type �, the bisimulation equivalence �� . More
precisely, we will prove that, for all � 2 Type and for all t; t0 2 T 0

� ,

`co t � t0 : � () t �� t
0 :

We will refer to the implication ()) as the correctness of the system Sco
w.r.t. �� , and to the implication (() as the completeness of the system Sco
w.r.t. �� .

2.1 Correctness of Sco

First we need a technical de�nition.

De�nition 2.6. A sequent < �; t1 � t01 : �1; : : : ; tn � t0n : �n >`co tn+1 �
t0n+1 : �n+1 is completely derivable in Sco if there exist derivations in Sco of
< �; t1 � t01 : �1; : : : ; ti�1 � t0i�1 : �i�1 >`co ti � t0i : �i, for all i = 1; : : : ; n+ 1.

In order to show the correctness of Sco, we will prove that the following family
of relations is a �-bisimulation:

De�nition 2.7. Let � 2 Type. We de�ne

Rcd
� = f(t; t0) 2 T 0

� � T 0
� j

9 < �;� > : < �;� >`co t � t0 : � completely derivableg :

The following two lemmata are instrumental.

Lemma 2.8. Let < �;� >`co t � t0 : � be a completely derivable sequent.
Then

251A Complete Coinductive Logical System for Bisimulation Equivalence

1. If � � �1 + �2, t � ij(t) and t0 � ij(t
0
), for some j 2 f1; 2g, then also

< �;� >`co t � t
0
: �j is a completely derivable sequent.

2. If � � �1 � �2 and t �< t1; t2 >, then also < �;� >`co ti � t0i : �i, for all
i = 1; 2, is a completely derivable sequent.

3. If � � Pf (�1), t � [t1; : : : ; tm], t0 � [t01; : : : ; t
0
n], then 8i 2 f1; : : : ;mg: 9j 2

f1; : : : ; ng such that < �;� >`co ti � t0j : �1 is a completely derivable
sequent, and 8j 2 f1; : : : ; ng: 9i 2 f1; : : : ;mg such that < �;� >`co ti �
t0j : �1 is a completely derivable sequent.

Proof. The proof is by induction on the sum of the lengths of the derivations
� and �i's, where � denotes the derivation of < �; t1 � t01 : �1; : : : ; tn � t0n :
�n >`co t � t0 : � and �i denotes the derivation of < �; t1 � t01 : �1; : : : ; ti�1 �
t0i�1 : �i�1 >`co ti � t0i : �i, for i = 1; : : : ; n. We work out in detail only the
proof of item 3, the proofs of the other two items are similar.
Base Case: The only rule applied in � is (re). The thesis follows using Lemma
1.5 and rule (re).
Induction Step: we proceed by analyzing the last rule applied in � . If the last rule
is (re), then again the thesis follows using Lemma 1.5 and rule (re). If the last
rule is (symm) or (hyp), the thesis follows immediately by induction hypothesis.
If the last rule is (trans), then the thesis follows by induction hypothesis, using
Lemma 1.5. If the last rule is (abs), the thesis follows using Lemma 1.5 and rule
(re). Finally, if the last rule in � is ([]cong), then the thesis is immediate. ut

Lemma 2.9. Let � 2 Type. Then
i) For all t 2 T 0

� , t(R
cd
�)�t.

ii) For all t1; t2 2 T 0
� , t1(R

cd
�)�t2 =) t2(Rcd

�)�t1.
iii) For all t1; t2; t3 2 T 0

� such that, for some �;�, the sequents < �;� >`co
t1 � t2 : � and < �;� 0 >`co t2 � t3 : � are completely derivable,

[t1(R
cd
�)�t2 & t2(R

cd
�)�t3] =) t1(R

cd
�)�t3 :

Proof. Both items i) and ii) can be easily shown by case analysis on �, using
Lemma 1.5. Item iii) is shown by by case analysis on �, using Lemmata 2.3 and
2.8. ut

Theorem 2.10 (Correctness). Let � 2 Type. For all t; t0 2 T 0
� ,

`co t � t0 : � =) t �� t
0 :

Proof. We show that the family fRcd
� g�2Type is a �-bisimulation, i.e. we have

to show that 8�: Rcd
� � (Rcd

�)�. We prove this by induction on the sum of
the lengths of the derivations � and �i's, where � denotes the derivation of
< �; t1 � t01 : �1; : : : ; tn � t0n : �n >`co t � t0 : �X:� and �i denotes the
derivation of < �; t1 � t01 : �1; : : : ; ti�1 � t0i�1 : �i�1 >`co ti � t0i : �i, for
i = 1; : : : ; n.
Base Case: The only rule applied in � is (re) or (rec). The thesis follows from
item i) of Lemma 2.9.

252 Marina Lenisa

Induction Step: We proceed by analyzing the last rule applied in � . If the last
rule is (re) or (rec), then again the thesis follows from item i) of Lemma 2.9.
If the last rule is (symm), then the thesis is immediate by induction hypothesis,
using item ii) of Lemma 2.9. If the last rule is (trans), then again the thesis is
immediate by induction hypothesis, using item iii) of Lemma 2.9. If the last rule
in � is one of the following (�cong), (+1cong), (+2cong), ([]cong), (abs), then
then the thesis is immediate. Finally, if the last rule in � is (hyp) or (in), then
the thesis follows immediately from the induction hypothesis.

ut

2.2 Completeness of Sco

In order to show the completeness of the system Sco, we need to exploit the im-
plicit regularity of the terms expressible in our language. Namely, we introduce
the notion of set of subterms of a given term.

De�nition 2.11. Let t 2 T� . The set of subterms of t, sub(t), is de�ned by
induction on t as follows:

{ if t � x 2 V ar or t � c 2 C , then sub(t) = ftg;
{ if t � ij(t0), for some j 2 f1; 2g, then sub(t) = ftg [sub(t0);
{ if t �< t1; t2 >, then sub(t) = ftg [sub(t1) [sub(t2);
{ if t � [t1; : : : ; tn], for some n � 0, then sub(t) = ftg [

S
i=1;:::;n sub(ti);

{ if t � in(t0), then sub(t) = ftg [sub(t0);
{ if t � rec x:t0, then sub(t) = ftg [ft1[t=x] j t1 2 sub(t0)g.

The following lemma can be immediately shown by induction on terms.

Lemma 2.12. For all � and for all t 2 T�,
i) the set sub(t) is �nite;
ii) 8t0 2 sub(t): sub(t0) � sub(t).

Now we are in the position of stating the Completeness Theorem for the
system Sco. The proof of this theorem consists in showing that, if two terms
t; t0 2 T 0

� are ��-bisimilar, then, since they have only a �nite number of sub-
terms, we can build a derivation of `co t � t0 : � in a top-down fashion.

Theorem 2.13 (Completeness). Let � 2 Type. For all t; t0 2 T 0
� ,

t �� t
0 =) `co t � t0 : � :

Proof. We prove that, if t �� t0, then for all t1; : : : ; tn; t 2 sub(t), t01; : : : ; t
0
n; t

0
2

sub(t0) such that 8i = 1; : : : ; n: ti; t
0
i 2 T 0

�i & ti ��i t
0
i, t; t

0
2 T 0

� and t �� t
0
,

there exists a derivation of t1 � t01 : �1; : : : ; tn � t0n : �n `co t � t
0
: �.

Suppose by contradiction that t1 � t01 : �1; : : : ; tn � t0n : �n `co t � t
0
: � is

not derivable. Then we show that there exists an in�nite sequence of distinct
pairs of processes ti; t

0
i 2 T 0

�i such that ti ��i t
0
i and ti 2 sub(t), t0i 2 sub(t0),

253A Complete Coinductive Logical System for Bisimulation Equivalence

for i = 1; : : : ; n, which is clearly impossible because, by Lemma 2.12, sub(t) and

sub(t0) are �nite. In fact, if t1 � t01 : �1; : : : ; tn � t0n : �n `co t � t
0
: � is not

derivable, then we show that a sequent of the following shape is not derivable:
t1 � t01 : �1; : : : ; tn � t0n : �n; tn+1 � t0n+1 : �n+1 `co bt � bt0 : b�, for some

tn+1;bt 2 sub(t), t0n+1;bt0 2 sub(t0), such that tn+1 ��n+1 t0n+1, bt �b� bt0, and the
hypothesis tn+1 � t0n+1 : �n+1 is new, in the sense that it does not appear among
t1 � t01 : �1; : : : ; tn � t0n : �n. This latter fact is proved by induction on the
structure of �.
If � � Kj, then the sequent t1 � t01 : �1; : : : ; tn � t0n : �n `co t � t

0
: Kj is

immediately derivable, since t �Kj
t
0
) t = t0 2 Cj:

If � � �X1:�1, then there exists m;n � 0 such that t � rec x1 : : : rec xm:in(et)
and t0 � rec x1 : : : rec xn:in(et0), for some terms et;et0. Then, by rule (in) (pos-
sibly using rules (rec), (symm), and (trans)), also t1 � t01 : �1; : : : ; tn � t0n :

�n; in(et)[t=x1; : : : ; t=xm] � in(et)[t0=x1; : : : ; t0=xn] : �X1:�1 `co et[t=x1; : : : ; t=xm] �et[t0=x1; : : : ; t0=xn] : �X1:�1 is not derivable, and the pair in(et)[t=x1; : : : ; t=xm] �
in(et)[t0=x1; : : : ; t0=xn] : �X1:�1 is new among t1 � t01 : �1; : : : ; tn � t0n : �n,
otherwise we would already have a proof of the sequent t1 � t01 : �1; : : : ; tn �

t0n : �n `co t � t
0
: �.

If � � �1 + �2, then t � ij(tj) and t
0
� ij(t

0
j), for some j 2 f1; 2g and, by

rule (+jcong) (possibly using rules (rec), (symm), and (trans)), also the sequent

t1 � t01 : �1; : : : ; tn � t0n : �n `co tj � tj
0
: �j is not derivable. Hence we can

apply the induction hypothesis to �j, since, by de�nition of ij(tj) ��1+�2 ij(t
0

j),

we have also tj ��j t
0

j .
Finally, the cases � � �1 � �2 and � � Pf (�1) are dealt with similarly to the
previous case. ut

The proof of Theorem 2.13 above is given by contradiction just for the sake
of conciseness. Clearly a constructive proof can be easily obtained from the
proof above. As a side-remark, we point out that a proof of decidability of
�-equivalence can be easily obtained using the argument of the above proof.

3 Categorical Semantics

In this section we give a categorical �nal semantics in the style of [Acz88, RT93,
Len96, Rut96, Len98] (to which we refer for further details on this topic) to our
language, and we show that it captures exactly the greatest �xed point semantics
of Section 1.

The interest of this categorical semantics is that it achieves a signi�cant
degree of generality, in that it subsumes naturally a great number of concrete
examples of in�nite objects in programming. The signi�cance of a �nal semantics
for a language like ours is that, contrary to the �xed point semantics, it allows
us to embody as a point of a �nal coalgebra a canonical \minimal"representat-
ive for each equivalence class of terms. These denotations are the mathematical

254 Marina Lenisa

counterparts of our intuitive circular objects. Notice that de�ning a �nal se-
mantics for a language with a given notion of equivalence is not a mechanical
task.

We work in the category Set� of non-wellfounded sets and set-theoretic func-
tions for simplicity, but we could have also worked in other categories based on
sets. Denotations would have become rather obscure however. We proceed as
follows. We de�ne a \universal" endofunctor F , embodying constructors corres-
ponding to the type constructors. Then we endow the set ��2TypeT

0
� , i.e. the

disjoint sum of all closed typable terms, with a structure of F -coalgebra. Finally,
we show that the largest F -bisimulation on the coalgebra de�ned on ��2TypeT

0
�

coincides with the family of bisimulation equivalences f��g� introduced in Sec-
tion 1.

Our categorical semantics could be equivalently presented in the framework
of categories indexed over types. But, for the sake of simplicitly, we prefer the
set-theoretic setting.

For more informations on the Final Semantics paradigm see e.g. [Len98].

De�nition 3.1. Let F : Set� ! Set� be the functor de�ned by:

F (X) = ��2Type(�j�nCj + (X +X) + (X �X) + Pf (X)) :

We endow the set ��2TypeT
0
� with a structure of F -coalgebra as follows:

De�nition 3.2. Let � : ��2TypeT
0
� ! F (��2TypeT

0
�) be the function de�ned

by:
�(t) = (�; z) ;

where

z =

8>>>>>>>>>><
>>>>>>>>>>:

inKj
(cij) if AKj

in+(ij(t1)) if A�1+�2

in�(t1; t2) if A�1��2

inPf ([t1; : : : ; tm]) if APf (�1)
inKj

(cij) if A�X:Kj

in+(ij(t1[t=x1; : : : ; t=xn])) if A�X:�1+�2

in�(t1[t=x1; : : : ; t=xn]; t2[t=x1; : : : ; t=xn]) if A�X:�1��2

inPf ([t1[t=x1; : : : ; t=xn]; : : : ; tm[t=x1; : : : ; t=xn]]) if A�X:Pf (�1)

where inKj
, in+, in�, inPf denote canonical injections into disjoint sum and

AKj
� (� � Kj ^ t � cij; i 2 Ij)

A�1+�2 � (� � �1 + �2 ^ t � ij(t1))
A�1��2 � (� � �1 � �2 ^ t �< t1; t2 >)
APf (�1) � (� � Pf (�1) ^ t � [t1; : : : ; tm])
A�X:Kj

� (� � �X:Kj ^ t � rec x1 : : : rec xn:in(cij); i 2 Ij)
A�X:�1+�2 � (� � �X:�1+ �2 ^ t � rec x1 : : : rec xn:in(ij(t1)))
A�X:�1��2 � (� � �X:�1� �2 ^ t � rec x1 : : : rec xn:in(< t1; t2 >))
A�X:Pf � (� � �X:Pf(�1) ^ t � rec x1 : : : rec xn:in([t1; : : : ; tm])).

255A Complete Coinductive Logical System for Bisimulation Equivalence

Now, our goal is that of showing that the largest F -bisimulation on the
coalgebra (��T

0
� ; �), which we denote by �, coincides exactly with the family

of bisimulation equivalences f��g� de�ned in Section 1. First of all, we recall
the de�nition of categorical F -bisimulation:

De�nition 3.3. Let F : Set� ! Set�. An F -bisimulation on the F -coalgebra
(X;�X) is a set-theoretic relation R � X � X such that there exists an arrow
of Set�, :R! F (R), making the following diagram commute:

X

��

�X

Roo
�1 //

�2

��

X

��

�X

F (X) F (R)oo
F (�1)

//
F (�2)

F (X)

The proof of the following proposition is routine:

Proposition 3.4. The largest F -bisimulation on the coalgebra (��T
0
� ; �) is the

family f��g�.

4 Final Remarks and Directions for Future Work

In this paper, we have presented a \coinductive" axiomatization of the bisimula-
tion equivalence on non-wellfounded regular objects. Moreover, we have shown
that it is complete with respect to a maximal �xed point semantics and also
to a categorical semantics. Our presentation makes use of a typed language for
denoting circular terms.

We could generalize our language of terms so as to allow non-regular objects,
still getting a sound axiomatization. In fact, the regularity property is crucial
only for proving the completeness of our system.

There are various other promising directions for possible generalizations and
extensions of the coinductive axiomatization presented in this paper.

{ Categories other than the purely set-theoretical ones could be investigated.
This would involve the use of a generalized notion of set-theoretic relation.
In the case of c.p.o.'s, this should go in the direction of providing a formal
system for expressing Pitts' relational structures ([Pit96]).

{ A richer collection of types, including inductive types and themixed covariant-
contravariant ! constructor could be considered, as well as destructors in
terms.

{ Coarser notions of bisimulations other than Milner's strong bisimulation
could be considered, e.g. weak bisimulation and congruence, van Glabbeek-
Weijland branching bisimulation, Montanari-Sassone dynamic bisimulation.

{ Other coinductively de�ned equivalences, arising in di�erent contexts, could
be considered. E.g. equivalence of streams representing exact reals.

{ Finally, it would be interesting to compare systems like Sco to other logics
for bisimulations (see e.g. [Mos?]).

256 Marina Lenisa

References

Acz88. P.Aczel. Non-well-founded sets, CSLI Lecture Notes 14, Stanford 1988.
BV96. J.de Bakker, E.de Vink. Control Flow Semantics, Foundations of Comput-

ing Series, The MIT Press, Cambridge, 1996.
BM96. J.Barwise, L.Moss. Vicious circles: On the mathematics of non-wellfounded

phenomena, CSLI Publications, Stanford, 1996.
BH97. M.Brandt, F.Henglein. Coinductive axiomatization of recursive type equality

and subtyping,TLCA'97Conf. Proc., P.de Groote, R.Hindley, eds., Springer
LNCS 1210, 1997, 63{81.

Coq94. T.Coquand. In�nite Objects in Type Theory, Types for Proofs and Pro-
grams TYPES-93, Springer LNCS 806, 1994, 62{78.

Fio96. M.Fiore. A Coinduction Principle for Recursive Data Types Based on Bisim-
ulation, Inf. & Comp. 127, 1996, 186{198.

FH83. M.Forti, F.Honsell. Set theory with free construction principles, Ann. Scuola
Norm. Sup. Pisa, Cl. Sci. (4) 10, 1983, 493{ 522.

Gim94. E.Gim�enez. Codifying guarded de�nitions with recursive schemes, Work-

shop on Types for Proofs and Programs, P.Dybjer et al. eds., Springer LNCS
996, 1994, 39{59.

Gim95. E.Gim�enez. An application of co-Inductive types in Coq: veri�cation of the
Alternating Bit Protocol, Workshop Types Proofs and Programs, 1995.

Gim96. E.Gim�enez. Un calcul de constructions in�nies et son application a la ver-
�cation de systemes communicants, PhD Thesis, �Ecole normale sup�erieure
de Lyon, December 1996.

HL95. F.Honsell, M.Lenisa. Final Semantics for Untyped Lambda Calculus, TL-
CA'95Conf. Proc., M.Dezani et al eds., Springer LNCS 902, 1995, 249{265.

Len96. M.Lenisa. Final Semantics for a Higher Order Concurrent Language,
CAAP'96, H.Kirchner et. al. eds., Springer LNCS 1059, 1996, 102{118.

Len98. M.Lenisa. Themes in Final Semantics, Ph.D. Thesis TD-6/98, Diparti-
mento di Informatica, Universit�a di Pisa, March 1998.

MPC86. N.P.Mendler, P.Panangaden, R.L.Constable. In�nite Objects in Type The-
ory, 1th LICS Conf. Proc., IEEE Computer Society Press, 1986, 249{255.

Mil83. R.Milner. Calculi for synchrony and asynchrony, TCS 25, 1983, 267{310.
Mil84. R.Milner. A complete inference system for a class of regular behaviours, J.

of Computer and System Sciences 28, 1984, 39{466.
Mos?. L.Moss. Coalgebraic Logic, to appear in the Annals of Pure and Applied

Logic.
Pit96. A.M.Pitts. Relational Properties of Domains, Inf. & Comp. 127, 1996.
Plo85. G.Plotkin. Types and Partial Functions, Post-Graduate Lecture Notes, De-

partment of Computer Science, University of Edinburgh, 1985.
Rut96. J.J.M.M.Rutten. Universal coalgebra: a theory of systems, Report CS-

R9652, CWI, Amsterdam, 1996.
RT93. J.J.M.M.Rutten, D.Turi. On the Foundations of Final Semantics: Non-

Standard Sets, Metric Spaces, Partial Orders, REXConf. Proc., J.de Bakker
et al. eds., Springer LNCS 666, 1993, 477{530.

Tal90. C.Talcott. A Theory for Program and Data type Speci�cation, TCS,
Disco90 Special Issue, 1990.

Tur96. D.Turi. Functorial Operational Semantics and its Denotational Dual, PhD
thesis, CWI, 1996.

257A Complete Coinductive Logical System for Bisimulation Equivalence

	Introduction
	Types and Terms
	Bisimulation Equivalence on Closed Typable Terms

	A Coinductive Logical System for Bisimulation Equivalence
	Correctness of S_co
	Completeness of S_co

	Categorical Semantics
	Final Remarks and Directions for Future Work

